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The paper deals with the so-called linearly unrelated se-
quences. The criterion and the application for irrational se-
quences and series is included too.

1. Introduction.

There are not many new results concerning the linear independence of num-
bers. Exceptions in the last decade are, e.g., the result of Sorokin [8] which
proves the linear independence of logarithmus of special rational numbers,
or that of Bezivin [2] which proves linear independence of roots of special
functional equations.

The algebraic independence of numbers can be considered as a general-
ization of linear independence. One can find many results of this nature.
For instance, in [4] Bundschuh proves that if the special series of rational
numbers converges to infinity very fast then they are algebraically indepen-
dent. In [7] I prove a similar result for continued fractions. In that paper
the so-called continued fractional algebraic independence of sequences was
also defined.

If we consider irrationality as a special case of linear independence then we
can obtain many results. For instance, in [1] Apery proves the irrationality of
ζ(3) and in [3] Borwein proves the irrationality of the sum

∑∞
n=1 1/(qn + r),

where q and r are integers such that q > 1 and r 6= 0.
In 1975 Erdös defined the so-called irrationality of sequences in [5] (we

will consider a generalization of this definition in Section 3) and in the same
paper he proves the irrationality of the sequence {22n}. In 1993 in [6] I
proved:

Theorem. Let {rn}∞n=1 be a nondecreasing sequence of positive real num-
bers such that limn→∞ rn = ∞, let B be a positive integer, and let {an}∞n=1,
{bn}∞n=1 be sequences of positive integers such that

bn+1 ≤ rB
n

and

an ≥ r2n

n
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holds for every large n. Then the series

A =
∞∑

n=1

bn/an

and the sequence {an/bn}∞n=1 are irrational.

2. Linearly Unrelated Sequences.

Definition 2.1. Let {ai,n}∞n=1 (i = 1, . . . , K) be sequences of positive real
numbers. If for every sequence {cn}∞n=1 of positive integers the numbers∑∞

n=1 1/(a1,ncn), . . . ,
∑∞

n=1 1/(aK,ncn), and 1 are linearly independent,
then the sequences {ai,n}∞n=1 (i = 1, . . . , K) are linearly unrelated.

Theorem 2.1. Let {ai,n}∞n=1, {bi,n}∞n=1 (i = 1, . . . , K − 1) be sequences of
positive integers and ε > 0 such that

a1,n+1

a1,n
≥ 2Kn−1

, a1,n|a1,n+1 (a1,n divides a1,n+1)(1)

bi,n < 2Kn−(
√

2+ε)
√

n
, i = 1, . . . , K − 1(2)

lim
n→∞

ai,nbj,n

bi,naj,n
= 0, for all j, i ∈ {1, . . . , K − 1}, i > j(3)

ai,n2−Kn−(
√

2+ε)
√

n
< a1,n < ai,n2Kn−(

√
2+ε)

√
n
, i = 1, . . . , K − 1(4)

hold for every sufficiently large natural number n. Then the sequences
{ai,n/bi,n}∞n=1 (i = 1, . . . , K − 1) are linearly unrelated.

Proof. We will prove that for every sequence {cn}∞n=1 of positive integers
and for every (K − 1)-tuple of integers α1, . . . , αK−1 (not all equal to zero)
the sum

A =
K−1∑
j=1

αj

∞∑
n=1

bj,n

aj,ncn

is an irrational number. Suppose that A is a rational number. Let R be a
maximal index such that αR 6= 0. Then we have

A =
K−1∑
j=1

αj

∞∑
n=1

bj,n

aj,ncn
=

∞∑
n=1

R∑
j=1

αj
bj,n

aj,ncn

=
∞∑

n=1

bR,n

aR,ncn

R−1∑
j=1

αj
bj,naR,n

aj,nbR,n
+ αR

 .

