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LINEARLY UNRELATED SEQUENCES

JAROSLAV HANCL

The paper deals with the so-called linearly unrelated se-
quences. The criterion and the application for irrational se-
quences and series is included too.

1. Introduction.

There are not many new results concerning the linear independence of num-
bers. Exceptions in the last decade are, e.g., the result of Sorokin [8] which
proves the linear independence of logarithmus of special rational numbers,
or that of Bezivin [2] which proves linear independence of roots of special
functional equations.

The algebraic independence of numbers can be considered as a general-
ization of linear independence. One can find many results of this nature.
For instance, in [4] Bundschuh proves that if the special series of rational
numbers converges to infinity very fast then they are algebraically indepen-
dent. In [7] T prove a similar result for continued fractions. In that paper
the so-called continued fractional algebraic independence of sequences was
also defined.

If we consider irrationality as a special case of linear independence then we
can obtain many results. For instance, in [1] Apery proves the irrationality of
¢(3) and in [3] Borwein proves the irrationality of the sum > >, 1/(¢" +r),
where ¢ and r are integers such that ¢ > 1 and r # 0.

In 1975 Erdos defined the so-called irrationality of sequences in [5] (we
will consider a generalization of this definition in Section 3) and in the same
paper he proves the irrationality of the sequence {22"}. In 1993 in [6] I
proved:

Theorem. Let {r,}°°; be a nondecreasing sequence of positive real num-
bers such that lim, .. m, = 00, let B be a positive integer, and let {an}5° ;,
{bn}22, be sequences of positive integers such that

B
bn+1 < Tn

and
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holds for every large n. Then the series

A= ibn/an

and the sequence {a, /by }2 | are zrmtzonal

2. Linearly Unrelated Sequences.

Definition 2.1. Let {a;n}22, (i =1,..., K) be sequences of positive real
numbers. If for every sequence {c,}2°, of positive integers the numbers
Yool 1/ (ainen), ooy Yooy 1/(agmen), and 1 are linearly independent,
then the sequences {a; 22, (i =1,...,K) are linearly unrelated.

Theorem 2.1. Let {a;n}50 1, {bin}e; (i =1,... ,K — 1) be sequences of
positive integers and € > 0 such that

Attt . .

(1) TMZQK ,(117n|a1,n+1 (alvn divides al,n+1)
1n

(2) b <2 o1 K-

inb'n .. . .
(3) lim u:O, forall jie{l,... , K—1},i>j

n—oo b; najin

(4) a2 KO

hold for every suﬁﬁciently large natural number n. Then the sequences
{ain/bin}sey (i=1,...,K —1) are linearly unrelated.

Kn—(V2+evn

a17n<ai7n2 ,izl,...7K—1

Proof. We will prove that for every sequence {c,}7°; of positive integers
and for every (K — 1)-tuple of integers o, ... ,ax—1 (not all equal to zero)

the sum
A= Z%Z i

AjnCn

is an irrational number. Suppose that A is a rational number. Let R be a
maximal index such that ar # 0. Then we have

S SR S

AjnCn =1 j—=1 a/],ncn
[e%9) R—-1
brn bjnaRrn
= E E ajib + ap
) AR nCn = ainORn

Because of (3), there is a natural number N such that for every n > N the

number

R—1
bj,naR,n
Oéji

+ aR
aj,an,n

Jj=1
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and the number ap have the same sign. Without loss of generality we may
assume apr > 0 and (1)-(4) hold for every n > N. Thus, there are positive
integers p and ¢ such that

IR

n=N j=1

CL] ncn

We reorder the sequences {a;nc,}oo ny to obtain the sequences {cjn}oo n
(j=1,...,R) so that c; v < c1 n+1 < e1,n42 < ... Thus, there is a map
¢:{n > N} — {n > N}, such that 1, = a1 g(n)Cs(n) for n > N. It follows
that

o R
(5) =2 2.
n=N j=1
where dj, = bj 4(n) for every j=1,... , K =1, n=N,N+1,.... We will

consider two cases.
1. First we assume that

j7n

(6) lim sup cifn =2V,

n—oo

Then (1), (6), and the definition of the sequence {c;,}72; imply that
vV >0.

