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The paper continues the study of differential Banach *-
algebras Ag and Fgs of operators associated with symmetric
operators S on Hilbert spaces H. The algebra Ag is the do-
main of the largest *-derivation s of B(H) implemented by S
and the algebra Fg is the closure of the set of all finite rank op-
erators in Ag with respect to the norm ||A|| = ||A||+|ds(A)]].
When S is selfadjoint, Fg is the domain of the largest *-
derivation of the algebra C(H) implemented by S. If S is
bounded, Fg = C(H) and Ag = B(H), so Ag is isometri-
cally isomorphic to the second dual of Fg . For unbounded
selfadjoint operators S the paper establishes the full analogy
with the bounded case: Ag is isometrically isomorphic to the
second dual of Fg. The paper also classifies the algebras Ag
and Fs up to isometrical *-isomorphism and obtains some
partial results about bounded but not necessarily isometrical
*_isomorphisms of the algebras Fgs.

1. Introduction and preliminaries.

Extensive development of non-commutative geometry requires elaborating
of the theory of differential Banach *-algebras, that is, dense *-subalgebras
of C*-algebras whose properties in many respects are analogous to the prop-
erties of algebras of differentiable functions.

Blackadar and Cuntz [2] and the authors [12] introduced and studied
various classes of differential Banach *-algebras; the most interesting class
consists of D-algebras, that is, dense *-subalgebras A of C*-algebras (4L, ||-||)

which, in turn, are Banach *-algebras with respect to another norm || - ||;
and the norms || - || and || - ||; on A satisfy the inequality:
(1.1) eyl < Dl [yl + lzl2llyl),  for z,y € A,

for some D > 0. This class contains, for example, the domains D(J) of closed
unbounded *-derivations ¢ of C*-algebras 4 where the norm || - ||; on D(9)
is defined, as usual, by the formula

[l = Al + [l6(A)],  for A€ D(9).
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Much work has been done on the investigation of properties of the dif-
ferential Banach *-algebras (see Blackadar and Cuntz [2] and Kissin and
Shulman [12, 13]) and the algebras D(J) in particular (see, for example,
Bratteli and Robinson [3] and Sakai [16]).

In many cases closed *-derivations of C*-algebras U of operators on Hilbert
spaces are implemented by closed symmetric operators. In particular, Brat-
teli and Robinson [3] showed that if 4l contains the ideal of all compact
operators then any closed *-derivation of 4 is implemented by a symmetric
operator.

Any closed symmetric operator S on a Hilbert space H implements closed
*_derivations of various C*-algebras of operators on H. Among all these
derivations there is the largest one - §g with domain D(dg) (which we denote
by Ag) containing the domains of all derivations implemented by S:

Ag = {A € B(H) : AD(S) C D(S), A*D(S) C D(S) and

(SA — AS)|ps) extends to a bounded operator AS}
and 0g(A) = iClosure (SA — AS), for A€ Ag.

The closure of Ag with respect to the norm || - || in B(H) is the enveloping
C*-algebra which we denote by ilg.
The algebra Ag is a unital Banach *-algebra with respect to the norm

(1.2) [Alls = [[All + | As]l.
If S implements a *-derivation ¢ of a C*-algebra U of operators on H then
D(6) C Ag, UCUg and § = dg|Ll.

By C(H) we denote the algebra of all compact operators on H. The
*_algebras

Ks ZASQC(H) and Jg = {AE Ks: 55(A) S C(H)}

are dense in C(H) and are the domains of the largest closed *-derivations
from C'(H) into B(H) and C(H), respectively, implemented by S.

By Fs we denote the closure with respect to the norm || - ||s of the sub-
algebra of all finite rank operators in Ag.

It was shown in [13] that (Kg, ||-||s) and (Js, ||-||s) are semisimple Banach
*-algebras, that (Fg,| -|s) is a simple Banach *-algebra and

Fs CJs CKs C Ag.

Furthermore, Fg, Js and Kg are closed two-sided ideals of (Ag, ||-||s) and Fs
is contained in any closed two-sided ideal of (Ag, ||-||s). The relation between
the ideals Fg, Js and Kg and the question of how the properties of the
operator S are reflected in the structure of g, Jg and Fg were investigated
in [13]. In particular, it was established that (Kg)? = (Js)? = Fg, for all
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symmetric .S, and that the ideals Jg and Fg have a bounded approximate
identity if and only if S is selfadjoint. For selfadjoint S, it was also proved
that g # Js = Fg.

In spite of the fact that the structure of the algebras Fg, Js, Kg, Ag and
g is comparatively simple, many important questions still remain open. In
Section 2 we mainly study the structure of the algebras Ag and Ug in the
case when S is a selfadjoint operator. However, we also consider the case
when S is a symmetric operator with at least one finite deficiency index and
show that the algebras Ag and g contain closed ideals of finite codimension.

If S is a bounded symmetric operator on H then Fg = C(H) and Ag =
B(H), so Ag is isometrically isomorphic to the second dual of Fg. In Section
3 we investigate the structure of the dual and the second dual spaces of the
algebras Fg for unbounded symmetric operators S. In the case when S is
selfadjoint we establish the full analogy with the bounded case: The algebra
Ag is isometrically isomorphic to the second dual of Fg.

In Section 4 we study the problem of classification of the algebras Fg
and Ag up to *-isomorphism. For isometrical *-isomorphism this problem
is completely solved in Theorem 4.4. For bounded but not necessarily iso-
metrical *-isomorphism we obtain some interesting partial results in the case
when S is selfadjoint.

2. Structure of the algebras As and the enveloping C*-algebras
g

The main purpose of this section is to study the structure of the algebras Ag
and g in the case when S is a selfadjoint operator. However, we start the
section by considering the case when S is a symmetric operator with at least
one finite deficiency index. Making use of the existence of a J-symmetric
representation of Ag on the deficiency space of S, we will show that the
algebras Ag and g contain closed ideals of finite codimension.

Let S be symmetric, S* be the adjoint operator, let N_(.S) and N (S)
be the deficiency spaces of S and

n4(S) = dim (NL(5))

be the deficiency indices of S. It is well known that D(S*) is a Hilbert space
with respect to the scalar product

(x,y) = (z,y) + (S™z,S™y), for z,y e D(S"),

and it is the orthogonal sum of the closed subspaces D(S), N_(S) and
N+(S)Z

D(§%) = D(8) (1) N-(8) (1) N4 (S).
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Set N(S) = N_(S)(yN+(S) and let @ be the projection on N(S) in
D(S*). It was shown in [7] and [8] that

[z,y] =i(x,S"y) —i(S*z,y), for x,y € N(9),
is an indefinite non-degenerate sesquilinear form on N(S), that
m5(A) = QA|n(s), for A€ Ag,
is a bounded representation of (Ag, || - [|s) on N(S) and that it is J-symme-

tric:
[Ws(A)l',y] = [33,71'5(14*)]/], for l’,yGN(S)
A subspace L in N(S) is neutral if
[,y] =0, forall z,y€ L.

