
Pacific
Journal of
Mathematics

TEST WORDS, GENERIC ELEMENTS AND ALMOST
PRIMITIVITY

B. Fine, G. Rosenberger, D. Spellman, and M. Stille

Volume 190 No. 2 October 1999



PACIFIC JOURNAL OF MATHEMATICS
Vol. 190, No. 2, 1999

TEST WORDS, GENERIC ELEMENTS AND ALMOST
PRIMITIVITY

B. Fine, G. Rosenberger, D. Spellman, and M. Stille

A test element in a group G is an element g with the prop-
erty that if f(g) = g for an endomorphism f of G to G then
f must be an automorphism. A test element in a free group
is called a test word. Nielsen gave the first example of a test
word by showing that in the free group on x, y the commutator
[x, y] satisfies this property. T. Turner recently characterized
test words as those elements of a free group contained in no
proper retract. Since free factors are retracts, test words are
therefore very strong forms of non-primitive elements. In this
paper we give some new examples of test words and exam-
ine the relationship between test elements and several other
concepts, in particular generic elements and almost-primitive
elements (APE’s). In particular we show that an almost prim-
itive element which lies in a certain type of verbal subgroup
must be a test word. Further using a theorem of Rosenberger
on equations in free products we prove a result on APE’s,
generic elements and test words in certain free products of
free groups. Finally we examine test elements in non-free
groups and introduce the concept of the test rank of a group.

1. Introduction.

A test element in a group G is an element g with the property that if
f(g) = g for an endomorphism f ofG toG then f must be an automorphism.
A test element in a free group is called a test word. Nielsen [N] gave the
first non-trivial example of a test word by showing that in the free group
on x, y the commutator [x, y] satisfies this property. T. Turner [T] recently
characterized test words as those elements of a free group which do not lie
in any proper retract. Using this characterization he was able to give several
straightforward criteria to determine if a given element of a free group is a
test word. Using these criteria, Comerford [C] proved that it is effectively
decidable whether elements of free groups are test words. Since free factors
are retracts, Turner’s result implies that no test word can fall in a proper free
factor. Therefore being a test word is a very strong form of non-primitivity.

In this paper we consider relationships between test words and two related
concepts — almost primitive elements (APE’s) and generic elements.
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We give the formal definitions in the next section where we also prove that
an almost primitive element of a free group which lies in a certain type of
verbal subgroup must be a test word (Theorem 1). This is quite surprising
given the strong non-primitivity of test words. In Section 3 we use a the-
orem of Rosenberger [R1] on equations in free products to prove a result
on APE’s, generic elements and test words in certain free products of free
groups. In Section 4, using Nielsen transformations, we produce a set of
generic elements in the free group of rank two. Using the theorem of Rosen-
berger mentioned above, these examples can be extended to finding generic
elements in higher rank free groups. Finally in Section 5 we give some
straightforward results on extensions of these concepts to arbitrary non-free
groups. As pointed out by Turner the characterization of test elements in
general is more subtle and difficult than in the free group case.

We note that a few of the results appear in the Diplomarbeit of N. Iser-
mann [I] however the proofs given here are somewhat different.

2. Test Words, Almost Primitive Elements and Generic
Elements.

A test element in a group G is an element g with the property that if
f(g) = g for an endomorphism f ofG toG then f must be an automorphism.
A test element in a free group is called a test word. Nielsen [N] gave the
first non-trivial example of a test word by showing that in the free group
on x, y the commutator [x, y] satisfies this property. Other examples of test
words have been given by Zieschang [Z1, Z2], Rosenberger [R1, R2, R3]
Kalia and Rosenberger [K-R], Hill and Pride [H-P] and Durnev [D]. Gupta
and Shpilrain [G-S] have studied the question as to whether the commutator
[x, y] is a test element in various quotients of the free group on x, y.

Recall that a subgroup H of a group G is a retract if there exists a
homomorphism f : G → H which is the identity on H. Clearly in a free
group F any free factor is a retract. However there do exist retracts in
free groups which are not free factors. Recently T. Turner [T] characterized
test words as those elements of a free group which do not lie in any proper
retract. Using this characterization he was able to give several straightfor-
ward criteria to determine if a given element of a free group is a test word.
Using these criteria, Comerford [C] proved that it is effectively decidable
whether elements of free groups are test words. Since free factors are re-
tracts, Turner’s result implies that no test word can fall in a proper free
factor. Therefore being a test word is a very strong form of non-primitivity.
Shpilrain [S1, S2] defined the rank of an element w in a free group F as the
smallest rank of a free factor containing w. Clearly in a free group of rank
n a test word has maximal rank n. Shpilrain conjectured that the converse
was also true but Turner gave an example showing this to be false. However
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Turner also proved that Shpilrain’s conjecture is true if only test words for
monomorphisms are considered.

As a direct consequence of the characterization Turner obtains the fol-
lowing result [T, Example 5] which shows that there is a fairly extensive
collection of test words in a free group of rank two.

Proposition 1 ([T]). In a free group of rank two any non-trivial element
of the commutator subgroup is a test word.

Proof. Let F be a free group of rank two and suppose H is a proper retract.
Then the rank of H must be one and hence H is abelian. Suppose g ∈ F ′ the
commutator subgroup of F . If g ∈ H then there exists an endomorphism
f : F → H which is the identity on H. Therefore f(g) = g. But f(g) = 1
if f is any homomorphism of F into an abelian group. Therefore g = 1. It
follows that no non-trivial element of F ′ can lie in any proper retract and
therefore by Turner’s characterization must be a test word. �

An almost primitive element - (APE) - is an element of a free group F
which is not primitive in F but which is primitive in any proper subgroup of
F containing it. This can be extended to arbitrary groups in the following
manner. An element g ∈ G is primitive in G if g generates an infinite
cyclic free factor of G, that is g has infinite order and G = 〈g〉 ?G1 for some
G1 ⊂ G. g is then an APE if it is not primitive in G but primitive in any
proper subgroup containing it. Rosenberger [R1] proved that in the free
group F = F (xi, yi, zj); 1 ≤ i ≤ m, 1 ≤ j ≤ n, of rank 2m+ n the element

[x1, y1]...[xm, ym]zp1
1 . . . zpn

n

where the pi are not necessarily distinct primes, is an APE in F . Rosen-
berger [R1] proved, in a different setting that if A,B are arbitrary groups
containing APE’s a, b respectively, then the product ab is either primitive
or an APE in the free product A?B. This was reproved by Brunner, Burns
and Oates-Williams [B-B-O] who also prove the more difficult result that
if a and b are tame APE’s in groups A,B respectively then their product
normally is a tame APE in A?B. An APE w in a group G ia a tame APE
if whenever wα ∈ H ⊂ G with α ≥ 1 minimal, then either wα is primitive in
H or the index [G : H] is α. It follows easily that [a1, b1] . . . [ag, bg], g ≥ 1,
is a tame APE in the free group on a1, b1 . . . ag, bg, (see [R3]). We note that
Brunner, Burns and Oates-Williams give a more technical definition of a
tame APE.