Also, (6) implies that for every § > 0 there is a n(d) such that for every
j > n(9)

(7) 1 < 2(V+5)K1
and there are infinitely many M such that
(8) i > 2V -OKY

V48K V48K

From c1,, = ay,¢(n)Comn) < 2 " we get a1,¢(n) < 2 Now,

condition (1) gives

K¢(")*171 K¢‘<")7171
a1,¢(n) > a1712 K-1 >2 K-1

Thus, K?W~1 <1+ (K —1)(V 4 6)K" for all sufficiently large n. Hence,

log(V + (S) + log(K — 1) + log (1 + W)
log K ’

and, ¢(n) < n + loi‘ég%é) + 2 for n sufficiently large. From the latter in-
equality, it follows from the fact that  — = — (v/2 + €)y/ is increasing

that

nty—(V2+e)vn .
(9) djn < 28" j=1,....R,

T Y

¢(n) —1<n+




302 JAROSLAV HANCL

holds for every n > Nj, where 7 = loigo(g%é)

with the help of (4), we also obtain that

+ 2. For the same reason, and

2_K7L+’Y*(\/§+E)\/ﬁ 2Kn+’y7(\/§+e)\/ﬁ

(10) Cjn <cin < Cjn ,j=1,... R
holds for every n > Ny. Now, (9) and (10) imply that
(11) i ia,djm B i 2Kn+v—(\/§+e>\/ﬁ+3

n=M j=1 " Cin ~ n=M Cln

for every sufficiently large M. Let h € N such that v+ 1 > h > v. Now we
will prove

0o Kntr—(V2+e)y/n+3

(12) Ty=3Y 2 <?

C C
=M 1,n 1,M

KM+B—(V24e)VM+4

for every sufficiently large M where 8 = v+ h. Also (1) yields ay , > 25 "

Thus ¢4, > 2K"* From this and (7) we have

9] 2Kn+'y—(\/§+e)\/ﬁ+3

Tv=>)

n=M
M+h 2Kn+'yf(\/§+€)\/ﬁ+3

Cln

2Kn+7*(\/§+e)\/ﬁ+3

oo

+ >
n=M+h+1
KM+y—(V2+e)VM+3+h 0o 2Kn+wf(ﬂ+e)\/ﬁ+3

<(h+1) - +
1,M

Cin Cin

M

n

c
n=M+h+1 Ln

because ci a4 > 1,0 for 7 >0, and

00 2Kn+wf(\/§+e)\/ﬁ+3 o) 2Kn+“/7(\/§+e)\/ﬁ+3

<
Cln
n=M+h+1 n=M+h+1

2K1\4+W*(\/§+6)m+3+h

2Kn72

<2 QK M+h—1

So
2KM+W*(\/§+€)m+3+h 2KM+W*(ﬁ+€)m+3+h

Ty < (h+1) .y +2

2KM+h—1

Now the inequality is proven if

(2K]\4+’Y—(\/§+€)m+h+4 _ (h I 1)

M+~ —(vV24€)vVM+3+h
> Cl,M2K +1

2KM+w—(\/§+e)\/ﬁ+3+h> 2KM+h—1
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which is true for M large by the choice of h, and the fact ¢ ; < 2(V+o) K/
for all large j. The proof of inequality (12) is finished. It follows from (11)
and (12) that