The operator S is well-behaved if the representation mg has no neutral in-
variant subspace.

Let ks = min(n_(.5),n4(S)) and assume that 0 < kg < co. It was proved
in [10] that the representation mg has a rkg-dimensional subrepresentation
0. Let p be an irreducible subrepresentation of o. It was shown in [11] that
p is bounded with respect to the operator norm || - || in Ag and, therefore,
extends to a bounded *-representation of the enveloping C*-algebra $lg. If S
is well-behaved, it follows from Theorem 28.13 [14] that g C Ker(p). This
yields

Theorem 2.1. Let S be a symmetric unbounded operator and 0 < kg < 0.

(i) There exists a closed two-sided ideal J in the Banach *-algebra (Ag,
| - |l) such that the quotient algebra Ag/J is isomorphic to the full
matriz algebra M, (C) with 0 < n < kg.

(ii) The uniform closure J of J in g is a closed two-sided ideal and the
quotient algebra kg /J is isomorphic to the full matriz algebra M, (C).

(iii) If S is well-behaved then Kg C J and C(H) C J.

Example 2.2. Let H = L?(0,1) and S = z’% with domain D(S) consisting
of all absolutely continuous functions h such that h’ € L?(0,1) and h(0) =
h(1) = 0. Then S is a symmetric operator and n_(S) = ny(5) = 1.

It was proved in [9] that S is well-behaved. Therefore it follows from The-

orem 2.1 that there exists a closed two-sided ideal J in (Ag, || -||) containing
Ks such that dim(Ag/J) = 1 and that the uniform closure of J in ilg is an
ideal of codimension 1. O

Let S be the same as in Example 2.2 and let Lip (0, 1) be the algebra of all
functions on [0, 1] satisfying a Lipshitz condition: |g(t) — g(s)| < K4|t — s
for some K, > 0 and all ¢,s € [0,1]. For g € Lip(0,1), denote by M,
the operator of multiplication by g on L?*(0,1) and set B = {M, : g €
Lip (0,1)}. Then MyD(S) C D(S), (My)*D(S) = MzD(S) C D(S) and
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SM, — MyS extends to the operator iMy which is bounded, since g’ is
essentially bounded on [0,1]. Thus B C Ag.

(The authors are grateful to the referee of the paper for pointing out an
error in the definition of the algebra B in the first version of the paper.)

Problem 2.3. Is Ag = B+ Kg?

The assumption that a symmetric operator S is selfadjoint makes the
task of studying the structure of the algebras Ag and ilg easier. First
of all, the structure of the ideals Kg, Js and Fg is simpler. While for
arbitrary symmetric operators S it is only known (see [13]) that (Kg)? =
(Js)? = Fg, where the closure is taken with respect to the norm || - ||, for
selfadjoint operators S it was shown in [13] that Fg = Js # Kgs. Secondly,
in the selfadjoint case we can employ the Spectral Theorem to establish the
structure of Ag and Ug.

Let

S— /Z/\dES()\)

be the spectral decomposition of S. For every integer n, set
oo

(2.1) Ps(n) = Eg(n+1) — Eg(n) and [S] =) nPs(n).
—0o0

Then [S] is a selfadjoint operator, Sp ([S]) C Z and the operator S — [S] is
bounded. Therefore it follows that

As =Aig;, Ks=Kig and Fs= Fg

and the norms || - [|s and || - [|(5) are equivalent on Ag. This reduces the
problem of the description of the structure of the algebras Ag and g to the
case when Sp (5) C Z.

We denote by Sz the set of all selfadjoint operators S on H such that
Sp (S) C Z and set

(2.2) Hg(n) = Pg(n)H, for n € Sp(S).

Then

(2.3) H= ) ®Hg(n).
neSp(S)

We omit the proof of the following simple result.

Proposition 2.4. Let S,T € Sy. If there exists a one-to-one mapping
@ from Sp(T) onto Sp(S) such that dim(Hp(n)) = dim(Hg(p(n)), for
n € Sp(T), and
sup_Jp(n) — n| < oo
neSp(T)
then there exists a unitary operator U such that Ap = UAgU*.
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Let S € Sz. Every operator A in B(H) has a block-matrix form A = (A4;;),
i,7 € Sp(S), with respect to decomposition (2.3). We denote by Dg the C*-
algebra of all block-diagonal operators A = (A;;) in B(H), that is, A;; =0
if i # j. By R we denote the subalgebra of all operators A = (A4;;) in B(H)
with only finite number of non-zero entries A;;. Then, clearly,

Ds CAg and Rg C Ag.

Let Rg be the closure of Rg in (Ag, | - ||s) and let Cs(H) be the uniform
closure of Rg in B(H).

Lemma 2.5. Dg + Cg(H) is a C*-subalgebra of Us and Dg + Rs is a
closed *-subalgebra of (Ag, || - ||ls)-

Proof. Let L be the uniform closure of Dg + Rg in B(H). Then L is a

C*-subalgebra of ilg. Since Rg is a two-sided ideal of the algebra Dg + Rg,

the C*-algebra Cg(H) is a two-sided ideal of L. Therefore it follows from

Corollary 1.8.4 [4] that Dg + Cs(H) is a C*-algebra, so L = Dg + Cg(H).
For A € B(H), set

¢(A)= Y Ps(n)APs(n) and A=A-¢(A).
neSp(S)

Then ¢ is a conditional expectation from B(H) onto Dg and
(2.4) l6(A) < Al and || A]l < 2[|A].

If Ac Ag then A € Ag and Closure (SA — AS) = Closure (SA — AS).
Assume that {A,} converge to A in Ag with respect to || - ||s. Then

|IA— A,|| = 0 and |Closure (S(A— A,) — (A— A,)S)|| — 0, as n — oo,
and therefore, by (1.2) and (2.4),

|A — Ay||s = [|A — Ay|| + [|Closure (S(A — A,,) — (A — 4,)9)||
(2.5) < 2[|A — A, || + ||Closure (S(A — A,) — (A — A4,)9)|| — 0,

as n — OQ.

Hence A, converge to A with respect to | - ||s.

Suppose now that B € Rg. Then there are {Bn} in Rg converging to
B with respect to || - ||s. It follows from (2.5) that B, converge to B with
respect to || - || and, since B,, belong to Rg, we obtain that B € Rg.

Finally, let C;, = A, + B, converge to C' in Ag with respect to || - ||s
where A,, € Dg and B,, € Rg. Then C’n = B and, by (2.5), B converge
to C with respect to | - ||s. Since, by the above argument, all B, belong to
Rg, the operator C also belong to Rg. Hence C € Dg + Rg and Dg + Rg
is a closed *-subalgebra of (Ag, || - ||s)- O
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Let S € Sz. We number the elements of Sp(S) in such a way that Sp(S) =
{ni}tier is an increasing sequence,

0<mn; for 0<¢, and 0>n;, for 0>i.