Because of (3), there is a natural number N such that for every n ≥ N the
number

R−1∑
j=1

αj
bj,naR,n

aj,nbR,n
+ αR
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and the number αR have the same sign. Without loss of generality we may
assume αR > 0 and (1)-(4) hold for every n ≥ N . Thus, there are positive
integers p and q such that

B =
p

q
=

∞∑
n=N

R∑
j=1

αj
bj,n

aj,ncn
.

We reorder the sequences {aj,ncn}∞n=N to obtain the sequences {cj,n}∞n=N
(j = 1, . . . , R) so that c1,N ≤ c1,N+1 ≤ c1,N+2 ≤ .... Thus, there is a map
φ:{n ≥ N} → {n ≥ N}, such that c1,n = a1,φ(n)cφ(n) for n ≥ N . It follows
that

B =
p

q
=

∞∑
n=N

R∑
j=1

αj
dj,n

cj,n
,(5)

where dj,n = bj,φ(n) for every j = 1, . . . , K − 1, n = N,N + 1, . . . . We will
consider two cases.

1. First we assume that

lim sup
n→∞

c
1/Kn

1,n = 2V .(6)

Then (1), (6), and the definition of the sequence {c1,n}∞n=1 imply that

V > 0.

Also, (6) implies that for every δ > 0 there is a n(δ) such that for every
j > n(δ)

c1,j < 2(V +δ)Kj
,(7)

and there are infinitely many M such that

c1,M > 2(V−δ)KM
.(8)

From c1,n = a1,φ(n)cφ(n) ≤ 2(V +δ)Kn
, we get a1,φ(n) ≤ 2(V +δ)Kn

. Now,
condition (1) gives

a1,φ(n) ≥ a1,12
Kφ(n)−1−1

K−1 ≥ 2
Kφ(n)−1−1

K−1 .

Thus, Kφ(n)−1 ≤ 1 + (K − 1)(V + δ)Kn for all sufficiently large n. Hence,

φ(n)− 1 ≤ n +
log(V + δ) + log(K − 1) + log

(
1 + 1

(K−1)(V +δ)Kn

)
log K

,

and, φ(n) ≤ n + log(V +δ)
log K + 2 for n sufficiently large. From the latter in-

equality, it follows from the fact that x → x − (
√

2 + ε)
√

x is increasing
that

dj,n < 2Kn+γ−(
√

2+ε)
√

n
, j = 1, . . . , R,(9)
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holds for every n ≥ N1, where γ = log(V +δ)
log K + 2. For the same reason, and

with the help of (4), we also obtain that

cj,n2−Kn+γ−(
√

2+ε)
√

n
< c1,n < cj,n2Kn+γ−(

√
2+ε)

√
n
, j = 1, . . . , R(10)

holds for every n ≥ N2. Now, (9) and (10) imply that

∞∑
n=M

R∑
j=1

αj
dj,n

cj,n
≤

∞∑
n=M

2Kn+γ−(
√

2+ε)
√

n+3

c1,n
(11)

for every sufficiently large M . Let h ∈ N such that γ + 1 ≥ h > γ. Now we
will prove

TM =
∞∑

n=M

2Kn+γ−(
√

2+ε)
√

n+3

c1,n
≤ 2KM+β−(

√
2+ε)

√
M+4

c1,M
(12)

for every sufficiently large M where β = γ +h. Also (1) yields a1,n ≥ 2Kn−2
.

Thus c1,n ≥ 2Kn−2
. From this and (7) we have

TM =
∞∑

n=M

2Kn+γ−(
√

2+ε)
√

n+3

c1,n

=
M+h∑
n=M

2Kn+γ−(
√

2+ε)
√

n+3

c1,n
+

∞∑
n=M+h+1

2Kn+γ−(
√

2+ε)
√

n+3

c1,n

≤ (h + 1)
2KM+γ−(

√
2+ε)

√
M+3+h

c1,M
+

∞∑
n=M+h+1

2Kn+γ−(
√

2+ε)
√

n+3

c1,n

because c1,M+j ≥ c1,M for j ≥ 0, and

∞∑
n=M+h+1

2Kn+γ−(
√

2+ε)
√

n+3

c1,n
≤

∞∑
n=M+h+1

2Kn+γ−(
√

2+ε)
√

n+3

2Kn−2

≤ 2
2KM+γ−(

√
2+ε)

√
M+3+h

2KM+h−1 .