Let U be a variety defined by a set of laws V. (We refer to the book of H.
Neumann [Ne] for relevant terminology.) For a group G we let V(G) denote
the verbal subgroup of G defined by V. An element g ∈ G is U-generic in
G if g ∈ V(G) and whenever H is a group, f : H → G a homomorphism and
w = f(u) for some u ∈ V(H) it follows that f is surjective. Equivalently
g ∈ G is U-generic in G if g ∈ V(G) ⊂ G but g /∈ V(K) for every proper
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subgroup K of G [St]. An element is generic if it is U-generic for some
variety U . Let Un be the variety defined by the set of laws Vn = {[x, y], zn}.
For n = 0 we have Un = A the abelian variety. Stallings [St] and Dold
[Do] have given sufficient conditions for an element of a free group to be
Un-generic. Using this it can be shown that xn

1x
n
2 . . . x

n
m is Un-generic in the

free group on x1, . . . , xm for all n ≥ 2 and if m is even [x1, x2], . . . [xm−1, xm]
is Un-generic in the free group on x1, . . . , xm for n = 0 and for all n ≥ 2.
These facts are also consequences of a result of Rosenberger [R2, R3].

Comerford [C] points out that if G is Hopfian, which is the case if G is
free, then being generic implies being a test word. Thus for free groups we
have

generic −→ test word .

Comerford also shows that there is no converse. In particular he shows that
in a free group of rank 3 on x, y, z the word w = x2[y2, z] is a test word but
is not generic. We can also show that in general, generic does not imply
APE. Suppose F = F (x, y) is the free group of rank two on x, y and let
w = x4y4. Then w is U4-generic but w is not an APE since w ∈ 〈x2, y2〉 and
is not primitive in this subgroup while this subgroup is not all of F .

Further, in general it is not true that being an APE implies being a test
word. Again let F = F (x, y) and let w = x2yx−1y−1. Brunner, Burns
and Oates-Williams, after a private communication with G. Rosenberger,
show that w is an APE. However Turner shows that w is not a test word.
Since generic elements are test words in a Hopfian group this example shows
further that APE does not imply generic in general. This is really to be
expected since test words are strongly non-primitive. However our first
result shows that many APE’s are indeed generic and therefore test words.

Recall that a variety U defined by the set of laws V is a non-trivial variety
if it consists of more than just the trivial group. In this case V(F ) 6= F for
any free group F .

Theorem 1. Let F be a free group and B a non-trivial variety defined by
the set of laws V. Let w ∈ V(F ). If w is an APE then w is B-generic. In
particular w is a test word.

Proof. Let w ∈ V(F ) be an APE and let φ : H → F be a homomorphism
with φ(u) = w for some u ∈ V(H). As in the statement of the theorem,
V is the set of laws defining the non-trivial variety B. Let K be a proper
subgroup of F . If w /∈ K then clearly w /∈ V(K). If w ∈ K then since w is an
APE, w is primitive in K since K is a proper subgroup of F . Further since
B is a non-trivial variety and K is free we have that K 6= V(K). It follows
then from the primitivity of w in K that w /∈ V(K). Therefore w ∈ V(F )
and for any proper subgroup K of F we have w /∈ V(K) and hence w is
B-generic. Since free groups are Hopfian, w must then be a test word. �
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In particular let F (n) be the subgroup of the free group F generated by
all commutators and n-th powers, n ≥ 2 or n = 0, that is F (n) = Vn(F ).
Then:

Corollary 1. Let w ∈ F (n) with n ≥ 2 or n = 0. If w is an APE then w
is Un-generic and w is a test word.

3. APE’s in Certain Free Products of Free Groups.

In this section we give a result on APE’s, generic elements and test words
on certain free products of free groups. The result depends on the following
theorem of Rosenberger [R1].

Theorem 2 ([R1]). Let G = H1 ? · · ·Hn, n ≥ 2, be the free product of
groups H1, . . . , Hn. Let aj ∈ Hj , aj 6= 1, and let p be the number of aj

which are proper powers in Hj, (1 ≤ j ≤ n). Let {x1, . . . , xm} ⊂ G, m ≥ 1,
and let H be the subgroup of G generated by x1, . . . , xm. If a = a1...an ∈ H
then one of the following cases holds:

(1) There is a Nielsen transformation from {x1, . . . , xm} to a system {y1,
. . . , ym} with y1 = a1 · · · an.

(2) It is m ≥ 2n− p, and there is a Nielsen transformation from {x1, . . . ,
xm} to a system {y1, . . . , ym} with yi ∈ Hj , 1 ≤ j ≤ n, 1 ≤ i ≤ 2n−p;
and moreover aj can be written as a word in those yk, 1 ≤ k ≤ m,
which are contained in Hj,1 ≤ j ≤ n.

Proof. Here we give a more detailed proof than in [R1]. This is done in
order to explain more extensively the concept of semistable letters and the
blockwise description of letters in a product of generators.

We regard G as the free product G = H1 ? · · · ? Hn together with the
length L and an order with respect to this factorization. We refer to the
papers [Z3] and [F-R-S] for the terminology and properties related to the
length L and Nielsen cancellation methods in such free products. Consider
the sets of elements {x1, . . . , xm} and {a1, . . . , an} as in the statement of
the theorem. We may assume that {x1, . . . , xm} is Nielsen reduced. For
this system we then have an equation

(1)
q∏

k=1

xεk
νk

= a1 · · · an

where εk = ±1, εk = εk+1 if νk = νk+1.
Among the equations as in (1) there is one for which q is minimal and

let us assume that this is the case in Equation (1). Further we may also
assume that each xi 6= 1 and that each xi occurs in (1). If some xi occurs
only once in (1) as either xi or x−1

i then case (1) of the theorem holds. That
is {x1, . . . , xm} can be carried by a Nielsen transformation to a system
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{y1, . . . , ym} with y1 = a1 . . . an. If this is not the case we will show that
there is no λ ∈ {1, . . . ,m} such that always

L(xε
νxλx

η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. It follows then that for
λ ∈ {1, . . . ,m} there is always some ν, µ ∈ {1, . . . ,m} such that

L(xε
νxλx

η
µ) ≤ L(xν)− L(xλ) + L(xµ)

for ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or ν 6= λ = µ, η = 1 or
ν = λ = µ, ε = η = 1. This means that each xλ is conjugate to some element
of some Hs and hence necessarily either we return to case (1) or case (2)
holds proving the theorem.