Then |i| < |n;| and, depending on S, the set I is either the set Z of all

integers, or the set of all integers from —oo to some m, or from m to co. We

consider the case when I = Z. Two other cases can be considered similarly.
Set

—1
psk) = (1nflmien i) . for k40, and ps(0) =0
1€

Since inficz [nirr — nil > |k|,

1
0<pg(k)§m, for k#0
Proposition 2.6. If
(2.6) ‘}im (nit1 —ni) = o0
(2.7) and Zp(k) converges
keZ

then g = Dg + Cg(H).

Proof. Let A = (A;;) € Ag, where A;; are bounded operators from Hg(n;)
into Hg(n;). Then the operator

B=SA-AS = (Bij)a where Bij = (nl — nj)Aij,
is bounded. Set b = || B||. Since || Byj|| < ||B||, for all i,j € Z,

, for i #£j.

2.8 Al < —m——
( ) H ’LJH— |7’”LZ—7’L]|
For k € Z\ 0 and m > 0, let
ijm =A;, if j=i+k and —m <i<m, and ijm = 0 otherwise.
Then the operator GF™ = (ijm) belongs to Rs. Taking into account (2.6)

and (2.8), we obtain that the operators G*™ converge uniformly in B(H) to
a bounded operator G¥ = (ij), as m — 00, where

ij = Ay, if j=1i+k, and ij =0 otherwise.
Therefore G* € Cs(H) and, by (2.8),
IG*) = Sup [| Aiirkl < bps (k).
It follows from (2.7) that the operator G =3 ;7\ G* belongs to Cs(H).

Since A — G € Dg , we obtain that A € Dg + Cg(H), so that
As C Dg+ Cg(H). It follows from Lemma 2.5 that g = Dg+ Cg(H). O
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Corollary 2.7. If there are a > 0, ¢ > 0 and an integer N such that
cli|* <njp1 —n;  for N <|ij

then g = Dg + Cs(H).

Proof. Condition (2.6), clearly, holds. Let k > 4N. Then

k
1 . .
= inf |n;4f — ny| = inf itp — Nitp—
ps (k) inf [y, — nil ’%sz:l(n +p — Mip—1)
[%] e k a+1 .
> o> - — (N —1)%
et (I

c kj a+1
> — .
“a+1 (4)
a+1
Similarly, if & < —2N then pg(k)™! > - (M> . Therefore condition

a1 \ 4
(2.7) also holds and the result follows from Proposition 2.6. O

Suppose now that dim(Hg(n)) = oo for all n € Sp(S) and let ng € Sp(5).
Set K = Hg(no). Then there exists a Hilbert space H with dim(H) = oo such
that the C*-algebra Cg(H) is isomorphic to the tensor product B(K)®QC(H)
where C'(H) is the C*-algebra of all compact operators on H. Choosing a
basis {e, }22; in H, we obtain that the algebra Dg is isomorphic to the von
Neumann algebra tensor product B(K)®L of B(K) and the W*-algebra £
of all operators on ‘H diagonal with respect to {e,}72 . From this and from
Proposition 2.6 we obtain the following result.

Corollary 2.8. Let S € Sz. If dim(Hg(n)) = oo for all n € Sp(S) and
conditions (2.6) and (2.7) hold then there exist Hilbert spaces K and H such
that Ug is isomorphic to B(K)RL+B(K)QC(H), where L is the W*-algebra
of all operators on 'H diagonal with respect to some basis.

Assume now that dim(Hg(n)) < oo for all n € Sp(S). Then Cs(H) co-
incides with the algebra C(H) of all compact operators on H. Taking into
account the definition of the ideal g and applying Proposition 2.6 we obtain
the following result.

Corollary 2.9. Let S € Sz and dim(Hg(n)) < oo for all n € Sp(S). If
conditions (2.6) and (2.7) hold then Ug = Dg + C(H) and As = Ds + Ks.

Example 2.10. Let {e;}° _ be an orthonormal basis in H and let

i=—00

Se; = sgn (i)|i|**%e;, where a > 0.
Then S € Sz and n; = sgn (i)]i|' ¢, so that
Nit1 — Ny

——— =1+a.
li|—c0 sgn (7) ]
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Therefore, by Corollaries 2.7 and 2.9, g = Dg + C(H) and Ag = Dg + Kg
where Dg is the algebra of all operators diagonal with respect to {e;}22_ .
Thus the quotient algebra Ag/Kg is isomorphic to the commutative

C*-algebra Dg/£ where £ is the algebra of all compact diagonal operators
on H. O

Let {e;}?2_ . be an orthonormal basis in H and let

Se; =ie; and Ue; = e;41, forall i€ Z.
Then S € Sz and U is the shift operator. We have that
UD(S) € D(S), U"D(S) € D(S) and (SU —US)|p(s) extends to U,

so that U € Ag. Hence g contains the C*-algebra C(Dg, U) generated by
U and by the commutative algebra Dg of all operators diagonal with respect

to {ei zgi—oo’

Problem 2.11. Is Yg = C(Dg,U)?

3. Dual and second dual spaces of the algebras Fg.

Let S be a closed symmetric operator. Recall that Fg is the closure with
respect to the norm || - ||s (see (1.2)) of the subalgebra of all finite rank
operators in Ag. If S is a bounded symmetric operator on H, it follows that
Fs=C(H) and Ag = B(H), so that Ag is isometrically isomorphic to the
second dual of Fg. In this section we study the structure of the dual and the
second dual spaces of the algebra Fg for unbounded symmetric operators
S. In the case when S is selfadjoint we establish the full analogy with the
bounded case: The algebra Ag is isometrically isomorphic to the second
dual of Fg.

By T(H) we denote the Banach *-algebra of trace class operators on H
with the norm

4] = 3 si(4) = Tr ((474)/2),
i=1

where {s;(A)}32, is the set of all eigenvalues of the positive compact operator
(A*A)V/2.