So

TM ≤ (h + 1)
2KM+γ−(

√
2+ε)

√
M+3+h

c1,M
+ 2

2KM+γ−(
√

2+ε)
√

M+3+h

2KM+h−1 .

Now the inequality is proven if(
2KM+γ−(

√
2+ε)

√
M+h+4 − (h + 1)2KM+γ−(

√
2+ε)

√
M+3+h

)
2KM+h−1

≥ c1,M2KM+γ−(
√

2+ε)
√

M+3+h+1
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which is true for M large by the choice of h, and the fact c1,j ≤ 2(V +δ)Kj

for all large j. The proof of inequality (12) is finished. It follows from (11)
and (12) that

∞∑
n=M

R∑
j=1

αj
dj,n

cj,n
≤ 2KM+β−(

√
2+ε)

√
M+4

c1,M
(13)

for every sufficiently large natural number M . Hence, we have

B =
p

q
=

∞∑
n=N

R∑
j=1

αj
dj,n

cj,n

=
M−1∑
n=N

R∑
j=1

αj
dj,n

cj,n
+

∞∑
n=M

R∑
j=1

αj
dj,n

cj,n
.

Thus

p.lcm(c1,N , . . . , cR,N , c1,N+1, . . . , cR,N+1, . . . , c1,M−1, . . . , cR,M−1)

= q.lcm(c1,N , . . . , cR,M−1)
M−1∑
n=N

R∑
j=1

αj
dj,n

cj,n

+ q.lcm(c1,N , . . . , cR,M−1)
∞∑

n=M

R∑
j=1

αj
dj,n

cj,n
,

where lcm(x1, . . . , xn) denotes the least common multiple of numbers x1, ...,
xn. Thus, the number

C = q.lcm(c1,N , . . . , cR,M−1)
∞∑

n=M

R∑
j=1

αj
dj,n

cj,n

is a positive integer. From this and (13) we obtain

C = q.lcm(c1,N , . . . , cR,M−1)
∞∑

n=M

R∑
j=1

αj
dj,n

cj,n
(14)

≤
lcm(c1,N , . . . , cR,M−1)

c1,M
2KM+β+4−(

√
2+ε)

√
M

=
D

c1,M

for every sufficiently large natural number M . From (1) and the definition
of the sequence {c1,n}∞n=1 we have

D = lcm(c1,N , . . . , cR,M−1)2KM+β+4−(
√

2+ε)
√

M

≤

(
M−2∏
n=N

2Kn−2

)−1
M−1∏

n=N

R∏
j=1

cj,n

 2KM+β+4−(
√

2+ε)
√

M
.
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From this, (7), (10), and the fact β = γ + h we obtain

D ≤ 2
−1

K−1
(KM−3−KN )

M−1∏
n=N

R∏
j=1

2(V +δ)Kn
2Kn+β+2−(

√
2+ε)

√
n


· 2KM+β+4−(

√
2+ε)

√
M

S(N1, N2, δ),

where S(N1, N2, δ) does not depend on M . It follows that

D ≤ 2−
(KM−3−KN )

K−1 S(N1, N2, δ)

(
M−1∏
n=N

2R(V +δ)Kn
2RKn+β+2−(

√
2+ε)

√
n

)
· 2KM+β+4−(

√
2+ε)

√
M

≤ 2−
KM−3−KN

K−1 S(N1, N2, δ)2
R(V +δ)KM−KN

K−1 2KM+β+5−(
√

2+ε)
√

M+log M

≤ 2−
KM−3−KN

K−1 s(N1, N2, δ)2(V +δ)KM
2KM+β+5−(

√
2+ε)

√
M+log M

.

