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In this paper we will give three infinite families of exam-
ples of nonhyperbolic Dehn fillings on hyperbolic manifolds.
A manifold in the first family admits two Dehn fillings of dis-
tance two apart, one of which is toroidal and annular, and the
other is reducible and ∂-reducible. A manifold in the second
family has boundary consisting of two tori, and admits two
reducible Dehn fillings. A manifold in the third family admits
a toroidal filling and a reducible filling with distance 3 apart.
These examples establish the virtual bounds for distances be-
tween certain types of nonhyperbolic Dehn fillings.

1. Introduction.

Given a slope r on a torus boundary component T0 of a 3-manifold M ,
the Dehn filling of M along the slope r, denoted by M(r), is the man-
ifold obtained by gluing a solid torus V to M along ∂V and T0 so that
r bounds a meridian disk on V . A manifold is simple if it is irreducible,
∂-irreducible, atoroidal, and anannular. Thus a simple manifold is either
hyperbolic, or a small Seifert fiber space, or it would be a counter exam-
ple to the Geometrization Conjecture. In particular, if M(r) has nonempty
toroidal boundary, then it is simple if and only if it is hyperbolic [Th]. A
Dehn filling M(r) is of type S (resp. D, T , A) if M(r) contains an essential
S2 (resp. D2, T 2, A2), so it is reducible (resp. ∂-reducible, toroidal, annu-
lar). The bound ∆(X, Y ) is the least nonnegative number n such that if
M is a hyperbolic manifold which admits two Dehn fillings M(r1),M(r2) of
type X, Y , respectively, then ∆(r1, r2) ≤ n. The bounds ∆(X, Y ) have been
established, via the work of many people, for all the 10 possible choices of
(X, Y ); see [GW2] for more details.

In some cases, the upper bound of ∆(X, Y ) is reached only by a few
manifolds. For example, it was shown in [GW1] that if M(r1) is annular
and M(r2) is toroidal, then ∆(r1, r2) ≤ 3 unless M is one of three special
manifolds, for which ∆(r1, r2) is 4 or 5; moreover, there are infinitely many
manifolds which admit two such Dehn fillings with ∆(r1, r2) = 3. Thus
∆(A, T ) = 5, but the “virtual bound” to be defined below is 3. Similarly
for ∆(T, T ), see [Go]. The main results of this paper are the following.
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Theorem 0.1. There are infinitely many hyperbolic manifolds M which
admit two nonhyperbolic Dehn fillings M(r1) and M(r2), such that M(r1) is
toroidal and annular, M(r2) is reducible and ∂-reducible, and ∆(r1, r2) = 2.

Theorem 0.2. There are infinitely many hyperbolic manifolds M with two
torus boundary components, each of which admits two reducible Dehn fillings
M(r1),M(r2), with ∆(r1, r2) = 1.

Theorem 0.3. There are infinitely many hyperbolic manifolds M which
admit two nonhyperbolic Dehn fillings M(r1) and M(r2), such that M(r1)
is reducible, M(r2) is toroidal, and ∆(r1, r2) = 3.

These theorems follow immediately from Theorems 2.6, 3.6 and 4.2 below.
Very few examples as in the theorems were known before. The only known
example satisfying the conditions in Theorem 0.1 was found by Hayashi and
Motegi [HM], and the only known example as in Theorem 0.2 was the one
given by Gordon and Litherland [GLi].

Similar to ∆(X, Y ), we define the virtual bound ∆v(X, Y ) of distances
between type X and type Y Dehn fillings to be the maximal integer n such
that there are infinitely many hyperbolic manifolds M which admit two
Dehn fillings M(r1),M(r2) of type X, Y respectively, with ∆(r1, r2) = n.
If no such infinite family exist, define ∆v(X, Y ) = 0. Thus ∆v(X, Y ) ≤
∆(X, Y ). The above theorems and some known results determine the virtual
bounds of distances between certain types of nonhyperbolic Dehn fillings.
The following is a table of ∆v(X, Y ).

Y
X DSAT

D

S

A

T

2

2

2

3

3

5

3--5

1 

0 1

Table 1.1. Virtual bound ∆v(X, Y ).
As we can see, except for ∆v(A,A), all the other ∆(X, Y ) have been

completely determined. In the table, ∆v(T, T ) is determined by Gordon
[Go], ∆v(T,A) by Gordon and Wu [GW1]. The upper bounds of the other
entries in Table 1.1 are the same as that in [GW2], and the lower bounds of
them are determined by Theorem 0.1 for ∆v(D,T ), ∆v(D,A), and ∆v(S, A);
by Theorem 0.3 for ∆v(S, T ); by Gabai [Ga] and Berge [Be] for ∆v(D,D);
by Gordon and Wu [GW1] for ∆v(A,A); and by Gordon and Litherland
[GLi] for ∆v(S, S). Theorem 0.2 gives a stronger result about type S-S
fillings, namely the manifolds can be chosen to have an extra torus boundary
components. Also, it provides infinitely many examples of two essential
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planar surfaces in 3-manifolds with distinct boundary slopes, one of which
has unbounded number of boundary components.