We may assume that each xi either occurs twice in Equation (1) with the
same exponent ε = ±1 or occurs in (1) exactly once with exponent +1 and
once with exponent −1. In either case we always have

L(xεk
νk
· · ·xεh

νh
) ≥ L(xεl

νl
)

for 1 ≤ k ≤ l ≤ h ≤ q and

L(xεk
νk
x

εk+1
νk+1x

εk+2
νk+2) ≥ L(xνk

)− L(xνk+1
) + L(xνk+2

)

for 1 ≤ k ≤ q − 2.
Assume that there is a λ ∈ {1, . . . ,m} such that always

L(xε
νxλx

η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. Suppose in particular that
λ = νk. We write ui = xεi

νi
, 1 ≤ i ≤ q. Let

ui = li1 · · · limi
kirimi

· · · ri1
be the symmetric normal form of ui (see [Z3] and [F-R-S]). We call

li1 , . . . , limi
, ki, rimi

, . . . , ri1

the places of ui. For brevity we write vi for a place of ui. In the following
we write

z ≡ z1 · · · zp
to stand for the equality of the elements= together with the fact that

L(z) = L(z1) + · · ·+ L(zp).

Given the xλ above and its places, there is an at, 1 ≤ t ≤ n, such that
one of the following holds:

(a) uk ≡ pkvkqk and at = vkbt where vk ∈ Ht \ {1} is a place of uk

and bt = 1 or 1 6= bt ∈ Ht and uk+1 · · ·uk+l ≡ q−1
k btqk for some l with

1 ≤ l ≤ q − k;
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(b) uk ≡ pkvkqk and at = btvk where vk ∈ Ht \ {1} is a place of uk

and bt = 1 or 1 6= bt ∈ Ht and uk−l · · ·uk−1 ≡ pkbtp
−1
k for some l with

1 ≤ l ≤ k − 1;
(c) uk ≡ pkvkqk , uk+l+1 ≡ q−1

k vk+l+1qk+l+1 and at = vkbtvk+l+1 where
0 ≤ l ≤ q − k − 1, vk ∈ Ht \ {1} is a place of uk,vk+l+1 ∈ Ht \ {1} is a place
of uk+l+1 and bt = 1 or 1 6= bt ∈ Ht and uk+1 · · ·uk+l ≡ q−1

k btqk for some l
with 1 ≤ l ≤ q − k − 1;

(d) uk ≡ pkvkqk , uk−l−1 ≡ pk−l−1vk−l−1p
−1
k and at = vk−l−1btvk where

0 ≤ l ≤ k − 2, vk ∈ Ht \ {1} is a place of uk, vk−l−1 ∈ Ht \ {1} is a place
of uk−l−1 and bt = 1 or 1 6= bt ∈ Ht and uk−l · · ·uk−1 ≡ pkbtp

−1
k for some l

with 1 ≤ l ≤ k − 2.
Note that if uk+1 . . . uk+l ≡ q−1

k btqk or uk−l . . . uk−1 ≡ pkbtp
−1
k , bt 6= 1,

respectively then each ui occurring in this product is conjugate to an element
of Ht.

To see all this assume that there is an at with 1 ≤ t ≤ n for whose
formation some ui, 1 ≤ i < k, and some uj , k < j ≤ q, contribute. Then
uk−1 cancels the whole leading half of uk and uk+1 cancels the whole rear
half of uk and the kernel of uk has a share in the formation of at. But then
L(uk−1ukuk+1) ≤ L(uk−1)− L(uk) + L(uk+1) giving a contradiction.

Now suppose we have the blockwise description of at above and we assume
as before that xλ = xνk

occurs twice in Equation (1). Then νk = νh for some
h, 1 ≤ h ≤ q, with k 6= h. Without loss of generality let k < h and recall that
all the at, 1 ≤ t ≤ n, are all different from different factors. If εh = εk then
the leading half of xλ = xνh

= xνk
is inverse to the rear half of xλ = xνk

,
that is xνk

is conjugate to an element of some factor Hs with 1 ≤ s ≤ n.
But then

L(x3
νk

) ≤ L(xνk
) = L(xνk

)− L(xνk
) + L(xνk

)

which gives a contradiction.
Now let εh = −εk. Then we have the following situation:
uk ≡ pkvkqk, uh = uk+l+1 = u−1

k ≡ q−1
k v−1

k p−1
k , uk+1 · · ·uk+l ≡ q−1

k btqk
with vk, bt ∈ Ht \ {1} for some t, 1 ≤ t ≤ n and some l, 1 ≤ l ≤ q − k − 1.
We may choose vk in such a way that |L(pk) − L(qk)| ≤ 1. Assume that
pk 6= 1. Since the at are all different from different factors, pk or p−1

k must
be cancelled completely in Equation (1) by a ui with i < k or i >= h
respectively, which is not conjugate to an element of some factor. For such
an element ui we always have (see [F-R-S])

L(uε
luiu

η
j ) > L(ul)− L(ui) + L(uj)

for l, j ∈ {1, . . . , q}, ε, η = ±1 and l 6= i 6= j or l = i 6= j, ε = 1 or
l 6= i = j, η = 1 or l = i = j, ε = η = 1. We have i < k or i > h
so an inductive argument gives a contradiction because of the blockwise
description of the at.
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Therefore we have pk = 1. This gives qk 6= 1, L(qk) = 1 since uk is not
conjugate to an element of some factor. But then uk+1 = q−1

k dtqk for some
dt ∈ Ht\{1}, u := ukuk+1u

−1
k = vkdtv

−1
k and L(u) = 1 < L(uk+1) = 3 which

contradicts the fact that {x1, . . . , xm} is Nielsen reduced. Hence xλ = xνk

occurs only once in Equation (1) contradicting the assumption that each xi

occurs twice in Equation (1). Therefore there is no λ such that always

L(xε
νxλx

η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. As described before this
statement completes the theorem. �

We note the following. Suppose {x1, . . . , xm} ⊂ G = H1 ? · · · ? Hn,
m ≥ 1, n ≥ 2, is a Nielsen reduced system as above with xi 6= 1 for all i.
Let λ ∈ {1, . . . ,m} be such that always

L(xε
νxλx

η
µ) > L(xν)− L(xλ) + L(xµ)

for ν, µ ∈ {1, . . . ,m}, ε, η = ±1 and ν 6= λ 6= µ or ν = λ 6= µ, ε = 1 or
ν 6= λ = µ, η = 1 or ν = λ = µ, ε = η = 1. Let w = ai1 · · · air ∈ G, r ≥ 1, be
given in normal form and let w ∈ H = 〈x1, . . . , xm〉. Let

w =
q∏

k=1

xεk
νk

εk = ±1, εk = εk+1 if νk = νk+1 with q minimal. Assume that xλ occurs in
this equation, for instance suppose xεk

λ = xεk
νk

=: uk. Then there is an aij

related to uk = xε
λ which is described via the block relation to a place vk of

uk as in the proof of the theorem. Such a vk is called a semistable letter
of uk. The advantage of a semistable letter is that it can be influenced in
such an equation as above, only from one side.

Using the theorem we obtain the following result on APE’s in free prod-
ucts of free groups.

Theorem 3. Let F be a finitely generated free group with basis B. Let
B1, . . . , Bn, n ≥ 2, be pairwise disjoint, non-empty subsets of B and let Fj

be the subgroup of F generated by Bj, 1 ≤ j ≤ n. Let aj ∈ Fj with aj 6= 1,
1 ≤ j ≤ n and let a = a1 . . . an. Then:

(1) If each aj is an APE in Fj then a is an APE in F .
(2) Let U a non-trivial variety defined by the set of laws V.

(a) Let aj ∈ V(Fj). If each aj is U-generic in Fj then a ∈ V(F ) and a
is U-generic in F .

(b) Let a ∈ V(F ). If a is U-generic in F then each aj ∈ V(Fj) and
each aj is U-generic in Fj.

(3)(a) Let aj ∈ F q
j F

′
j, q = 0 or q = 2, for each j, 1 ≤ j ≤ n. If each aj is

a test word in Fj then a is a test word in F .
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(b) Let a ∈ F qF ′, q = 0 or q = 2. If a is a test word in F then each aj

is a test word in Fj.

Proof. (1) Let aj ∈ Fj with aj 6= 1, 1 ≤ j ≤ n, and let a = a1 · · · an.
Then a cannot be primitive in F because in that case at least one aj has
to be primitive in Fj contradicting that each aj is an APE. Let K be a
proper subgroup of F with a ∈ K. From Theorem 2, a is primitive in K
or without loss of generality, we may assume that K has a finite basis X
which is the disjoint union of n subsets Xj of Fj such that aj ∈ Kj ⊂ Fj

for each j, 1 ≤ j ≤ n, where Kj is the subgroup generated by Xj . We
consider this latter situation. If Kj = Fj for each j then K = 〈K1, . . . ,Kn〉
= 〈F1, . . . , Fn〉 = F contradicting the fact that K 6= F . Hence Kj is a
proper subgroup of Fj for at least one j. Suppose K1 ⊂ F1,K1 6= F1. Then
a1 is primitive in K1 since a1 is an APE in F1 and hence a = a1 · · · an is
primitive in K. This completes part (1).

(2)(a) Let each aj be U-generic in Fj . Since each aj ∈ V(Fj) we have
a ∈ V(F ). Let φ : H → F be a homomorphism with φ(u) = a for some
u ∈ V(H). Without loss of generality assume H to be finitely generated. a
cannot be primitive in K = φ(H) because U is non-trivial. Let A be a finite
generating system for H. Then X = φ(A) is a finite generating system for
K. We apply Theorem 2 and the fact that a Nielsen transformation from
X to a system Y defines an epimorphism from K onto K. Hence without
loss of generality we assume that X is the disjoint union of n subsets Xj

of Fj such that aj ∈ Kj ⊂ Fj for each j with 1 ≤ j ≤ n where Kj is the
subgroup generated by Xj . Let Hj = φ−1(Kj) for each j. Then φj = φ|Hj

defines a homomorphism φj : Hj → Fj with aj = φj(uj), 1 ≤ j ≤ n, for
some uj ∈ V(Hj). Since each aj is U-generic, φj is an epimorphism for each
j. Therefore φ is an epimorphism completing part (2)(a).

(2)(b) Certainly each aj ∈ V(Fj) if a ∈ V(F ). For each j let φj : Hj → Fj

be a homomorphsim from some group Hj such that φ(uj) = aj for some
uj ∈ V(Hj). Let H = H1 ? · · · ? Hn and let φ : H → F be the induced
homomorphism with φ|Hj

= φj . Then φ(u1 . . . un) = φ(a1 · · · an) = φ(a) and
u1 . . . un ∈ V(H). Since a is U-generic, φ is an epimorphism. Hence each φj

is an epimorphism and therefore each aj is U-generic. This completes part
(2)(b).

(3)(a) For a group G we let GqG′,q = 0 or q ≥ 2, denote the subgroup of
G generated by the q-th powers and the commutators in G.

Let each aj be a testword in Fj and suppose each aj ∈ F q
j F

′
j , q = 0 or

q ≥ 2. Then a ∈ F qF ′, q = 0 or q ≥ 2. Let φ : F → F be an endomorphism
with φ(a) = a. Let K = φ(F ). Since a ∈ F qF ′ we also have a ∈ KqK ′, q = 0
or q ≥ 2. Hence a is not primitive in K and we must show that K = F .

Let X = φ(B). We show first that X is a basis for K. From Theorem 2,
X can be carried by a Nielsen transformation, relative to a = a1 · · · an into
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a free basis Y of K which contains a subset Z which is the disjoint union of
n subsets Zj of Fj such that aj ∈ Kj ⊂ Fj for each j, 1 ≤ j ≤ n, where Kj

is the subgroup generated by Zj . Since each aj is a testword in Fj we must
have |Zj | = |Bj | for each j and hence |Z| = |B|. This gives

|Z| ≤ |Y | ≤ |X| ≤ |B| = |Z|
and hence Y = Z and X is a basis of K. Now the Nielsen transformation
from X to the above system Y defines an automorphsim α of K. Hence we
may already assume that X = Y = Z because of the free product decompo-
sition F = F1 ? · · · ? Fn and the description of a as a = a1 · · · an. Starting,
with a permutation of B, if necessary, we obtain this way an endomorphism
ψ : F → F such that ψj = ψ|Fj

defines an endomorphism ψj : Fj → Fj

with ψj(aj) = aj for 1 ≤ j ≤ n. Since each aj is a testword in Fj we have
that each ψj is an automorphism of Fj . Hence by combination, ψ is an
automorphism of F . Therefore by construction, φ is also an automorphism
of F and it follows that a is a testword in F .