It is well known that T'(H) can be identified with the dual space of the
algebra C(H): For any T' € T'(H),

Fr(A) =Tr(AT), AecC(H),

is a bounded linear functional on C(H) and || Fr|| = |T'|; and that B(H) can
be identified with the dual space of T'(H): For any B € B(H),

0p(T)=Tr(BT), T eT(H),
is a bounded linear functional on T'(H) and ||0| = || B]|.
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_ Set B(H) = B(H) @ B(H) and C(H) = C(H) & C(H). Then B(H) and
C(H) are Banach spaces with the norm
lAe Bl = [lAll + B

Set JA“(H) =T(H)® T(H). It is a Banach space with the norm

|[R®T| =max(|R|,|T|), T,ReT(H),
and it can be identified with the dual space of C(H): For R,T € T(H),
(3.1) Frer(A® B) = Tr (AR) + Tr (BT), A® Be C(H),
is a bounded linear functional on C (H) and HEREBT” = |R @ T)|. Similarly,
B(H) can be identified with the dual space of T'(H): For A, B € B(H),
(3.2) 0aap(R®T)=Tr(AR) + Tr (BT), R®T e T(H),

is a bounded linear functional on T(H) and [|f4e5| = |A ® B
Set
As={A®Ag: Ac Ag} and Fg={A® Ag:Ac Fg},

where Ag = Closure (SA— AS). Then (Asg, | -[|s) and (As, - 1)s (Fs, - 11s)
and (Fg,| - ||) are isometrically isomorphic, since

[Alls = [|Al + | As]| = [[A & Asg]|.
Therefore .Kg is a closed subspace of B (H) and fs is a closed subspace of

C(H), since A € Fg implies Ag € C(H).
Set

Ty = {T e T(H): TD(S) C D(S*), T*D(S) C D(S*) and the operator
(S*T' —TS)|p(s) extends to a bounded trace class operator ']I‘}.

If T € ¥sNAg then Tg = Tg. In particular, if S is selfadjoint then Tg = Tg
for all T' € Tg5. Clearly, Tg is a linear subspace in T'(H) and

T ={Ts@T:T € Ts}
is a linear subspace in T(H). For T € Tg and z,u € D(S),
—((Tg)*z,u) = —(2,Tsu) = — (2, (S*T = TS)u) = (S*T* —T*S)z,u),
so that
(3.3) —(Ts)*|psy = (S™T™ = T*S)|p(sy = (T")s|p(s)-

Therefore T* € Tg.
For z,y € H, the rank one operator x ® y on H is defined by the formula

(3.4) (r®y)z = (z,2)y.
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It is easy to check that

(3.5) lz @yl = [l lyll;
ey =ye (z0y)(uev) = (v,)(uey),
R(zr®y) =2® Ry, and (z®y)R extends to (R*z)®y,
if R is a densely defined operator, y € D(R) and x € D(R"). Let {e;}32, be
a basis in H. Then

[e.e]

(o]
(3.6) Z T ®@Y)ej,€;) Z €, ) (Y €5)
7=1

Jj=1

o0
er]] (y, ).

Let x,y € D(S*) and T =z ® y. By (3.4) and (3.5),
(3.7) Tz = (z,z)y € D(S)
T'z=(y®@x)z = (z,y)x € D(S*), for z€ H,
and Tg=S5"T-TS =2 Sy — (S'z)®y e T(H),

so that T' € Tg. By &g we denote the set of all linear combinations of the
operators x ® y, for z,y € D(S*). Clearly, ® C Tg and

:{TS@T:TE(I)S}

is a linear subspace of ¥g.
Let X™* be the dual space of a Banach space X and Y be a linear subspace
of X. The annihilator

L={FeX*:F(y)=0, forall ycY}

of Y in X™* is a closed subspace of X* and from the general theory of Banach
spaces (see [5] 11.4.18 and [15] III, Problem 30) we have the following lemma.

Lemma 3.1. The dual space Y* of a closed subspace Y of X is isometrically
isomorphic to the quotient space X*/Y ' and the second dual Y** of Y is
isometrically isomorphic to Y+ where

L={0eX*:0(F)=0, foral FeY'‘}

Since Fg C C (H), the annihilator (j-:s)L is a closed subspace of the dual
space C(H)* = T(H) and, since &g C g C T(H), the annihilator (g)+
a closed subspace of the dual space T'(H)* = B(H).
Theorem 3.2. (i) $g is a closed subspace in T(H) an Ts.

( =
(i) (Tg)t C (Pg)t = {A® Ag: A€ Ag and AD(S*) C D(S) ./Zl\s.

‘—r—’m
\/
N
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Proof. Let Ts® T € g and z,y € D(S). Then A = 2 ® y € Fg and, by
(3.3) and (3.5),
(3.8) As =5z ®y) - (z@y)S=2® Sy — (S7) ® v,

AsT = (x @ Sy)T — ((Sz) @ y)T = (T*z) @ Sy — (T*Sz) ® v,

ATs = (z @ y)Ts = (Ts)"z) @y = (T75 = 5'T7)z) @ y.
Therefore, by (3.1), (3.6) and (3.8),

F’H‘S@T(A D As) =Tr (ATs) + TI“(AST)
=y, (IT"5 = §*T")x) + (Sy, T"z) — (y, T"Sx) = 0.

It follows from Lemma 3.1 [13] that any finite rank operator A in Fg
has the form A = > | x; ® y; where z;,y; € D(S). Hence Froor(A @
Ag) = 0 for any finite rank operator A € Fg. Since, by definition of Fg,
finite rank operators are dense in (Fg,| - ||s) and since (Fg,|| - |ls) and
(Fs, | - |]) are isometrically isomorphic, the operators A & Ag, where A are
finite rank operators, are dense in Fg. Since Fr g is continuous on C(H),
FTS@T(A ® Ag) = 0, for all A € Fg. Therefore Fryor € (Fs)*, so that
Ts C (Fs)- ~ R

Conversely, let R® T € (Fs)t C T(H) and let A = 2 ® y € Fg, where
x,y € D(S). From (3.1), (3.5), (3.6) and (3.8) it follows that

0= FR@T(A O] As) = TI“(AR) + TI‘(AsT)
= Tr((R'z) @ y) + Tr[(T"2) @ Sy — (T"Sz) @ y]
= (y, R'z) + (Sy, T"z) — (y, T" Sx).
Hence
(Sy,T"z) = (y,(T*S — R")x), forall =,y € D(S).
Therefore T*x € D(S*) and S*T*z = (T*S — R*)x. Thus T*D(S) C D(S¥)
and
(Sz,Ty) = (T"Sz,y) = (S"T"z,y) + (R'z,y) = (z,TSy) + (z, Ry).
From this it follows that Ty € D(S*) and S*Ty = T'Sy + Ry. Hence
TD(S) € D(S*) and Rlps) = S5"T|ps) — TS| p(s)

Therefore T' € ¥¢g and R = Tg. Thus (.7?5)J- C g, so that (.7?5)L = <.
From this we also obtain that Tg is a closed subspace of f(H ). Part (i) is
proved.