We would like to thank Cameron Gordon and John Luecke for some in-
teresting discussion on this topic.

2. Toroidal/annular fillings and reducible/∂-reducible fillings.

In this section we prove Theorem 2.6, which shows that there are infinitely
many hyperbolic manifolds which admit two Dehn fillings of distance two
apart, one of which is toroidal and annular, and the other is reducible and
∂-reducible. Let Y = S2×I. Consider the tangles ξp in Y as shown in Figure
2.1, where a rectangle labeled by an integer n denotes a rational tangle of
slope 1/n; in other words, it contains two vertical strings with n left hand
half twists.

2p
−2

p

k = k  half twist......

Figure 2.1.

Let ξp(r) be the tangle obtained by filling the inside sphere S0 of Y with
a rational tangle of slope r. The tangles ξp(r) are drawn in Figure 2.2(a)-
(d) for r = ∞, 0,−1,−1/2, respectively. From the pictures we have the
following lemma. We use ξ(r, s) to denote a Montesinos tangle consisting of
two rational tangles associated to the rational numbers r and s respectively.
See [Wu2] or [Mo1, Co] for more details about Montesinos tangles and
algebraic tangles.

Lemma 2.1. (1) ξp(∞) is the connected sum of a trivial tangle and a
Hopf link.

(2) ξp(0) is the Montesinos tangle ξ[ 1
2p−1 , −1

2p+1 ].
(3) ξp(−1) is the Montesinos tangle ξ[ 1

2p+1 , −1
2p−1 ].

(4) ξp(−1
2 ) is an algebraic tangle obtained by summing a Montesinos tangle

ξ[ 1
2p , −1

2p ] with a rational tangle ξ[12 ]. It is not a Montesinos tangle.
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2p
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(c)

Figure 2.2.
Let Mp be the double branched covering of Y with branch set the tangle

ξp. Then Mp is a compact orientable 3-manifold with boundary consisting
of two tori T0 and T1, where T0 is the lift of the inside sphere S0. The
∞ and 0 slopes on S0 lift to a meridian-longitude pair on T0, with respect
to which the Dehn filling manifold Mp(r) is the double covering of the 3-
ball branched along the tangle ξp(r). See [Mo2] for more details. Denote
by Q(r, s) the double branched cover of a Montesinos tangle ξ[1r , 1

s ]. Note
that when |r|, |s| > 1, Q(r, s) is a Seifert fiber space with orbifold D(r, s),
which by definition is a disk with two cone points of angle 2π/|r| and 2π/|s|.
Denote by C(r, s) the cable space of type (r, s), that is, the exterior of a
knot K in a solid torus V which is parallel to a curve on ∂V representing
rl + sm in H1(∂V ), where (m, l) is a meridian-longitude pair of ∂V . The
above facts and Lemma 2.1 lead to the following lemma.

Lemma 2.2. Suppose p ≥ 2. The manifolds Mp have the following proper-
ties.

(1) Mp(∞) is the connected sum of a solid torus and the projective space
RP 3;

(2) Mp(0) = Q(2p− 1,−2p− 1);
(3) Mp(−1) = Q(2p + 1,−2p + 1);
(4) Mp(−1/2) is a non Seifert fibered graph manifold containing a unique

essential torus T , cutting it into a cable space C(2, 1) and a Seifert
fiber space Q(2p,−2p).

Proof. (1) follows from the fact that the double branched cover of the Hopf
link is RP 3, and connected sum of links and tangles downstairs corresponds
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to connected sum of manifolds upstairs. (2) and (3) follow from the definition
of Q(r, s).

To prove (4), notice that the Conway sphere in ξp(−1/2) cutting off the
tangle ξ(2p,−2p) lifts to an essential torus T upstairs, which cuts Mp(−1/2)
into Q(2p,−2p) and C(2, 1). Since ξp(−1/2) is not a Montesinos tangle, the
fibers on the two sides of T do not match. Seifert fibration on C(2, 1) is
unique, and since p ≥ 2, the Seifert fibration on Q(2p,−2p) is also unique
[Ja, Theorem IV.18]. Therefore, Mp(−1/2) is not a Seifert fiber space, so
T is the Jaco-Shalen-Johannson decomposing torus because each side of it
is a Seifert fiber space. Since each of C(2, 1) and Q(2p,−2p) are atoroidal,
T is the unique essential torus in Mp(−1/2). �

Note that when p = 1, Mp(0) and Mp(−1) are solid tori. Also, Mp(−1/2)
is a Seifert fiber space with orbifold a Mobiüs band with a cone point of
angle π/2, so the conclusion of (4) is not true for p = 1. Thus the argument
below will fail in this case. Actually, one can see that ξ1 contains a nontrivial
Conway sphere, so the manifold M1 is toroidal.