Hence,
D ≤ 2(V +δ−K−4)KM

for every sufficiently large M . This, (8), and (14) imply that

C =
D

c1,M
≤ 2(V +δ−K−4)KM

.2−(V−δ)KM
= 2(2δ−K−4)KM

for infinitely many natural numbers M . But this is impossible for a suffi-
ciently small δ and a sufficiently large M .

2. Secondly, let us assume that

lim sup
n→∞

c
1/Kn

1,n = ∞.(15)

Let Q be a sufficiently large positive integer. Let the number of c1,n such
that c1,n < 2KQ

be Z. (The definition of the sequence {c1,n}∞n=N and (1)
imply that Z − 1 < Q.) Let g(X, Y ) be the number of c1,n satisfying c1,n ∈
[2KY

, 2KX
) and put f(X, Y ) = X − g(X, Y ). Then (15) yields

lim sup
X→∞

f(X, Y ) = ∞(16)

and

f(X + 1, Y )− f(X, Y ) ≤ 1.(17)

Because of (16) and (17) there is a least positive integer P such that

g(P,Q) = P −Q− Z − 2.(18)

It follows that for every S (Q ≤ S < P )

g(P, S) ≤ P − S − 1.(19)
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(Otherwise g(S, Q) = g(P,Q) − g(P, S) ≤ P − Q − Z − 2 − (P − S) =
S − Q − Z − 2 and the number P would not be the least.) Now (18) and
(19) imply that for every j = 0, 1, . . . , P −Q− Z − 3,

c1,P−Q−3−j+N ≤ 2KP−j−1
.

Thus, ∏
c1,j<2KP

c1,j =
P−Q−3+N∏

j=N

c1,j =
N+Z−1∏

j=N

c1,j

P−Q−3+N∏
j=N+Z

c1,j(20)

< 2ZKQ
P−Q−3+N∏

j=N+Z

2KQ+j−N+2

= 2ZKQ
2

1
K−1

(KP−KQ+Z+2) ≤ 2
1

K−1
KP

.

Now we define a sequence {Sn}∞n=0 by induction in the following way. Let
us put S0 = P . Suppose that we have S0, S1, . . . , Sk−1. Because of (16) and
(17) there is a least positive integer Sk such that

g(Sk, Sk−1) = Sk − Sk−1 − 1.(21)

Similarly (21) implies that for every S (Sk−1 ≤ S ≤ Sk)

g(Sk, S) ≤ Sk − S − 1.(22)

The last inequality implies that for every j = 1, . . . , Sk − Sk−1 − 1

c1,N+Sk−1−Q−2−k+j ≤ 2KSk−1+j

.

Hence, it follows that∏
c1,j∈(2K

Sk−1 ,2KSk )

c1,j =
Sk−Sk−1−1∏

j=1

c1,N+Sk−1−Q−2−k+j(23)

≤
Sk−Sk−1−1∏

j=1

2KSk−1+j

= 2
1

K−1
(KSk−KSk−1+1).

Now we will prove that there are infinitely many positive integers T ≥ P
such that

lcm(c1,j , c1,j < 2KT
) ≤ 2

1
K−1

(KT−KT−(
√

2+ ε
4 )
√

T )(24)

and ∏
c1,j<2KT

c1,j ≤ 2
1

K−1
KT

.(25)

To prove this, we will consider three cases.
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2.1. First, let us assume that

Sk − Sk−1 <
√

2Sk(26)

for infinitely many numbers k. Then (20), (23), and (26) yield

∏
c1,j<2KSk

c1,j =

 ∏
c1,j<2KP

c1,j


 k∏

i=1

∏
c1,j∈[2K

Si−1 ,2KSi )

c1,j


≤ 2

1
K−1

KP

.
k∏

i=1

2
1

K−1
(KSi−KSi−1+1)

= 2
1

K−1
(KS0+KS1−KS0+1+···+KSk−KSk−1+1)

≤ 2
1

K−1
(KSk−KSk−1 ) < 2

1
K−1

(KSk−KSk−
√

2Sk ).