Since &g C Tg, we have (ifg)L C (i)S)L. Let now A& Ag € ﬁs and
AD(S*) C D(S). It was shown in Lemma 3.1 [13] that

As|psey = (S"A — AS™)|p(s+)-
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For xz,y € D(S*), the operator T' = x ® y belongs to &g and, taking the
above equality into account, we obtain from (3.5) and (3.7) that

AsT =2z ® Asy =2 ® (S*A— AS™)y and
ATs = Az ® S™y — (S"2) ®y) = 2 ® AS™y — (5"z) ® Ay.
Therefore, by (3.2) and (3.6),
Oneas(Ts & T) = Tr(ATs) 4 Tr(AsT)
= (AS*y,z) — (Ay, S™z) 4+ (S* Ay, z) — (AS*y, x)
= (S"Ay,z) — (Ay, S™x).
Since AD(S*) C D(S), it follows that S*Ay = SAy and (Ay,S*z) =

(SAy,x). Hence Oag 44 (Ts®T) = 0 and, by linearity, it holds for all T € ®g.
Therefore

(3.9) {A® Ag: Ac Ag and AD(S*) C D(S)} C (ds)" .

Conversely, let A® B € (®g)*. Then, for every z,y € D(S*), T = 2®y €

dg and
9,4@3(']1‘5 D T) = TI“(ATs) + TI“(BT) = 0.
By (3.5), BT = x® By and, as above, ATg = x® AS*y— (S*z)® Ay. Hence,
by (3.6),
0= (AS*y, $) - (Ay7 S*l’) + (By, (E)
Thus
(Ay, S*z) = (AS*y,x) + (By,x), for all z,y € D(S™).

Therefore Ay € D(S**) and S** Ay = AS*y+ By. Since S is closed, S** = §
and we obtain that
Restricting (3.10) to D(S), we have

Making use of (3.10), we obtain that for z € D(S) and u € D(S*),

(A%z, 8%u) = (2, AS*u) = (z,SAu) — (2, Bu) = (A*Sz,u) — (B*z,u).
Therefore A*z € D(S**). Since S** = S, we have A*D(S) C D(S). Thus
AceAgand B=Ag,s0 AP B=A® Ag € Ag. Taking into account that
AD(S*) C D(S), we obtain that

(bs)F C{A® As: Ac As and AD(S*) C D(S)}.
Combining this with (3.9), we complete the proof of the theorem. O

Since the Banach spaces (Fs, ||-|ls) and (Fs, ||+ ||) and the Banach spaces
(As, |l - lls) and (As, || - ||) are isometrically isomorphic and since (Fg, || - ||)
is a closed subspace of C(H), Lemma 3.1 and Theorem 3.2 yield:
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Corollary 3.3. The dual space of the Banach *-algebra (Fg, || - |ls) is iso-
metrically isomorphic to the quotient space T(H)/%g and the second dual
space of (Fs,|| - |ls) is isometrically isomorphic to a closed subspace of

(As, [ - lls)-

The following example shows that if S is not selfadjoint then, generally
speaking, (®g)* # Ag, so that (Fg)'+ # Ag and the second dual space of
(Fs, |l - |ls) is isometrically isomorphic to a proper subspace of (Ag, | - |ls)-

Example 3.4. Let, as in Example 2.2, H = L?(0,1) and the operator S =
i4 with domain D(S) = {h(t) : h,h’ € L»(0,1) and h(0) = h(1) = 0}. Then
S is a symmetric operator, non-selfadjoint and
D(S*) = {h(t) : b, € L*(0,1)}.

Let g(t) be a differentiable function on [0, 1] such that g(0) # 0 and let M,
be the bounded operator of multiplication by g(t) on H. Then M, € Ag.
If h(t) € D(S*) and h(0) # 0 then (Myh)(0) = g(0)h(0) # 0, so that
Myh ¢ D(S). Thus My, @ (My)s ¢ {A® Ag: A e Ag and AD(S*) C D(S)}.
Hence (dg)* # As.

Assume now that S is selfadjoint. Then D(S*) = D(S5), Ts = T, for
T e %g, and

Ts={TeTH)NAs:Ts € T(H)} C As.

It is well known (see, for example, [5] and [6]) that the algebra T'(H) is a
two-sided ideal of B(H) and if A € B(H) and B € T(H) then
(3.11) |AB| < [[Al[B], |B*[=[B| and |[B| <|BJ.

We consider now two equivalent norms on ¥g:

[Ty = |T| + |Ts| and |T|2 = max(|T|,|Ts|), for T € Ts.
Since
Ts =T and |T|e = max(|T|,|Ts|) = |Ts @ T|, for T € Tg,

(s, |- |2) is isometrically isomorphic to .

Proposition 3.5. Let S be selfadjoint. Then:
(i) Ts C Fs and (Ts, |- |2) is a two-sided Banach As -module;
(i) (Ts,| - 1) is a Banach *-algebra and a D-subalgebra of C(H)
(see (1.1)) with D = 1.

Proof. It was shown in [13] that if S is selfadjoint then Fg coincides with
the algebra Jg = {A € Ag : A and Ag belong to C(H)}. Since Tg C Jg,
we obtain that Tg C Fg. R

In Theorem 3.2(i) it was shown that Tg is a closed subspace of T(H).
Since (Ts,| - |2) is isometrically isomorphic to ¥g, it is a Banach space.
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Since the norms |- |; and |- |2 are equivalent, (Tg,| - |1) is also a Banach

space.
For A, B € Ag,

(AB)s|p(sy = (SAB — ABS)|p(s)
= [(SA— AS)B + A(SB — BSY)]|p(s) = (AsB + ABs)|ps),
so that
(3.12) (AB)s — AsB + ABs.

Let T € g and A € Ag. Then T,Tg € T(H). Since Tg C Ag and T'(H)

is a two-sided ideal of B(H), it follows that AT € T(H)N.Ag and, by (3.12),
(AT)S = AT + AT € T(H)
Therefore AT € Tg. Making use of (3.11), we obtain that
|AT | = max (|AT], |(AT)s|) < max (|| A[[ T, [[As]| |T] + [[A]l [Ts])
< (I1A]l + | As[)) max(|T, |Ts|) = [|Alls|T]2-

Similarly, TA € Tg and |T'A|2 < ||Al|g|T|2. Thus (s, |- |2) is a two-sided
Banach Ag-module. Part (i) is proved.

From (i) and from the fact that Tg C Ag, we have that Tg is an algebra.
We also have that T* € Tg and, since Tg = Tg, it follows from (3.3) that

(T*)s = —(Ts)* € T(H). Taking this and (3.11) into account, we obtain
that

Ty = [T+ (T*)s| = |T*| + | = (Ts)*| = |T| + |Ts| = [T
and
ITR[y = |TR|+ [(TR)s| = |TR| + |[TsR+ TRs)|
< |IT|[|R| + |Ts| | R|| + [|T| |Rs]
<|T||R| + |Ts| |R| + |T||Rs| < |T'[1 [R|1,

for T, R € Tg. Hence (¥g, |- |1) is a Banach *-algebra.
Clearly, Tg is dense in C(H). For T, R € Tg, it follows from (3.11) that

TR = |[TR|+ [(T'R)s| = |TR| + |TsR + TRs|
< TWIR[+ Ts[ |1 B]| + [IT|| | Rs]
< TR+ |Rs]) + (1T + [TsD R
= [T Rl + |ThI[RI.
Thus (Tg,|-|1) is a D-subalgebra of C'(H) with the constant D = 1. O

If S is selfadjoint, it follows from Theorem 3.2 that (<i>5)L = .Zs and

(Bs) ™ = (%) C (@5)" = As.
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In order to prove that (.7?5)lL = .Zs it suffices to show that ®g is dense
in €g. For this we need the following lemma which is a partial case of
the general result obtained by Gohberg and Krein [6, Theorem 6.3] for
symmetrically normable ideals.