(3)(b) Since a ∈ F qF ′, q = 0 or q ≥ 2, we have aj ∈ F q
j F

′
j , q = 0 or

q ≥ 2. For each j let φj : Fj → Fj be an endomorphsim with φj(aj) = aj .
Then φ : F → F with φ|Fj

= φj defines an endomorphism φ : F → F with
φ(a) = φ(a1 · · · an) = a1 · · · an = a. Since a is a testword in F , φ is an
automorphism of F . Hence each φj is an automorphism of Fj and therefore
each aj is a testword in Fj . This completes the theorem. �

Corollary 2. Let F = 〈x1, y1, . . . , xg, yg; 〉, g ≥ 1. Let aj = aj(xj , yj) 6= 1
for j = 1, . . . , g and let both xj and yj occur in the freely reduced expression
of aj. Let |aj |xj be the total exponent sum of xj in aj and let |aj |yj be the
total exponent of yj in aj. Let Fj be the subgroup generated by xj and yj.

(1) Let each aj be not a proper power in Fj. Then a is a testword in F if
and only if gcd(|aj |xj , |aj |yj ) 6= 1 for each j.

(2) Let a be an element of the commutator subgroup of F and suppose a
is a product a = a1a2 · · · ag where each aj is a non-trivial element of
the commutator subgroup in Fj. Then a is a testword.

Proof. This follows directly from Theorem 3 and Example 4 in Turner’s
paper [T]. �

4. A Class of Generic Elements.

In this section we give a class of examples of generic elements.

Theorem 4. Let F be a free group on a, b and let X = 〈x1, . . . , xk〉, k ≥ 1
be a finitely generated subgroup of F . Suppose that X contains the element
[an, bm] for positive integers n,m. Then {x1, . . . , xk} can be carried by a
Nielsen transformation into a free basis {y1, . . . , yp}, 1 ≤ p ≤ k, for X for
which one of the following cases occurs.
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(1) y1 = [an, bm] is a primitive element of X;
(2) y1 = aα, 1 ≤ α ≤ n, α|n and

y2 = bβ, 1 ≤ β ≤ m,β|m;
(3) y1 = aα, 1 ≤ α ≤ n, α|n and

y2 = bmaβb−m, 1 ≤ β ≤ n, β|n;
(4) y1 = bα, 1 ≤ α < m,α|m and

y2 = anbβa−n, 1 ≤ β ≤ m,β|m;
(5) y1 = aα, 1 ≤ α ≤ n, α|n and

y2 = bmaβ, 1 ≤ β < α;
(6) y1 = bα, 1 ≤ α ≤ m,α|m and

y2 = anbβ, 1 ≤ β < α;
(7) y1 = anbm, y2 = aα, 1 ≤ α ≤ 2n, α|2n and

y3 = bβ, 1 ≤ β ≤ 2m,β|2m.

Proof. The proof follows the general outline of the proof of Theorem 2.
Regard F as the free product F = 〈a〉 ? 〈b〉 together with the length L and
order with respect to this factorization. We may assume {x1, . . . , xk} is
Nielsen reduced with xi 6= 1 for all i. Further we may assume from the
start that there is no Nielsen transformation from {x1, . . . , xk} to a system
{y1, . . . , yk} with [an, bm] ∈ 〈y1, . . . , yk−1〉, that is k is minimal with respect
to this property.

As in the proof of Theorem 2, for this system we then have an equation

(2)
q∏

k=1

xεk
νk

= [an, bm]

where εk = ±1, εk = εk+1 if νk = νk+1.
Among the equations as in (2) there is one for which q is minimal and let

us assume that this is the case in Equation (2). Further we may also assume
that each xi 6= 1 and that each xi occurs in (2). If some xi occurs only once
in (2) as either xi or x−1

i then case (1) of the theorem holds. Therefore for
the rest of the proof we assume that case (1) does not hold.

Hence each xi either occurs twice in Equation (2) with the same exponent
ε = ±1 or occurs in (2) exactly once with exponent +1 and once with
exponent −1. In either case we always have

L
(
xεk

νk
· · ·xεh

νh

)
≥ L

(
xεl

νl

)
for 1 ≤ k ≤ l ≤ h ≤ q and

L
(
xεk

νk
x

εk+1
νk+1x

εk+2
νk+2

)
≥ L(xνk

)− L(xνk+1
) + L(xνk+2

)

for 1 ≤ k ≤ q − 2. Especially, we have L(xi) ≤ 4 for all i. Since we
have only two cyclic factors and since {x1, . . . , xk} is Nielsen reduced, for
each xi, which is not conjugate to a power of a or b, we have at least two
places which are semistable letters for this xi. This excludes the possibility
L(xi) = 4. The blockwise decription as in the proof of Theorem 2, together
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with L([an, bm]) = 4 gives that there is at most one xi which is not conjugate
to a power of a or b, and which occurs in (2) exactly twice with the same
exponent or exactly once with exponent +1 and once with exponent −1.
Also, if there is such an xi it must have length two.

Now suppose first there is an xi which is not conjugate to a power of
a or b, and which occurs in (2) exactly once with exponent +1 and once
with exponent −1. Suppose that xi = aα1bβ1 . Then, since L([an, bm]) = 4
the other xj are powers of a or b. Recall that if we have, for instance,
powers aα1 , . . . , aαp , p ≥ 2, then there is a Nielsen transformation from
{aα1 , . . . , aαp} to {aγ , 1, . . . , 1} with γ = gcd(α1, . . . , αp). Hence by the
minimality of k, it follows that no two of the xi are powers of a and no two
of the xi are powers of b. A typical possible situation to consider is now,
after some renumbering,

xα0
1 x2x

β0
3 x

−1
2 xα2

1 xβ2
3 = aγ1α0aα1bβ1bγ2β0b−β1a−α1aγ1α2bγ2β2

= anbma−nb−m

with α0 6= 0 6= α2. Then, necessarily γ1α0 +α1 = n, γ2β0 = m, γ1α2−α1 =
−n and γ2β2 = −m. In particular we have α0 = −α2 and via a Nielsen
transformation we may replace x2 by xα0

1 x2 = aγ1α0aα1bβ1 = anbβ. But
this contradicts the minimality of k. Therefore the above possible situation
reduces to, again after some renumbering, to the situation

x1 = anbβ1 , x2 = bγ2 and x1x
β0
2 x

−1
1 x−β0

2 = [an, bm]

because β0 = −β2. We may reduce β1 to a β with 1 ≤ β < γ2 via a Nielsen
transformation and obtain case (6) in the theorem.