(13 5S> a b

n=M j=1 Cjim

2KM+ﬁ—(\/§+e)m+4

C1,M

for every sufficiently large natural number M. Hence, we have

» oo R d
—_ L J,n
B=Po 33 0¥
n=N j=1 S
M—-1 o~ R

Thus
plem(ciN, - .. ,CRN, CLN41,- -+ sCRN+1--+ sCL,M—1s--+ sCR,M—1)
M-1 R
_ l ( .71
= q.L.CM\CI,Ny---, CRMI ]
n=N j=1 Jom
+ l ]7
g.lem(ci,n, ... ,CRM~1) a; ,
n=M j=1 Cjim
where lem(x1,... ,x,) denotes the least common multiple of numbers z1, ...,

T,. Thus, the number

C=gqlem(cin,. .. ,cRM-1 Z Zozj i

n=M j=1 Cjm

is a positive integer. From this and (13) we obtain

(14) C:q.lcm(cl,N,... CR,M—1 Z Z ]

n=M j=1

,'I’L

L lemlenn, .. crM-1) gmrora-varovat _ D

C1,M C1,M
for every sufficiently large natural number M. From (1) and the definition
of the sequence {c1 ,}52; we have

M+B+4—(V2+e)VM
D =lem(cin, ... ,cR,M,l)QK

M2 L /M1 R s
9 M+B+4—(V2+e)VM
< H oK™ H H cin | 25 IV

n=N n=N j=1
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From this, (7), (10), and the fact 3 = v + h we obtain

M-1 R

A (KM—3_gN n n+B8+2—(V2+e)vn
D< ox—1 (K KN) H HQ(V-HS)K oK
n=N j=1
_2KM+B+47<\/§+6>\/MS(N1 N2 5)
) b b
where S(N7, N2, ) does not depend on M. It follows that
: M—-1
_(KMZ3_gN) n n —(VE+e)m
D <27 KT S(Ny, Ny, 0) (H R(VAO KT gRETHITEm(/Er )f>
n=N
) 2KM+B+47<\/§+6)\/M
_KM=3_gN KM _gN VTN, JO
<2 K1 S(Nl,NQ,(S)QR(V+5) 1 2KM+5+5 (V2+e)vVM+log M
KM=3_ N

_ M M+B8+5—(v2+e)vVM+log M
<27 KT 5(Nyp, Ny, §)2VTOKT oK ovies

Hence,
D < o(V+i—K=HKM

for every sufficiently large M. This, (8), and (14) imply that

C = D < 9(V+o-K"HEM 5—(V=-8)KM _ o(26-K~*)KM
cL,M
for infinitely many natural numbers M. But this is impossible for a suffi-
ciently small § and a sufficiently large M.
2. Secondly, let us assume that

(15) lim sup cin " = .

n—od
Let @ be a sufficiently large positive integer. Let the number of ¢;, such
that ¢1, < 2K? he 7. (The definition of the sequence {c1,}2° 5 and (1)
imply that Z —1 < Q.) Let g(X,Y’) be the number of ¢; ,, satisfying ¢; ,, €

[2K7 2K%) and put f(X,Y) = X — g(X,Y). Then (15) yields

(16) limsup f(X,Y) = o0
X—o0
and
Because of (16) and (17) there is a least positive integer P such that
(18) g(PQ)=P-Q—7 -2

It follows that for every S (Q < S < P)
(19) g(P,S)<P—S—1.
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(OtherWise g(S7Q) = g(PvQ) - g(P,S) < P- Q - Z-2- (P - S) =
S —Q — Z — 2 and the number P would not be the least.) Now (18) and
(19) imply that for every j =0,1,... ,P—Q — Z — 3,

€1,P—Q-3—j+N < L
Thus,
P—-Q—-3+N N+Z-1 P—-Q—-3+N
(20) H Cl,j = H Cl,j = H Cl,5 H Cl,5
e1,;<2KF j=N j=N j=N+Z
P-Q-3+N
< 2ZKQ H 2KQ+j7N+2
j=N+Z
_ 2ZKQ2ﬁ(KP—KQ+Z+2) < 2K171KP'

Now we define a sequence {S;,}°°, by induction in the following way. Let
us put Sp = P. Suppose that we have Sy, Si,...,Sk_1. Because of (16) and
(17) there is a least positive integer Sy such that