Thus (24) and (25) hold under condition (26).
2.2. Secondly, let us assume that for every positive integer k

Sk − Sk−1 ≥
√

2Sk.

It follows that

Sk −
√

2Sk − Sk−1 ≥ 0.

Thus,

Sk ≥

(
1√
2

+

√
1
2

+ Sk−1

)2

= 1 + Sk−1 +
√

1 + 2Sk−1.(27)

Now, by mathematical induction we prove that

Sk ≥
1
2
k2.(28)

For k = 0 (28) holds. Suppose that (28) holds for k− 1. Then (27) and (28)
imply

Sk ≥ 1 + Sk−1 +
√

1 + 2Sk−1

≥ 1 +
1
2
(k − 1)2 +

√
1 + 2

1
2
(k − 1)2

> 1 +
1
2
k2 − k +

1
2

+ (k − 1) >
1
2
k2.
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From (18) and (21) the number of c1,j such that c1,j < 2KSk is equal to

g(Sk, 0) = Z + g(S0, Q) +
k∑

j=1

g(Sj , Sj−1)(29)

= Z + P −Q− Z − 2 +
k∑

j=1

(Sj − Sj−1 − 1)

= P −Q− 2 + Sk − S0 − k = Sk − k −Q− 2.

Now, (28) and (29) imply that

g(Sk, 0) = Sk − k −Q− 2(30)

≥ Sk −
√

2Sk −Q− 2 ≥ Sk −
(√

2 +
ε

2

)√
Sk + 2

for every sufficiently large k. Also (20), (23), and (30) yield

∏
c1,j<2KSk

c1,j =
∏

c1,j<2KP

c1,j

k∏
i=1

∏
c1,j∈[2K

Si−1 ,2KSi )

c1,j

≤ 2
1

K−1
KP

k∏
i=1

2
1

K−1
(KSi−KSi−1+1)

= 2
1

K−1
(KP +

Pk
i=1(KSi−KSi−1+1)) ≤ 2

1
K−1

KSk

for every sufficiently large k. From this, (1), (30), and the definition of the
sequence {c1,n}∞n=N it follows that

lcm(c1,j , c1,j < 2KSk ) ≤ 2
−1

K−1
(Kg(Sk,0)−1−KN ).

∏
c1,j<2KSk

c1,j

≤ 2
1

K−1
(KSk−KSk−(

√
2+ ε

3 )
√

Sk )

for every sufficiently large k.
2.3. Third, let us assume that Sk−Sk−1 ≤

√
2Sk, and Sj −Sj−1 ≥

√
2Sj

for every j > k. Let us put P ′ = Sk = S′0, and S′j = Sk+j . We now proceed
as in the second case with {S′j}∞j=0 in place of {Sj}∞j=0. Thus (24) and (25)
hold. Now let T be a positive integer such that (24) and (25) hold. Then
we obtain from (5) that

B.q.lcm(c1,N , . . . , c1,N+g(T,0)−1, c2N , . . . , cR,N+g(T,0)−1)

= q.lcm(c1,N , . . . , cR,N+g(T,0)−1)
∞∑

n=N

R∑
j=1

αj
dj,n

cj,n
.
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Thus, there is a positive integer E such that

E = q.lcm(c1,N , . . . , cR,N+g(T,0)−1)
∞∑

n=N+g(T,0)

R∑
j=1

αj
dj,n

cj,n
.(31)

From (1), (4), the definition of the sequence {c1,n}∞n=N , (18), (21), (24), and
(25) it follows that for infinitely many sufficiently large T

lcm(c1,N , . . . , cR,N+g(T,0)−1)(32)