In the following, we will assume M = Mp and p ≥ 2, and show that M
is hyperbolic. Since M has toroidal boundary, by [Th] we need only show
that M is irreducible, ∂-irreducible, non Seifert fibered, and atoroidal.

Lemma 2.3. If p ≥ 2, then M is irreducible, ∂-irreducible, and non Seifert
fibered.

Proof. If M is reducible, let S be a reducing sphere. S is separating, other-
wise it would be a reducing sphere in all M(r), contradicting Lemma 2.2(2).
Let W,W ′ be the two components of M cut along S, with W the one con-
taining T0. Let Ŵ ′ be W ′ with S capped off by a 3-ball. Since M(0) is the
Seifert fiber space Q(2p− 1,−2p− 1), which is irreducible, W (0) must be a
3-ball, so Ŵ ′ = M(0) = Q(2p− 1,−2p− 1). But then we have

M(∞) = Ŵ ′#Ŵ (∞) = Q(2p− 1,−2p− 1)#Ŵ (∞) 6= (S1 ×D2)#RP 3,

which is a contradiction. Therefore M is irreducible.
If M is ∂-reducible, then after ∂-compression one of the Ti becomes a

sphere separating the two components of ∂M , hence is a reducing sphere,
contradicting the above conclusion.

If M is Seifert fibered, then M(r) is Seifert fibered for all but at most one
r, for which M(r) is reducible. Since M(−1/2) is irreducible and is not a
Seifert fiber space, this is not possible. �

Lemma 2.4. Suppose T is an essential separating torus in an irreducible 3-
manifold M , and suppose it is compressible in M(r1),M(r2) with ∆(r1, r2) ≥
2, where ri are slopes on T0 ⊂ ∂M . Then T and T0 bound a cable space in
M , with cabling slope r0 satisfying ∆(r0, ri) = 1, i = 1, 2.
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Proof. Cut M along T and let X be the component containing T0. Then T
is compressible in X(ri) and ∆(r1, r2) ≥ 2, so by [Wu1, Theorem 1] there is
an essential annulus A in X with one boundary on T and the other on T0,
with slope r0, say. Since T is essential in M , it is not parallel to T0, so by
[CGLS, Theorem 2.4.3] T is compressible in X(r) only if ∆(r0, r) ≤ 1. We
must have ∆(r0, ri) = 1, because if r0 = r1 then we would have ∆(r0, r2) =
∆(r1, r2) = 2, a contradiction. Now the manifold X(ri) is homeomorphic
to the manifold Y obtained by cutting X along A, so the torus component
of ∂Y corresponding to T under the homeomorphism is compressible in Y .
Since M is irreducible, this implies that Y is a solid torus. It follows that
X is a cable space with cabling slope r0. �

Lemma 2.5. M is atoroidal.

Proof. Assuming the contrary, let T be an essential torus in M . Then T
must be separating, otherwise M(r) would contain a nonseparating torus or,
if T becomes compressible in M(r), a nonseparating sphere, for all r, which
contradicts Lemma 2.2(1).

Let W,W ′ be the two components of M cut along T , with W the one con-
taining T0. Since M contains no nonseparating essential torus, by the Haken
finiteness theorem (cf. [Ja, Page 49]), we may choose T to be outermost in
the sense that W ′ contains no essential torus.

Claim. T is compressible in M(−1/2).

Recall from Lemma 2.2(4) that M(−1/2) has a unique essential torus T ′.
So if T is incompressible in M(−1/2) then either it is boundary parallel or
it is isotopic to T ′. The first case is impossible, because then M(−1/2) =
W (−1/2) ∪W ′ = (T × I) ∪W ′ ∼= W ′, so T ′ would be an essential torus in
W ′, contradicting the choice of T . Therefore T must be isotopic to T ′ in
M(−1/2). It follows that either W ′ = C(2, 1), or W ′ = Q(2p,−2p).