(21) 9(Sk, Sk-1) = Sk — Sk—1 — 1.
Similarly (21) implies that for every S (Sip—1 < .S < Sk)
(22) 9(Sk, S) < S — 5 —1.
The last inequality implies that for every j =1,... S — Sg_1 — 1
ClLN+S)_1—Q—2—k+] < oK1t
Hence, it follows that
Sp—Sk_1—1
(23) H clj = H CLN+Sp_1—Q—2—k-+j
o1, €(2K K1 oK k) 7=l
< Sksﬁll 2KSk_1+j B Qﬁ(KSkaskfﬁl)
< U .

Now we will prove that there are infinitely many positive integers T' > P
such that

1 e T—(V2+§)VT
(24) lcm(cl,j,cu < ZKT) S Qﬁ(KT K B )
and
1
(25) H Cl,j S 2ﬁKT.
017j<2KT

To prove this, we will consider three cases.
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2.1. First, let us assume that

(26) S — Skp_1 < V25

for infinitely many numbers k. Then (20), (23), and (26) yield

k
II ai= I as| |1l 11 Lj
s P i= s, .
c1,;<2K°k c1,5<2K ‘ 1C1,j€[2K 1_172KSZ)
1 P k 1 S Sj_1+1
< o1k -HQH(K i—K7i1T)
=1
_ o (K0 KS - RS0ty Kk — [ Sh-1 )
Sy, Sp—+/28
< 2K171(K5k—K k=1) < 2K£1(KS}€_K k k)

Thus (24) and (25) hold under condition (26).
2.2. Secondly, let us assume that for every positive integer k

Sk — Sk—1 = V/25%.
It follows that

S — /25, — Sip_1 > 0.

Thus,

2
1 /1
(27) Sy > <\/§ + B + Sk_1> =14 Sk1+V1+25;_1.

Now, by mathematical induction we prove that
Lo
(28) Sk > 5/{7 .

For k = 0 (28) holds. Suppose that (28) holds for £ — 1. Then (27) and (28)
imply

Sp>14+ S 1++/1+25, 1
1 1
21+§(k:—1)2+ 1+2§(k:—1)2

1, 1 1,
—k* — - —1) > —k*.
>1+2k k+2+(k )>2k
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From (18) and (21) the number of ¢ ; such that ¢ ; < 2K ig equal to

k
(29)  9(Sk,0) = Z+g(S0,Q) + > 9(Sj, Sj-1)
j=1

k
=Z+P-Q-Z-2+) (S5-5-1-1)

j=1
=P—-Q—-245.—-5S—-k=5,—k—Q—2.

Now, (28) and (29) imply that
(30)  g(Sk,0) =Sk —k—Q -2
> S — /28, —Q—2> S — (f+ )\/Sk+2

for every sufficiently large k. Also (20), (23), and (30) yield

Il es= 1l %H I e

S P
Clyj<2K k Cl,j<2K 0136[2K Si-1 QKSZ)

k

1 1 ; S;_ 1
rhr P [ g (KSi=K 1)
=1

— o (KPS (KSi=KTim1th) g gy K5

IN

for every sufficiently large k. From this, (1), (30), and the definition of the
sequence {c1,}0° v it follows that
lcm(clj,clj < 2[( k) < 2}(7([@(51C ,0)—1 KN) H cr
c1, ‘<2Ksk

(Ksk KSk— (\f+?;)\/sk)

IN
&
iy

for every sufficiently large k.