An analogous case by case consideration gives that we obtain either case
(5) or case (6) if there is an xi which is not conjugate to a power of a or
b and which occurs in (2) exactly once with exponent +1 and once with
exponent −1. If each xi is conjugate to a power of a or b we obtain cases
(2), (3) or (4) since again no two of the xi are powers of a and no two of the
xi are powers of b.

Finally suppose that one xi is not conjugate to a power of a or b and
occurs twice with the same exponent. Without loss of generality assume
this exponent to be +1. Because of L([an, bm]) = 4 and the blockwise
description as given in the proof of Theorem 2, this xi occurs exactly twice
and has length 2 and recall that no other xl occurs which is not a power
of a or b. Let xi = aγbδ, γ 6= 0, δ 6= 0. Then after renumbering we get an
equation

xα1
1 x2x

β1
3 x

α2
1 x2x

β2
3 = [an, bm]

with x1 = aγ1 , x3 = bδ1 , x2 = aγbδ. We may assume that γ1 ≥ 1 and δ1 ≥ 1.
We have necessarily

γ1α1 + γ = n, δ1β1 + δ = m, γ1α2 + γ = −n and δ1β2 + δ = −m.
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Then γ1|2n and δ1|2m, and 1 ≤ γ1 ≤ 2n, 1 ≤ δ1 ≤ 2m. If we replace x2

by y2 = xα1
1 x2x

β1
3 this defines a Nielsen transformation and we obtain an

equation
y2x

α2−α1
1 y2x

β2−β1
3 = [an, bm]

with y2 = anbm, x1 = aγ1 , 1 ≤ γ1 ≤ 2n, γ1|2n and x3 = bδ1 , 1 ≤ δ1 ≤
2m, δ1|2m. Since our system is Nielsen reduced we have that γ1 does not
divide n and δ1 does not divide m. This gives case (7).

The case xi = bδaγ , δ 6= 0, γ 6= 0, cannot occur since the exponent is +1
and [an, bm] starts with a power of a and ends with a power of b. �

Using the theorem we first obtain the following corollaries. The first is
due to Comerford and Edmonds [C-E] and the second due to Turner [T].

Corollary 3. Let F be the free group on x, y and let [x1, x2] = [xn, ym],
n,m ≥ 1. Then {x1, x2} is Nielsen equivalent to a pair {y1, y2} with either
y1 = xn and y2 = ymxα, 0 ≤ α < n or y1 = ym and y2 = xnyβ, 1 ≤ β < m.

Corollary 4. The element [xn, ym] is a test word in the free group of rank
two on x, y for any n,m ≥ 1.

Recall that Un is the variety generated by the laws Vn = {[x, y], zn}, n =
0 or n ≥ 2. We let Ln be the variety generated by the laws Wn =
{[xn, yn]}, n ≥ 1. We then obtain the following class of generic elements.

Corollary 5. Let F be a free group of rank 2 on x, y. Then [xn, yn] is
Ln-generic in F but for n ≥ 2 it is not Un-generic in F .

Corollary 6. Let F be a free group of rank 2 on x, y. Then the element
[xn, ym], n,m ≥ 1, is an APE if and only if n = m = 1.

Recall that in general it is not true that being an APE implies being a
test word. As mentioned earlier if F = F (x, y) and w = x2yx−1y−1 then w
is an APE but is not a test word. Since generic elements are test words this
example shows further that APE does not imply generic in general. However
using the same techniques as in Theorem 4 we can generalize the fact that
the element w above is an APE to obtain further examples of APE’s and
testwords.

Theorem 5. Let F = 〈a, b; 〉 and let X = 〈x1, . . . , xk〉 ⊂ F , k ≥ 1. Sup-
pose anba−1b−1 ∈ X,n ≥ 2. Then there is a Nielsen transformation from
{x1, . . . , xk} to a basis {y1, . . . , yp}, 1 ≤ p ≤ k, of X such that one of the
following cases holds:

(1) y1 = anba−1b−1 or
(2) y1 = a, y2 = b.

From this theorem and Theorem 1 we get the following corollary.

Corollary 7. Let F = 〈a, b; 〉. Then
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(1) anba−1b−1, n ≥ 2, is an APE;
(2) anba−1b−1, n ≥ 3, is Un−1-generic;
(3) anba−1b−1, n ≥ 3, is a testword in F ;
(4) a2ba−1b−1 is not a testword in F .

Proof of Theorem 5. The proof follows the same outline as the proof of The-
orem 4. Assume that {x1, . . . , xk} is Nielsen reduced and k is minimal in the
sense that {x1, . . . , xk} is not Nielsen equivalent to a system {y1, . . . , yk}
with anba−1b−1 ∈ 〈y1, . . . , yk−1〉. Assume further that each xi occurs at
least twice in the freely reduced equation expressing anba−1b−1 in terms of
x1, . . . , xk. Assume that case (1) does not hold and assume that there is
one xi which is not conjugate to a power of a or b. Suppose first that this
xi occurs twice with the same exponent, without loss of generality say +1.
As in the proof of Theorem 4, it follows from L(anba−1b−1) = 4, the fact
that the system is Nielsen reduced and the blockwise description that this
xi occurs exactly twice, has length 2, and no other xl occurs which is not
a power of a or b. Let xi = aγbδ, α 6= 0 6= δ. As in Theorem 4, xi = bδaγ

cannot occur. Then after renumbering we obtain an equation

xα1
1 x2x

β1
3 x

α2
1 x2x

β2
3 = anba−1b−1

with x1 = aγ1 , x3 = bδ1 , x2 = aγbδ. We may assume that 1 ≤ δ1, 1 ≤ γ1,
1 ≤ γ < γ1 and 1 ≤ δ < δ1. Then necessarily δ+β1δ1 = 1 and δ+β2δ1 = −1.
Hence δ1 = 1 or 2. Since the system is Nielsen reduced δ1 6= 1 and hence
δ1 = 2. Then δ = 1 and hence β1 = 0 and β2 = −1. Thus we have
xα1