Since M(0) is atoroidal, either T is boundary parallel in M(0) or it is
compressible in M(0). In the first case we would have Q(2p− 1,−2p− 1) =
M(0) = W ′ = C(2, 1) or Q(2p,−2p), which is absurd. In the second case
let D be a compressing disk of T in W (0), and let Ŵ ′ be the manifold
obtained by capping off the sphere boundary component of W ′∪N(D) with
a 3-ball. Then Ŵ ′ is a summand of M(0) = Q(2p − 1,−2p − 1), so either
Ŵ ′ = Q(2p− 1,−2p− 1) or Ŵ ′ = S3. However, this is impossible whether
W ′ = C(2, 1) or W ′ = Q(2p,−2p) because Ŵ ′ is obtained from W ′ by Dehn
filling on T along certain slope, and it is easily seen that when p ≥ 2 none of
the Dehn fillings on such W ′ could produce Q(2p− 1,−2p− 1) or S3. This
completes the proof of the claim.

Since M(∞) contains no incompressible torus, T is compressible in M(∞).
By the claim above, T is also compressible in M(−1/2). Since ∆(∞,−1/2) =
2, it follows from Lemma 2.4 that W is a cable space C(p, q) with cabling
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slope r0 satisfying ∆(r0,∞) = ∆(r0,−1/2) = 1. Solving these equalities,
we have r0 = 0 or −1. Now we have W (r0) = L(p, q)#(S1 ×D2), so M(r0)
should have a lens space summand. On the other hand, we have shown that
r0 = 0 or −1, and in either case by Lemma 2.2 M(r0) is a prime mani-
fold with torus boundary. This contradiction completes the proof that M is
atoroidal. �

Theorem 2.6. The manifolds Mp, p ≥ 2, are mutually distinct hyperbolic
manifolds, each admitting two nonhyperbolic Dehn fillings M(r1) and M(r2),
such that M(r1) is toroidal and annular, M(r2) is reducible and ∂-reducible,
and ∆(r1, r2) = 2.

Proof. Consider the manifold Mp which is the double cover of Y = S2 × I
branched along the tangle ξp in Figure 2.1. By Lemmas 2.3 and 2.5, Mp are
hyperbolic for all p ≥ 2. By Lemma 2.2, Mp(∞) is reducible and ∂-reducible,
and Mp(−1/2) is the union of C(2, 1) and Q(2p,−2p) along a torus, hence
is toroidal and annular because there is an essential annulus in C(2, 1) with
both boundary components on the outside torus T1. Since ∆(∞,−1/2) = 2,
Mp satisfy all the conditions of the theorem. It remains to show that Mp

and Mq are non homeomorphic when p, q ≥ 2 and p 6= q.
Let T0 (resp. T ′

0) be the torus of ∂Mp (resp. ∂Mq) on which the Dehn
fillings are performed. Let (m, l) (resp. (m′, l′)) be the meridian-longitude
pair on T (resp. T ′) chosen as in Lemma 2.2. Let f : Mp → Mq be a
homeomorphism.

2p
−2

p

S

2p
−2p

(a) (b)

0S1 S1 S0

Figure 2.3.

There is a homeomorphism of Y interchanging the two sphere boundary
components, and leaving ξp invariant, which induces a self homeomorphism
of Mp interchanging the two boundary components. This can be seen by
redrawing the tangle in Figure 2.1 as in Figure 2.3(a), where the sphere S0

represents the inside sphere in Figure 2.1, and S1 the outside sphere. After
an isotopy the picture becomes that in Figure 2.3(b). (Note that the isotopy
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have changed the position of the endpoints of the tangle on the spheres, but
that does not matter.) Now blow up the sphere S0, we get the same picture
as that in Figure 2.1, with S0 and S1 interchanged. Thus without loss of
generality we may assume that f maps T0 to T ′

0.
Since Mp(∞) is ∂-reducible, by [Sch] Mp(r) is irreducible for all r 6= ∞.

Hence the reducing slope ∞ is unique, so f must send m to m′. Assume
f(l) = l′ + km′. Because of uniqueness of Seifert fibration, neither of Mp(0)
or Mp(−1) is homeomorphic to Mq(0) or Mq(−1) when p, q ≥ 2 and p 6= q.
Hence k 6= 0,±1. Now f sends the slope −1/2 to (2k − 1)/2, so both
Mq(−1/2) and Mq((2k−1)/2) are toroidal. We have ∆(−1/2, (2k−1)/2) =
|4k| ≥ 8. On the other hand, by [Go], this happens only if Mq is the Figure 8
knot complement or the Whitehead sister link complement. Since Mq have
two boundary components, this is impossible. �

3. Manifolds admitting two reducible Dehn fillings.

In this section we will show that there are infinitely many hyperbolic man-
ifolds with two torus boundary components, each admitting two reducible
Dehn fillings. Consider the tangles ξp in Y = S2 × I as shown in Figure
3.1, where, as in Figure 2.1, a rectangle labeled by an integer n denotes a
rational tangle of slope 1/n.