Lemma 3.6. Let T € T(H) and let Q, be finite rank projections which
converge to 1 in the strong operator topology. Then

T —Q,T|—0 and |T —TQn| — 0, as n — oo.
Proof. Let A = x®y, x,y € H. By (3.5), A*A = ||y||?(x®x) and the operator
(A*A)Y/? = %(az@x) has only one non-zero eigenvalue A = ||z|| ||y||. Hence
(3.13) o @yl = [A] = Te(AA)/2 = X = |||l ||yl
T = Zle x; ® y; is a finite rank operator then, by (3.5) and (3.13),

k
‘T_QnT’ = < Z’x®(yi _Qnyiﬂ

i=1

k
> 2 ® (i — Quyi)
=1

k
= il lly: — Quuill — 0,
i=1
as n — oo. For any T in T'(H) and any € > 0, there is a finite rank operator

T. such that |T'— T.| < e. Making use of the inequality (3.11), we obtain
that

’T - QnT| < ‘T_ Ta‘ + ‘TE - QnT8’ + |Qn(T - Te)’
<e+|T: — QuTe| + || Qnll | T - T¢|
<2+ |T: — QT3]

Since T is a finite rank operator, by the above argument, there is n. such
that |7 — Q,T:| < e, for n > n.. Hence |T'— Q,T| < 3¢ and |T' — Q,,T| — 0,
as n — oo. Similarly, one can prove that |T'— TQ,| — 0, as n — oc. O

Proposition 3.7. Let S be selfadjoint. Then ®g is dense in (Tg, |- |1).

Proof. Let [S] be the selfadjoint operator constructed in Section 2. Then
D(S) = D([S]), so that &g = ®(g). Since B = S — [5] is a bounded operator,
BT —TB e€T(H), for T € T(H). Therefore, taking into account that

(ST —T8S)p(s) = ([S]T = T[S p(sy + (BT — TB)p(s):

we conclude that Tg = Tg) and Ts = Tg) + BT — T'B.
Making use of (3.11), we obtain that for any 7" € Tg,

T|+ |T| = IT| + |Tis) + BT — TB|
< |T| + |Tig)| +2[1BI T
< (1+2|B|) (1T + | Tis))) -
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Similarly, [T|+|Tjg| < (1+2[|B|)(|T'|+|Ts|). Thus the norms |-|; generated
by the operators S and [S] on g are equivalent. Hence to obtain the proof
we only have to show that (g is dense in (Tg, | - [1).

In every subspace Hg(n) (see (2.2)) we choose an increasing sequence of
finite-dimensional projections {Qﬁ}z‘;l converging to the projection Pg(n)
(see (2.1)) in the strong operator topology as k — 0o. Set

k
Q"= > aQ;.
n=—k
Then QF are finite-dimensional projections commuting with [S]. Hence
QF e ®(s). The projections QF converge to 1x in the strong operator topol-
ogy. Let T' € Tjg). Then Q,T € P[5 and

[S]Q"T — Q*T[S] = Q*[SIT — Q*T[S] = Q([SIT - T[S)) = Q"T1s).

Therefore (QkT)[S} = QkT[S].
Since T, Tig) € T'(H), we obtain from Lemma 3.6 that

T Q" =0 and |Tig — (Q"T)ig| = |Tis) — @*Tig| =0, as & — ox.

Hence
T = QT = T = QT + |Tjs) — (@Q*T) 5| — 0

as k — oo, so that (g is dense in (Tg}, |- [1). O

Corollary 3.8. Let S be a selfadjoint operator. Then:
(i) the Banach *-algebra (Zg,|-|1) is simple;
(i) (T5)* = (®5)* = As;
(iii) the dual space of (Ts, |- |2) is isometrically isomorphic to the quotient
space B(H)/Ag.

Proof. Let I be a closed two-sided ideal of (Tg,|-|1) and 0 # T € I.
Since D(S) is dense in H, there is € D(S) such that Tx # 0. Since S
is selfadjoint, it follows from the definition of ¥g that Tx € D(S). From
this and from the discussion before Lemma 3.1 we obtain that the rank one
operators y ® x and Tz ® z belong to Tg for any y,z € D(S). By (3.5),
Ty®z)=(y®Tz) € I and

(Tz®2)(y®T) = |Tz|*(y®2) € L.

Thus y ® z € I and, therefore, &g C I. Since [ is closed, we obtain from
Proposition 3.7 that I = Tg. Part (i) is proved.

Since the norms |- |; and | - |2 are equivalent on Tg, it follows from
Proposition 3.7 that ®g is dense in (¥g,| - |2). Taking into account that
(Tg,| - |2) is isometrically isomorphic to the closed subspace $g of T(H),
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we obtain that the linear subspace ®g is dense in €g. From this and from
Theorem 3.2(ii) we obtain ($g)* = (®g)+ = Ag. Part (ii) is proved.

The dual space of (Tg, |- |2) is isometrically isomorphic to the dual space
of the closed subspace Tg of f(H) Since f(H)* = ]§(H)7 part (iii) follows
from (ii) and from Lemma 3.1. O

Theorem 3.9. If S is a selfadjoint operator then (fg)iJ- = Ag and the
second dual space of the algebra (Fg,| - ||s) is isometrically isomorphic to
the algebra (As, | - ||s)-

Proof. Combining Theorem 3.2(i) and Corollary 3.8(ii) yields (Fg)*+ = Ag.
Therefore it follows from Lemma 3.1 that the second dual space of (Fg, || - ||)
is isometrically isomorphic to (Ag, ||-||). Taking into account that (Fg, ||-||s)

is isometrically isomorphic to (Fg, || - |) and that (Ag, || - ||s) is isometrically
isomorphic to (Ag, || - ||), we complete the proof. O

4. Isomorphism of the algebras Fs and Ag.

In this section we study the problem of classification of the algebras Fg
and Ag up to *-isomorphism. For isometrical *-isomorphism this problem
is completely solved in Theorem 4.4. As far as bounded but not necessar-
ily isometrical *-isomorphism is concerned, we have obtained some partial
results in Theorems 4.6 and 4.8 for the case when S is selfadjoint.