1 x2x
α2
1 x2x

−1
3 = anba−1b−1 contradicting the assumption that case (1)

does not hold. It follows therefore that this xi occurs exactly once with
exponent +1 and once with exponent −1. Then as in the proof of Theorem
4 we must consider equations of the form

xα1
1 x2x

β1
3 x

−1
2 xα2

1 xβ2
3 = anba−1b−1

with x1 = aγ1 , x3 = bδ1 , x2 = aγbδ and 0 6= γ, 0 6= δ. Without loss of
generality let 1 ≤ γ1, 1 ≤ δ1, (γ1 = 0 or δ1 = 0 cannot occur since n ≥ 2).
Then necessarily δ1β1 = 1 and hence δ1 = 1. But this contradicts the fact
that the system is Nielsen reduced since we can replace x2 by x2x

−δ
3 =

aγbδb−δ = aγ . The other possibilities are analogous. If each xi is conjugate
to a power of a or b then case (2) certainly holds if case (1) does not. This
completes the proof of the theorem. �

The corollary now follows easily. If w = anba−1b−1 is in any proper
subgroup of F then condition (2) of the theorem cannot hold and hence
condition (1) must hold, that is w is primitive. Therefore w is an APE. If
n ≥ 3 then w ∈ Vn−1(F ) where Vn is the set of laws Vn = {[x, y], zn}. As
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before if Un is the variety defined by this set of laws, then Un is an non-
trivial variety and it follows that w is an APE and that w is Un−1-generic
and hence a testword. Finally part (4) comes from Turner [T].

5. A Result on Varieties and Primitive Elements.

The following result relates when the laws determined by a single element
generate a trivial variety and being in a retract.

Theorem 6. Let F be the free group on x1, . . . , xn with n ≥ 2 and let w
be a freely reduced non-empty word in the generators of F which does not
define a proper power of F . Then if the law w = 1 determines the trivial
variety (consisting only of trivial groups) then w is a primitive in a retract
of F .

Proof. Notice first that if B is a non-trivial variety then since B is closed
under subgroup formation it must contain non-trivial cyclic groups. Hence
the intersection of B with the abelian variety A is not the trivial variety.

Now let V be the variety determined by the law w = 1. Let E stand for
the trivial variety. Then V = E is equivalent to the following two conditions
being simultaneously satsified:

(1) w /∈ [F, F ] = F ′ and
(2) If ei is the exponent sum in w of xi, i = 1, . . . , n, then gcd (e1, . . . , en)

= 1.
To see this suppose that (1) and (2) are satisfied by w. Since w ≡ xe1

1 · · ·
xen

n (mod[F, F ]) (1) is equivalent to (e1, . . . , en) 6= (0, . . . , 0). Let m1, . . . ,
mn be integers such that m1e2 + · · ·+mnen = 1. Let G be an abelian group
lying in V. Then G must satisfy the law xe1

1 · · ·xen
n = 1. Let x ∈ G. Let

xi = xmi . Then from the law xm1e1+···+mnen = x = 1. Therefore G is trivial.
Hence V contains no non-trivial abelian groups and therefore it follows from
the remark above that V is itself trivial.

Conversely suppose V is trivial. We show that conditions (1) and (2)
must hold. Suppose (1) does not hold so that w ∈ [F, F ]. Let c1, . . . , cn be
arbitrary integers. Then the infinite cyclic group A = 〈a; 〉 lies in V since
w(ac1 , . . . , acn) ∈ [A,A] = 1. This contradicts the triviality of V so therefore
(1) must hold.

Now suppose w /∈ [F, F ] but (2) is violated. Suppose gcd (e1, . . . , en) =
d > 1. Then the finite cyclic group B = 〈b; bd = 1〉 lies in V since for any
integers c1, . . . , cn,

w(bc1 , . . . , bcn) = (bc1)e1 · · · (bcn)en = bc1e1+···+cnen = 1

and d|c1e1 + · · · + cnen. Since d > 1, B is non-trivial contradiciting the
triviality of V so therefore (2) must also hold.

Now suppose w satisfies (1) and (2) and m1, . . . ,mn are integers such
that m1e1 + · · · + mnen = 1. Consider the map F → 〈w〉 given by x1 →
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wm1 , . . . , xn → wmn . Suppose w = xk1
i1
· · ·xkl

il
where each kj is a non-zero

integer with ij 6= ij+1 for j = 1, . . . , l − 1. Then under the above map

w → wmi1
k1+···+mil

kl = w
m1

P
ij=1 kj+···+mn

P
ij=n kj

= wm1e1=···+mnen = w.

It follows that F → 〈w〉 is a retraction and clearly w is primitive in 〈w〉. �

The above proof depended on the fact that if A is the abelian variety and
E is the trivial variety then B ∩ A = E implies that B = E . The next result
completely characterizes the varieties such as A with this property. Recall
that a variety V has exponent n if it satisfies the law Xn = 1. If V has no
finite exponent it has infinite exponent.

Theorem 7. Let V be a variety. Then V has the property that B ∩ V = E
implies that B = E for an arbitrary variety B if and only if V has infinite
exponent.

Proof. Suppose V has infinite exponent. Therefore V contains infinite cyclic
groups and since it is closed under the formation of quotients it contains
cyclic groups of all possible finite orders. Since any non-trivial variety must
contain cyclic groups of some order it follows that V will intersect non-
trivially with any non-trivial variety.

Conversely suppose V has the stated property. If V has finite exponent
n let m be an integer relatively prime to n and let V1 be a variety of finite
exponent m. Since V satisfies the law Xn = 1 and V1 satisfies the law
Xm = 1 and (m,n) = 1 it follows that their intersection satisfies the law
X = 1. Hence only trivial groups are in their intersection. But V1 is non-
trivial contradicting the stated property. Therefore V must have infinite
exponent. �

6. Extensions to Arbitrary Groups.

As pointed out by Turner the characterization and determination of test
elements in arbitrary non-free groups is much more subtle and complicated
than in free groups. First we show that there can exist test elements in
non-free groups. The fact that [x, y] is a test word in the free group of
rank two on x, y followed from the following method of Nielsen: if u, v are
elements of the free group of rank two on x, y and [x, y] = [u, v] then the
set {u, v} is Nielsen equivalent to the set {x±1, y±1}. Exactly the same type
of Nielsen transformation arguments can be applied in the free product of
two cyclic groups ( not excluding finite) provided that we allow an extended
Nielsen transformation which replaces a generator x by xd where xd is also
a generator of 〈x〉. In particular in a free product of cyclic groups with basis
x, y the commutator is a test element.
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Theorem 8. Let G = 〈x, y : xp = yq = 1〉 ∼= Zp ? Zq be the free product of
two finite cyclic groups. Then the commutator [x, y] is a test element.