2p−2p

Figure 3.1.

As in Section 2, we denote by Mp the double branched cover of Y branched
along ξp, and by ξp(r) the tangle obtained by filling the inside sphere S0 with
a rational tangle of slope r. Then the Dehn filling manifold Mp(r) is the
double cover of Y branched along ξp(r). The tangles ξp(∞) and ξp(0) are
drawn in Figure 3.2(a)–(b). We can see that ξp(∞) is the connected sum of
ξ(1/2,−1/2) and a Hopf link, while ξp(0) is the connected sum of a Mon-
tesinos tangle ξ(1/2p,−1/2p) and a Hopf link. Recall that Q(r, s) denotes
the Seifert fiber space which double branch covers the tangle ξ(1/r, 1/s),
and the double branched cover of a Hopf link is the projective space RP 3.
Therefore we have the following lemma.
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2p
−2

p

2p
−2

p

2p

−2p

Figure 3.2.

Lemma 3.1. The manifolds Mp, p 6= 0, have the following properties.
(1) Mp(∞) = Q(2,−2)#RP 3;
(2) Mp(0) = Q(2p,−2p)#RP 3.

Thus each Mp admits two reducible Dehn fillings. In what follows, we
will assume M = Mp, and p ≥ 2. We need to show that M is hyperbolic.
Let T0 be the component of ∂M on which the Dehn fillings are performed.
Thus T0 covers the inside sphere S0 in Figure 3.1. Let T1 be the component
of ∂M covering the outside sphere S1.

Lemma 3.2. M is irreducible.

Proof. Assuming the contrary, let S be a reducing sphere of M . Clearly
S is separating, otherwise M(0) would contain a nonseparating reducing
sphere, contradicting Lemma 3.1. Let W,W ′ be the components of M cut
along S, with W the one containing T0. Denote by Ŵ the manifold W with
the sphere boundary capped off by a 3-ball. Similarly for Ŵ ′. Then Ŵ ′

is a summand of both M(0) and M(∞), so by Lemma 3.1 we must have
Ŵ ′ = RP 3. This also shows that the reducing sphere in M is unique up to
isotopy, because if S and S′ bound different punctured RP 3, then tubing
them together would give a sphere which does not bound a punctured RP 3.

Let ρ be the involution of M which induces the branched covering. Since
the reducing sphere S is unique up to isotopy, by the equivariant sphere
theorem [MSY], it can be chosen to be invariant under the involution ρ,
hence it double branch covers a sphere S′ in the manifold Y downstairs,
which must cut off a 3-ball B because one side of S is W ′, which does not
contain the preimage of S0 or S1. Extending the involution ρ|S trivially
over a 3-ball D, we get a double branched cover Ŵ ′ → S3 = B ∪D′, with
branch set L the union of ξ′ = ξp ∩ B and a trivial arc in the attached
3-ball D′, which is the image of D under the branched covering map. Since
Ŵ ′ = RP 3 = L(2, 1), the link L is the 2-bridge link associated to the number
1/2, which is the Hopf link. Therefore, ξ′ = ξp∩B is a tangle in B consisting
of an unknotted arc and a trivial circle C around it.

We want to shown that no such pair (B, ξ′) exists in (Y, ξp). Assuming
the contrary, then (B, ξ′) would remain the same after filling the sphere
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boundaries S0, S1 of Y with any rational tangles. The tangle ξp has two
circle components C1, C2, where C1 denotes the one on the left in Figure
3.1. The circle component C of ξ′ must be one of the Ci. However, after
filling both Si with 0-tangle, C2 has linking number p ≥ 2 with one of the
components of the resulting link, while after filling S0 with 1-tangle and S1

with∞-tangle the circle C1 has linking number 2 with one of the components
of the resulting link, either case contradicting the fact that C bounds a disk
in B intersecting the resulting link only once. �

Lemma 3.3. M is ∂-irreducible, and is not a Seifert fiber space.

Proof. Since ∂M consists of two tori, M being ∂-reducible would imply that
it is reducible, which would contradict Lemma 3.2. If M is Seifert fibered
(with two torus boundary components), then M(r) would be reducible for
at most one r, which would contradict Lemma 3.1. �

Lemma 3.4. Let X be an irreducible and ∂-irreducible 3-manifold. If both
X(r1) and X(r2) are reducible and ∂-reducible, then r1 = r2.