≤ lcm(c1,N , . . . , c1,N+g(T,0)−1)

N+g(T,0)−1∏
j=N

c1,j2KT+2−(
√

2+ε)
√

T

K−2

= lcm(c1,j , c1,j < 2KT
)

 ∏
c1,j<2KT

c1,j2KT+2−(
√

2+ε)
√

T


K−2

≤ 2
1

K−1

“
KT−KT−(

√
2+ ε

4 )
√

T
” (

2
1

K−1
KT

2TKT+2−(
√

2+ε)
√

T
)K−2

= 2KT− 1
K−1

KT−(
√

2+ ε
4 )
√

T +T (K−2)KT+2−(
√

2+ε)
√

T

≤ 2KT−KT−(
√

2+ ε
3 )
√

T

.

On the other hand (1), (2), (4), the definition of the sequence {c1,n}∞n=N ,
(18), and (21) imply that

∞∑
n=N+g(T,0)

R∑
j=1

αj
dj,n

cj,n
≤

T.K.maxj=1,... ,R |αj |.2KT+2−(
√

2+ε)
√

T

2KT(33)

≤ 2KT−(
√

2+ ε
2 )
√

T−KT

for all sufficienly large T . Finally (31)-(33) imply that

E ≤ q.2KT−KT−(
√

2+ ε
3 )
√

T

2KT−(
√

2+ ε
2 )
√

T−KT

= q.2KT−(
√

2+ ε
2 )
√

T−KT−(
√

2+ ε
3 )
√

T

for infinitely many natural numbers T . But this is impossible for a positive
integer E and a sufficiently large T . �

Example 1. Let aj,n = 2Kn
, bj,n = (j + n)! (j = 1, 2, . . . , K − 1). Then the

sequences {aj,n/bj,n}∞n=1 are linearly unrelated.

3. Irrational Sequences.
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Definition 3.1. Let {An}∞n=1 be a sequence of positive real numbers. If for
every sequence {cn}∞n=1 of positive integers the series

∞∑
n=1

1
Ancn

is irrational, then the sequence {An}∞n=1 is irrational. If {An}∞n=1 is not an
irrational sequence, then it is a rational sequence.

Theorem 3.1. Let ε > 0, and let {an}∞n=1 and {bn}∞n=1 be two sequences of
positive integers such that

an ≥ 22n

and

bn ≤ 22n−(
√

2+ε)
√

n
.

Then the sequence
{Qn

i=1 ai

bn

}∞
n=1

is irrational and the series
∑∞

n=1
bnQn

i=1 ai
is

irrational too.

This theorem is an immediate consequence of Theorem 2.1. It is enough
to put K = 2.

Example 2. The sequences {22n−n2}∞n=1, {22n
/n}∞n=1, and {22n−n}∞n=1 are

irrational sequences.

Open Problem. Is the sequence
{

2[2n(1− 1
n

)]
}∞

n=1
irrational or not? ([x]

denotes the greatest integer less than or equal x.)

Remark. Let us put in Theorem 3.1 an = 22n
and bn = 1 for every natural

number n. Then we obtain the very famous result of Erdös (see [5]) which
states that the sequence {22n}∞n=1 is irrational.

From the last theorem we also obtain the following criterion for the so-
called Cantor sequences.

Theorem 3.2. Let ε > 0 and let {bn}∞n=1 be a sequence of positive integers
such that

bn ≤ 22n−(
√

2+ε)
√

n
.

Let us put

an =

2
n

 
1− 1

n
log2

 
n

log2 n
n +1

!! .

Then the sequence {an!
bn
}∞n=1 is irrational.
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This theorem is an immediate consequence of Theorem 3.1.

Example 3. The sequences
{

2[n(1− 1√
n

)]!
}∞

n=1
and

{
2[n(1− 1√

n
)]!/n!

}∞
n=1

are
irrational.

Thank you very much to reviewer and to Professor Carter for their cor-
rection of this paper.
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