Banach *-algebras (A, || ||.4) and (B,]| ||g) are *-isomorphic if there is a
bounded *-isomorphism ¢ from A onto B. They are isometrically
*-isomorphic if, in addition, ||¢(A)||g = ||A]|.4, for A € A.

Let (A, | ||a) and (B, || ||g) be Banach *-algebras of operators on Hilbert
spaces H and H (the norms || - || 4 and || - || do not, generally speaking,
coincide with the operator norms in B(H ) and B(H)) and let ¢ be a bounded
*_isomorphism from A onto B. An isometry operator U from H into H
implements ¢ if

p(A)=UAU*, Aec A

Lemma 4.1. Let R and T be symmetric operators on H, S be a symmetric
operators on H, U be an isometry operator from H onto H and t € R.

(i) If Fr = Fr then the norms || - ||r and || - ||z on this algebra are
equivalent, so that the Banach *-algebras (Fr, || - ||r) and (Fr, | - ||7)
are *-isomorphic.

(ii) If R = £T + t1y then Fr = Fr and the norms || - |gr and || - |7
coincide.

(iii) If S = A\ UTU* 4+ B, where 0 # X\ € R and B is a bounded selfadjoint
operator, then A — UAU* is a bounded *-isomorphism from (Fr, ||||T)
onto (Fs,| - |ls). If A = £1 and B = t1g then A — UAU* is an
isometric *-isomorphism.



DIFFERENTIAL *-ALGEBRAS OF OPERATORS 347

The same results hold for the algebras Ag.

Proof. By Proposition 3.2 [13], the algebras Fr and Fp are semisimple.
Hence if Fr = Fr then it follows from Johnson’s uniqueness of norm theorem

that the norms || - ||z and || - ||z on this algebra are equivalent. Therefore
the identity mapping is a bounded *-isomorphism from (Fg, || - ||r) onto
(Fr, |- lI7)-

Let R = +£T + t1%. Then D(R) = D(T) and Ar = Ag for any A € Ar.
Hence ||Al|r = ||A|lr and Ar = Ar. The sets of finite rank operators in the
algebras Fr and Fr coincide and, since these algebras are the closures of
these sets with respect to the norm || - ||, we obtain that Fs = Fr.

If S=AUTU* 4 B then D(S) =UD(T) and, for A € Ar,

UAU*D(S) =UAD(T) CUD(T) = D(S) and
SUAU* —UAU*S = \U(TA - AT)U* + (BA — AB),
so that UAU* € Ag and (UAU*)s = ANUApU* + (BA — AB). Thus
As = UArU* and
[UAU"||s = [[UAU|| + [(UAU")s|| = [[Al + [A\UATU + (BA — AB)|
< [|A[ -+ AAN + 2[ B [A]l < max(A, 1+ 2[| B[)[[Allr,
so that ¢(A) = UAU* is a bounded *-isomorphism from (Ar, | - |r) onto

(As, || - |ls)- If A is a finite rank operator in Az then UAU* is a finite rank
operator in Ag. Therefore Fg = ¢(Fr). O

Let S be a symmetric operator with domain D(.S). It was shown in Lemma
3.1 [13] that a finite rank operator A belongs to Fg if and only if

(4.1) A= sz ®vi, where z;,y; € D(S).
i=1

Theorem 4.2. Let S and T be symmetric operators on H and H and let
B and C be closed *-subalgebras of (As, || - ||s) and (A, | - ||l1), respectively,
such that Fs C B and Fr C C. Let v be a bounded *-isomorphism from C
onto B and let ¢ = | Fr. Then:

(1) ¢ is a bounded *-isomorphism of (Fr,| - ||7) onto (Fs,|| - |s);

(ii) there is an isometry operator U from H onto H implementing 1:

Y(A) =UAU*, for AeC,
and D(S) =UD(T) and Fyry~ = Fs.

Proof. For x,y € D(T), x #0,y #0,set Y = p(x ®@y). If Y is not a rank
one operator, there are z,u € D(S) such that Yz #0, Yu # 0 and Yz 1Yu.
Since Y € Ag, we have that Yz, Yu € D(S), so that Yz ® z € Fg and
u®Yu € Fg. By (3.5)

(4.2) Yze2) (ueYu)=(Yu,Yz)(u®z) =0.
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Since (z ® 2)* = 2 ® z and ¢ is a *-isomorphism, it follows from (3.5) that

(P zor)0y=(zey) (¢ (ze2)]
oIV i re ) = g @ YE) £0.
Thus ¢~} (2® 2z)x # 0. Similarly, ¢! (u®u)z # 0. From this and from (3.5)
and (4.2) it follows that
0= H(Yz02)(u®Yu) =¢ (22 2)Y*'Y(u®u))
= (2@ 2)p (Y (V) H(u @ u)

=0 (2@ ) (@Y (uBu)
=¢ lze)|ylP@e ) (uou)
= [yl (e (u @ u)a] © [p~! (2 ® 2)a]) # 0.

This contradiction shows that Y is a rank one operator. Hence Y € Fg and,
by (4.1), ¢ maps all finite rank operators in Fr into finite rank operators in
Fs. Since ¢ is bounded ¢(Fr) C Fs. Similarly, o~ (Fs) C Fr, so that ¢ is
a bounded *-isomorphism from Fr onto F. Part (i) is proved.

Fix g € D(T), ||zo|| = 1. Since z¢ ® ¢ is a projection, p(rg ® xo) is
a one-dimensional projection in Fg. By (4.1), we can choose & in D(S),
0|l = 1, such that ¢(z¢ ® zg) = & ® &. Let y € D(T'). Making use of the
equality zo ® y = (20 ® y)(xo ® o), we obtain that

p(zo @y) = p(x0 @ y)p (o0 ® 20)
= @20 @ y) (&0 ® o) = &0 ® (0 © y)&o-
Since p(xg®y) € Fg, it follows from (4.1) that ¢(xg®y)& belongs to D(S).
Now U :y € D(T) — ¢(zo ® y)& is a linear mapping from D(T') into
D(S) and p(zo ® y) = & ® Uy. Then
((y @ z0)(z0 @ y)) = [|yl* (20 @ 20) = ly]|* (€0 ® &)
= ¢((z0 ©@y)")p(z0 @ y)
= Uy ® &)(& © Uy) = [|Uy]* (& © &).

Thus |Uy||? = ||y||?, for y € D(T), and U extends to an isometry operator
from H into H which we also denote by U. We have that, for xz,y € D(T),

(4.3) Pz ®@y) = ¢((ro @ y)(z @ 30)) = (§ @ Uy) (o @ Uz)*
=Uz@Uy=U(z®y)U".