Proof. Let T0 be the Dehn filling component of ∂X. Assume r1 6= r2. Since
X(r1) is ∂-reducible and X(r2) is reducible, by Scharlemann’s theorem [Sch,
Theorem 6.1], r2 is a cabling slope, so there is an essential annulus A2 in X
with boundary two copies of r2 of opposite orientations. Similarly, we have
an essential annulus A1 in X with boundary consisting of two copies of r1 of
opposite orientations. Isotope A1 to intersect A2 essentially. Then A1 ∩A2

consists of essential arcs on Ai, running from one boundary component to
the other. By the parity rule on [CGLS, Page 279], if an arc component of
A1∩A2 connects two components of ∂A1 which have opposite orientations on
T0, then it must connect two components of ∂A2 with the same orientation
on T0. This is a contradiction because the two boundary components of
each Ai have opposite orientations on T0. �

Lemma 3.5. M is atoroidal.

Proof. Consider an essential torus T in M . Clearly T is separating, otherwise
M(0) would contain a nonseparating torus or sphere, which would contradict
Lemma 3.1. Let W,W ′ be the two components of M cut along T , where W
contains T0. Note that T cannot be boundary parallel in M(0) or M(∞),
otherwise W ′, and hence M , would be reducible, which would contradict
Lemma 3.2. Hence T is compressible in both W (0) and W (∞) because by
Lemma 3.1 they are atoroidal. After compression, T becomes a sphere in
W (0) and W (∞), so if W contained T1, then both W (0) and W (∞) would
also be reducible, which is impossible by Lemma 3.4. Hence we conclude
that any essential torus in M must separate the two boundary components
of M .

Let ρ : M → M be the involution which induces the branch covering,
and let X be the fixed point set of ρ. Then X covers the tangle ξp in the
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manifold Y downstairs. Since ξp contains four arcs running from S0 to S1,
X has four arcs running from T0 to T1, hence each essential torus T intersect
X at least four times.

By the equivariant torus theorem [MS, Theorem 8.6], there is a set of
essential tori T in M such that ρ(T ) = T . Let T be a component of T . Since
X intersects T in at least four points, we must have ρ(T ) = T . Calculating
the Euler number of T/ρ, we see that X cannot intersect T in more than
four points. Hence T intersects X exactly four times, and S = T/ρ is a
sphere in Y which intersects each of the four arc components of ξp exactly
once, and is disjoint from the circle components of ξp. Since the two circle
components of ξp have linking number 1, they must lie on the same side of
S.

Let Y1, Y2 be the two components of Y cut along S, with Y1 the one
disjoint from the circle components of ξp. Let W1,W2 be the components
of M cut along T , with Wi covering Yi. Consider the tangle ξ′p consisting
of the arc components of ξp. Let M ′ be the double cover of Y branched
along ξ′p, let T ′ be the torus in M ′ that covers S, and let W ′

i be the part
of M ′ that covers Yi. It can be seen from Figure 3.1 that ξ′p is isotopic to
four straight arcs running from S0 to S1; hence M ′ = T 2 × I. Since T ′ is a
torus separating the two components of ∂M ′, it is isotopic to a horizontal
torus T 2 × x, so each W ′

i is also homeomorphic to T 2 × I. Now we have
ξp ∩ Y1 = ξ′p ∩ Y1, therefore W1, as the double cover of Y1 branched along
ξp∩Y1, is the same as W ′

1, hence is a product T 2×I. But then T is boundary
parallel, contradicting the assumption that T is an essential torus in M . �

Theorem 3.6. The manifolds Mp, p ≥ 2, are distinct hyperbolic manifolds,
each admitting two reducible Dehn fillings M(r1),M(r2) with ∆(r1, r2) = 1.

Proof. We have shown in Lemmas 3.1-3.5 that Mp are hyperbolic manifolds
admitting two reducible Dehn fillings Mp(0) and Mp(∞), so it remains to
show that the manifolds are all different.

Suppose f : Mp → Mq is a homeomorphism, p > q ≥ 2. As in the proof
of Theorem 2.6, it is easy to see that there is a self homeomorphism of Mp

interchanging the two boundary components, hence we may assume that f
maps T0 to T ′

0, where T ′
0 and T ′

1 are the boundary tori of Mq, with T ′
0 the

one covering the inside sphere.
By [GLu1], Mi admits at most three reducible Dehn fillings, with mutual

distance 1. Since Mp(0) = Q(2p,−2p)#RP 3 is homeomorphic to neither
Mq(0) nor Mq(∞), f maps the slope 0 to another reducing slope of Mq,
which must be ±1 because it has distance 1 from 0 and ∞. Thus the only
reducible Dehn filling of Mq homeomorphic to Mp(∞) is Mq(∞), so f sends
the ∞ slope on T0 to ∞ on T ′