2.3. Third, let us assume that S, — Sp_1 < /25, and S; — S;_1 > /25;
for every j > k. Let us put P’ = S = 5j, and S} = Skﬂ-. We now proceed
as in the second case with {57}22 in place of {S }520- Thus (24) and (25)
hold. Now let T be a positive 1nteger such that (24) and (25) hold. Then
we obtain from (5) that

B.g.lem(ci N, .- ;€1 N4g(T,0)~15C2N s - - - s CR.N+4(T,0)—1)

_ ]n
= q.lem(ci N, .- s CR N4g(T,0)— Z E aj

n=N j=1 J,m
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Thus, there is a positive integer E such that

00 R
(31) E= q.lcm(cLN, cee 7CR,N+g(T,0)— ) Z Z
n=N+g(T,0) j=1 Cin

From (1), (4), the definition of the sequence {c1,}7° v, (18), (21), (24), and
(25) it follows that for infinitely many sufficiently large T'

(32) lem(ci,Ns -+ 5 CRN4g(T,0)—1)
N+g(T,0)~1 K=2
< lcm(CLN, o 701,N+g(T,0)—1) H 01,]2KT+2 (V2+e)VT
j=N
K-2
= lcm(cl,j,cu < QKT) H 01,J2KT+2 (V2rovT
cl,j<2K

< grtr (KT 0ﬁ+ﬂVﬁ>(QR%TKT2TKT+}*V@ﬂVT>K_2

2KT_Kl_lKT—(\/§+2)\/T+T(K_2)KT+27(\/§+6)\/T < 2KT7KT7<\/§+§)\/?

On the other hand (1), (2), (4), the definition of the sequence {c1,}> v,
(18), and (21) imply that

0 KT+2—(\/§+6)\/T

T.K. max;—1.. R \%“-2
(33) Z Zaa 7,n < ] I o
n=N+g(T,0)j=1 7" ?

< 2KT7(\/§+%)\/T7KT

for all sufficienly large T'. Finally (31)-(33) imply that
E S q'2KT_KT—(\/§+§)ﬁ2KT—(\/§+§)\/T_KT
2KT7<\/§+§>\/T_KT7(\/§+§)\/T

for infinitely many natural numbers 7T'. But this is impossible for a positive
integer F and a sufficiently large T'. O

Ezample 1. Let ajn, = 25" bjn = (j +n)! (j =1,2,...,K —1). Then the
sequences {a;n/bjn}>2 are linearly unrelated.

3. Irrational Sequences.
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Definition 3.1. Let {A,}2°, be a sequence of positive real numbers. If for
every sequence {cp }o2 ; of positive 1ntegers the series

Ancn

is irrational, then the sequence {An}n:1 is irrational. If {A,}2°, is not an
irrational sequence, then it is a rational sequence.

Theorem 3.1. Let e > 0, and let {a,}3>, and {by}2° be two sequences of
positive integers such that

on
n =2

and

b, < 22" VETOVE
n < .

Hn ) o0 .
Then the sequence 4 =1 1s irrational and the series = g
q b 1 [

n n=1 n= = lal

irrational too.

This theorem is an immediate consequence of Theorem 2.1. It is enough
to put K = 2.

Ezample 2. The sequences {22"~7°}2 %, {27 /n}%2,, and {22" 7"}, are
irrational sequences.
n [e.@]
Open Problem. Is the sequence {2[2 (17%)]} irrational or not? ([z]
n=

denotes the greatest integer less than or equal x.)

Remark. Let us put in Theorem 3.1 a,, = 22" and b,, = 1 for every natural
number n. Then we obtain the very famous result of Erdés (see [5]) which
states that the sequence {22"}° | is irrational.

From the last theorem we also obtain the following criterion for the so-
called Cantor sequences.

Theorem 3.2. Let € > 0 and let {b,}°°; be a sequence of positive integers
such that

b < g2 (VEFOVE
n =

nl1=L1o _n
Gn = 2< " g())

n

Let us put

| . . .
Then the sequence {9 }52, is irrational.
n
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This theorem is an immediate consequence of Theorem 3.1.

[e.9] o0

and {Q[n(lfﬁ)]!/n!} are

n=1

1
Ezample 3. The sequences {Q[n(lfﬁ)]!}

irrational.

n=1

Thank you very much to reviewer and to Professor Carter for their cor-
rection of this paper.
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