Much of the development on almost primitive elements and generic el-
ements can be translated to more general situations. Let U be a variety
defined by the set of laws V and G a group. Then we say that U is efficient
for G if V(H) 6= H for any non-trivial subgroup of G. Recall that an ele-
ment g ∈ G is primitive if G = 〈g〉 ?G1 with G1 6= G and g of infinite order.
We then get the following.

Lemma 1. Let g be primitive in G. Then g /∈ V(g) for any non-trivial set
of laws V unless V(G) = G.

Proof. If g is primitive in G and H is any group then any map g into H can
be extended to a homomorphism G → H. Let H be a V-group. Then any
g1 ∈ V(G) goes to the identity. Therefore g /∈ V(G) unless V(G) = G. �

From this we can extend Theorem 1 almost exactly.

Theorem 9. Let U be a variety defined by the laws V and suppose U is
efficient for G. Let g ∈ V(G). Then if g is an APE in G it follows that g is
U-generic. Further if G is Hopfian then g is a test element.

Proof. The proof is almost identical to the proof of Theorem 1. Suppose
g ∈ V(G). Let K ⊂ G be a proper subgroup. If g /∈ K then g /∈ V(K). If
g ∈ K then V(K) 6= K since U is efficient for G. Since g is an APE it is
primitive in K and hence from Lemma 1 g /∈ V(K). Therefore g is U-generic.
If G is Hopfian then as before generic elements are test elements. �

As an example consider the Modular group M = Z2 ?Z3 the free product
of a cyclic group of order two and a cyclic group of order three. Let M =
〈x, y;x2 = y3 = 1〉 and let g = [x, y]. Now [x, y] = xyxy2 so the same proof
as in the free group case shows that any Nielsen transformation will map
this to a cyclic rewrite up to conjugation and exponent ±1. It follows than
that g is an APE. The abelian variety A is M -efficient so from Theorem 9,
g is A-generic. Since M is Hopfian this gives another proof that g is a test
element.

The following straightforward propositions give some additional results.

Proposition 2. Let F be a free group. w ∈ F is a test word if and only
if whenever f : F → F is an endomorphism with f(w) = w1 with w1

Whitehead related to w then f is an automorphism.
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Proof. Suppose w ∈ F is a test word and suppose f : F → F is an endo-
morphism with f(w) = w1 with w1 Whitehead related to w. Then there
is an automorphism α : F → F with α(w1) = w. Then f1 = αf is an
endomorphism of F with f1(w) = w. Since w is a testword it follows that
f1 is an automorphism. Therefore f = α−1f1 is also an automorphism. The
converse is clear. �

Proposition 3. Let w be a test word in the free group F and let N be a
normal subgroup of F . Suppose that whenever w ≡ w1(N) it follows that
there is a w2 ∈ w1N which is Whitehead related to w. Let p : F → F/N
be the natural projection and let g = p(w). Then g is a test element in
G = F/N .

Proof. Let φ : G → G be an endomorphism with φ(g) = g. Relative to
a fixed generating system of G, φ can be lifted to an endomorphism φ? of
the free group F . Let w1 = φ?(w). Since φ(g) = g it follows that p(w) =
p(w1) and hence w ≡ w1(N). From the condition we may assume that w is
Whitehead related to w1 and hence from Proposition 1 it follows that φ? is
an automorphism of the free group and therefore φ is an automorphism of
G. �

7. The Test Rank of a Group.

If g is a test element of a group G then it is straightforward to see that this is
equivalent to the fact that if f(g) = α(g) for some endomorphism f of G and
some automorphism α of G then f must also be an automorphism. A test
set in a group G consists of a set of elements {gi} with the property that if
f is an endomorphism of G and f(gi) = α(gi) for some automorphism α of
G and for all i then f must also be an automorphism. Any set of generators
for G is a test set and if G posses a test element then this is a singleton test
set. The test rank of a group is the minimal size of a test set. Clearly the
test rank of any finitely generated group is finite and bounded above by the
rank and below by 1. Further the test rank of any free group of finite rank
is 1 since these contain test elements. For a free abelian group of rank n the
test rank is precisely n.

Lemma 2. If G = Zn, n ≥ 1 is a free abelian group of rank n then its test
rank is n.

Proof. Let G = Z × Z be a free abelian group of rank 2. We show that
G contains no test element. The proof in the general case that a set of k
elements in a free abelian group of rank n with k < n cannot be a test set
is analogous.
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Let x, y be a basis for G. We will write the group additively. Suppose
g = mx+ ny with m,n integers is a test element. We will show that there
exists a non-invertible endomorphism of G which fixes g. Any mapping

x→ ax+ by

y → cx+ dy

determines an endomorphism of G to G. This homomorphism will be in-
vertible and hence an automorphsim only if ad − bc = ±1. Suppose under
this homomorphism g → g. We thus have

mx+ ny → m(ax+ by) + n(cx+ dy) = g = mx+ ny.

Considering a, b, c, d as integral unknowns we are then led to the sytem of
two equations in four unknowns

ma+ nc = m

mb+ nd = n.

This has infinitely many integral solution with c dependent on a and b
dependent on d. Choosing one such solution such that ad − bc 6= ±1 gives
the desired homomorphism. �

Thus free abelian groups have maximal test rank while free groups of
finite rank have minimal test rank. For given integers n and k with k < n
there always exist groups of rank n and test rank k.

Lemma 3. Given integers n and k with k < n there exist a group of rank
n and test rank k.

Proof. Let Gm stand for a free abelian group of rank m and Fd stand for a
free group of rank d. Then the group G = Fd×Gm has rank m+ d and test
rank m + 1. Given arbitrary n and k < n choose m, d so that m + 1 = k
and m+ d = n. The group G then has the desired property. �

We close with two questions on test rank.
(1) Given a finite presentation for a group G and given knowledge of the

rank can one determine the test rank?
(2) Can one give an example of a group G with rank n and test rank

1 < k < n other than those of the type in the proof of Lemma 3 - that is
not of the form Fd ×Gm.
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