0. Similarly, it sends the ∞ slope on T1 to ∞
on T ′

1. Denote by Mp(r, s) the manifold obtained by r filling on T0 and s
filling on T1. Then we have Mp(0,∞) = Mq(±1,∞).
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The manifold Mk(r, s) is a double cover of ξk(r, s), which is obtained from
ξk by filling the inside sphere with a rational tangle of slope r and the outside
sphere with one of slope s. One can check that ξp(0,∞) is the split union
of a Hopf link and a trivial knot, while ξq(±1,∞) is the connected sum of a
Hopf link and a 2-bridge link associated to the rational number ±1

4 . Thus
Mp(0,∞) = S1 × S2#RP 3, and Mq(±1,∞) = L(4,±1)#RP 3. Since these
two manifolds are not homeomorphic, this is a contradiction. �

4. Reducible and toroidal fillings.

In this section we show that there are infinitely many hyperbolic manifolds
which admit a reducible filling and a toroidal filling of distance 3 apart.
Consider the tangles ξp (p ≥ 3) in Y , as shown in Figure 4.1(a), where Y is
the 3-ball obtained by deleting the interior of the 3-ball B in the figure from
S3. As before, let ξ(r) be the union of (Y, ξp) with a rational tangle of slope
r, and let Mp(r) be the double branched cover of S3 branched along ξp(r).

(a) (b) (c)

−p−2

p

(d) (e)

=

(f)

= =

−p−2 −p−2 −p−2

−p−2−p−2

−p−2

−p
−2

p
pp

p p

p

−p−2

p

B

Figure 4.1.
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Lemma 4.1. The manifold Mp admits the following Dehn fillings.

(1) Mp(∞) is a non Seifert fibered, irreducible, toroidal manifold;
(2) Mp(0) is a lens space L((p− 1)(p + 3) + 1, p + 3);
(3) Mp(1) and Mp(1/2) are small Seifert fibered manifolds, but not lens

spaces;
(4) Mp(1/3) = L(3, 1)#L(2, 1).

Proof. The tangles ξ(∞), ξ(0), ξ(1), ξ(1/2), ξ(1/3) are shown in Figure
4.1(b)-(f), respectively. We can see that ξ(∞) is the union of ξ[12 , 1

−(p+2) ]
and ξ[12 , 1

p ], and is not a Montesinos link; ξ(0) is a 2-bridge link associated
to the rational number 1/((p− 1)+1/(p+3)) = (p+3)/((p+3)(p− 1)+1);
ξ(1) and ξ(1/2) are Montesinos links consisting of three rational tangles; and
ξ(1/3) is the connected sum of a trefoil knot and a Hopf link. The result now
follows by taking the double cover of S3 branched along the corresponding
links. Note that p ≥ 3 guarantees that the Seifert fibrations on the two sides
of the essential torus in Mp(∞) are unique, which can be used to show that
Mp(∞) is not a Seifert fiber space. See the proof of Lemma 2.2. �

Theorem 4.2. The manifolds M = Mp, p ≥ 3, are mutually distinct hy-
perbolic manifolds, each admitting two Dehn fillings M(r1) and M(r2), such
that M(r1) is reducible, M(r2) is toroidal, and ∆(r1, r2) = 3.

Proof. Let r1 = 1/3, and r2 = ∞. Then ∆(r1, r2) = 3, and by Lemma
4.1, M(r1) is reducible, M(r2) is toroidal. We need to show that Mp are
hyperbolic and mutually distinct.

M is irreducible, otherwise a closed summand would survive after all
Dehn fillings; but since M(0) and M(1) are non homeomorphic prime man-
ifolds, this is impossible. M is not a Seifert fiber space because two Dehn
fillings M(∞) and M(1/3) are non Seifert fibered. These imply that M
is ∂-irreducible. To prove M is hyperbolic, it remains to show that M is
atoroidal.

If T is an essential torus in M , then it is compressible in M(0), M(1),
M(1/2) and M(1/3). Since M(0) is irreducible, T must be separating. Let
W,W ′ be the components of M cut along T , with W the one containing T0.
Since ∆(1, 1/3) = 2, by Lemma 2.4, W is a cable space C(r, s), with cabling
slope r0 satisfying ∆(r0, 1) = ∆(r0, 1/3) = 1. Solving these equalities, we
have r0 = 0 or 1/2; but since M(r0) contains a lens space L(r, s), we must
have r0 = 0.

Let δ0 and δ1 be the slopes on T which bound disks in W (0) and W (1/3),
respectively. Since 0 is the cabling slope, we have ∆(δ0, δ1) = |r| > 1. Now
W (0) is the connected sum of a solid torus and L(r, s), while W (1/3) is a
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solid torus, so we have

M(0) = L(r, s)#W ′(δ0),

M(1/3) = W ′(δ1).

Comparing the first equation with Lemma 4.1(2), we see that W ′ is the exte-
rior of a knot in S3 with δ0 the meridional slope. But then since ∆(δ0, δ1) >
1, by [GLu2] the manifold M(1/3) would be irreducible, which would con-
tradict Lemma 4.1(4). This completes the proof that M is atoroidal, and
hence hyperbolic.

It remains to show that the manifolds Mp are mutually distinct. As-
sume there is a homeomorphism f : Mp

∼= Mq, p > q ≥ 3. Let (m, l)
and (m′, l′) be the meridian-longitude pair of Mp and Mq, respectively. By
[CGLS], [GLu1] and [BZ, Theorem 0.1], a hyperbolic manifold admits a
total of at most three reducible or cyclic Dehn fillings, with mutual distance
1. Thus two of the four slopes 0, 1/3, f(0), f(1/3) on ∂Mq must be the same.
But since Mp(0) is not homeomorphic to Mq(0) or Mq(1/3), we must have
f(1/3) = 1/3, and f(0) is of distance 1 from 0 and 1/3, so f(0) = 1/2 or
1/4. The first is impossible because Mq(1/2) is not a lens space. Hence
f(0) = 1/4. Now f(m) = f((m + 3l) − 3l) = (m′ + 3l′) ± 3(m′ + 4l′), and
we have ∆(m′, f(m)) ≥ 9. Since both m′ and f(m) are toroidal Dehn filling
slopes on ∂Mq, this contradicts [Go]. �

References

[Be] J. Berge, The knots in D2 × S1 with nontrivial Dehn surgery yielding D2 × S1,
Topology Appl., 38 (1991), 1-19.

[BZ] S. Boyer and X. Zhang, The semi norm and Dehn filling, preprint.

[Co] J. Conway, An enumeration of knots and links, and some of their algebraic prop-
erties, in ‘Computational problems in abstract algebra’, 329-358, New York and
Oxford, Pergamon, 1970.

[CGLS] M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Annals
Math., 125 (1987), 237-300.

[Ga] D. Gabai, Surgery on knots in solid tori, Topology, 28 (1989), 1-6.

[Go] C. Gordon, Boundary slopes of punctured tori in 3-manifolds, Trans. Amer. Math.
Soc., 350 (1998), 1713-1790.

[GLi] C. Gordon and R. Litherland, Incompressible planar surfaces in 3-manifolds,
Topology Appl., 18 (1984), 121-144.

[GLu1] C. Gordon and J. Luecke, Reducible manifolds and Dehn surgery, Topology, 35
(1996), 385-409.

[GLu2] , Only integral Dehn surgeries can yield reducible manifolds, Math. Proc.
Camb. Phil. Soc., 102 (1987), 97-101.

[GW1] C. Gordon and Y.-Q. Wu, Toroidal and annular Dehn fillings, Proc. London
Math. Soc., to appear.



NONHYPERBOLIC DEHN FILLINGS 275

[GW2] , Annular and boundary reducing Dehn fillings, preprint.

[HM] C. Hayashi and K. Motegi, Dehn surgery on knots in solid tori creating essential
annuli, Trans. Amer. Math. Soc., 349 (1997), 4897-4930.

[Ja] W. Jaco, Three manifold topology, Regional Conference Series in Math., 43
(1980).

[MS] W. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math., 86
(1986), 287-346.

[MSY] W. Meeks, L. Simon and S.-T. Yau, Embedded minimal surfaces, exotic spheres,
and manifolds with positive Ricci curvature, Annals Math., 116 (1982), 621-659.

[Mo1] J. Montesinos, Una familia infinita de nudos representados no separables, Revista
Math. Hisp.-Amer., 33 (1973), 32-35.

[Mo2] , Surgery on links and double branched covers of S3, Annals of Math.
Studies, 84 (1975), 227-260.

[Sch] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology,
29 (1990), 481-500.

[Th] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic ge-
ometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.

[Wu1] Y.-Q. Wu, Incompressibility of surfaces in surgered 3-manifolds, Topology, 31
(1992), 271-279.

[Wu2] , The classification of nonsimple algebraic tangles, Math. Ann., 304
(1996), 457-480.

Received September 15, 1997 and revised February 2, 1998. The second author’s research
at MSRI was supported in part by NSF grant #DMS 9022140.

UNAM
Ciudad Universitaria
04510 Mexico D.F.
Mexico
E-mail address: eudave@servidor.unam.mx

University of Iowa
Iowa City, IA 52242
E-mail address: wu@math.uiowa.edu

mailto:eudave@servidor.unam.mx
mailto:wu@math.uiowa.edu