Similarly, there is an isometry operator V' which maps D(S) into D(T)
such that ¢ 1 (¢ ®@n) = VE® Vn, for £, € D(S). Hence

Eon=plp ' (Ean)=p(VER VY =UVERQ UV
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Thus UVE = A(§)€ where A is a function on D(S) such that |A(§)] = 1.
Hence UD(T) = D(S). Since D(S) is dense in H and U is an isometry
operator, we have UH = H.

Let A € C and set R = U*Y(A)U. Then x ® y € Fp, for any z,y € D(T),
and, since Fr is an ideal of Ap, we have A(z ® y) = 2 ® Ay € Fr. By (4.3),

Rz®y) =UA)U(x®y) =UYA)U(xy)UU
=Up(A)p(z @ y)U = U*p(A)p(z @ y)U
=U"(A(z @ y))U =U"p(z @ Ay)U = x ® Ay.
Therefore R(x ® y) =  ® Ry = = ® Ay, so that Ry = Ay. Thus R = A and
W(A) =UAU".

The operator F' = UTU* is symmetric and D(F) = UD(T) = D(S). By
Lemma 4.1, Fp = UFpU* and A — UAU* is an isometric *-isomorphism

from (Fr,| - ||7) onto (Fr,| - || r). Hence
o(U*BU)=UU*BU)U* =B, for B¢€ Fp,
is a bounded *-isomorphism from Fg onto Fg. Therefore Frp = Fg. O

It was shown in Theorem 3.4 [13] that the algebra (Fs,| - |ls) has a
bounded approximate identity if and only if S is selfadjoint. Making use of
this and of Theorem 4.2, we obtain the following result.

Corollary 4.3. If the algebras Fs and Fr are *-isomorphic or the alge-
bras As and Ar are *-isomorphic then the operators S and T are either
selfadjoint or non-selfadjoint at the same time.

Apart from the sufficient conditions of Lemma 4.1 and the necessary con-
ditions of Corollary 4.3 for two algebras Fg and Fp to be *-isomorphic we do
not know any other sufficient or necessary condition in the case when S and
T are arbitrary symmetric operators. Later, in Theorem 4.6 and Corollary
4.8 we consider a particular case when the operators S and T are selfadjoint.

It follows from Theorem 4.2 that if Fg and Fr are *-isomorphic, they are
unitary isomorphic. This, however, does not necessarily imply that they are
isometrically isomorphic. In the following theorem we obtain necessary and
sufficient conditions for algebras Fs and Fr to be isometrically *-isomorphic.

Theorem 4.4. The algebras (Fs, | - ||s) and (Fr,| - ||7) are isometrically
*-isomorphic if and only if there are X € R and an isometry operator U
such that S — X1y = £UTU*. The same result holds for (Ag,| - ||s) and

(A7, || I)-

Proof. From Lemma 4.1 it follows that the conditions of the theorem are
sufficient. From Theorem 4.2 it follows that if these conditions are necessary
for the algebras (Fs, || -[|s) and (Fr, || - |) to be isometrically *-isomorphic,
they are also necessary for the algebras (Ag, || - ||s) and (Ap, | - ||7)-
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Let ¢ be an isometric *-isomorphism from (Fr, | - ||7) onto (Fg,| - |s)

and let U be the isometry operator as in Theorem 4.2 which implements ¢:
p(A) =UAU*, for A€ Fr.

Set ' = UTU*. Then F is a symmetric operator on H, D(S) = D(F) =
UD(T) and Fg = Fp. Since ¢ is isometric, the norms || - ||s and || - ||r
coincide.

We will show that there is A € R such that either S — A1y = F or
S— Ay =-F.

Step 1. Suppose that z € D(S) is not an eigenvector of S and ||z|| = 1. Set
s=(Sz,2), t=(Fz2z), R=S-s1ly and G=F —tly.

Since S an F' are symmetric, s,t € R, the operators R and G are symmetric
and

(4.4) D(R)=D(G), Rz#0 and (Rzz)=(Gzz2)=0.

Set D = D(R) = D(G). Since Fg = Fr and the norms || - || and || - ||F
coincide, it follows from Lemma 4.1 that Fr = Fg and the norms || - ||z and
|| - || coincide.

Taking into account that R and G are symmetric, we obtain from (3.5)
that

ly@z|r=ly@z|+|y® Rr — (Ry) @z = |ly ® z||c
= ly®z| + ly® Gz — (Gy) ® x|,

for x,y € D. Therefore
(4.5) ly ® Rz — (Ry) @ || = [ly ® Gz — (Gy) @ .
Represent the elements Rz and Gz in the form
(4.6) Rr = a(x)r +xzr and Gz = [B(z)x + zq,
where zr and zg are orthogonal to . Then
a(@) |2 = (Re,x) = (v, Re) = a(@) ]|
Thus «a(z) is real, for x € D. Therefore

rt@Rr—(Rr)@z=0o(z)(r@z)+2r@rp —a(r)(r®2) —sr®x
=rQRITRp —TRAIDX.

Since z and xg are orthogonal, any u € H can be represented in the form
u = vx+T1rr~+u, where v,7 € C and wu is orthogonal to z and xg. Therefore

lull = w2l + [l + ]
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and, by (3.5),
Iz ®@2p +ar @ 2)ul® = |[(u2)zr + (u,zr) 2|
2
= v lzlPzr + Tlzrl 2|
= [P |zl ekl + 7P ller]* 2]
= ll2lPllzrl® (v |lll* + |7[|lzr]1%).
Consequently,
lz ® Rz — (Rz) @ z||* = |z ® 2r — zr @ ® = ||z ]*[lzr]*.
Similarly, ||z ® Gz — (Gz) ® z||? = ||z|]?||z¢||* and it follows from (4.5)
that
lzrll = l|zgll, for z € D.
Therefore we obtain from (4.6) that for x € D
1z Reel|* — (R, ) * = [l2]|* (Ju() P[l|® + [l rl*) = lee() P [l]*

2

= llzl*llz&l* = ll]*[lzc]

= [lz|?|G2l* = (G, ).

Hence

(4.7) lz* (| Rz|* — |G2]*) = |(Rz, )* — |(Gz, x)|*.
In particular, it follows from (4.4), (4.6) and (4.7) that

(4.8) Rz=zr, Gz=z; and ||Rz||=|Gz|.

Step 2. Set D = {y € D : yis orthogonal to z}. Let y € D% and x = y+puz,
pu € C. Then [|z[|? = [ly[|* + 2|1 = [ly[|* + |w|* and, by (4.8),

IRz|* — |Gal|* = | Ryl* + |uRz||* + 2Re[u(Rz, Ry)]
—Gyl? = InG=|* — 2Re[u(G=, Gy)]
= A+ 2Re(uB),
where
A=|[Ry|* ~ |Gy|* and B = (RzRy) - (Gz,Gy).
Since R is symmetric, it follows from (4.4) that
(Rz,z) = (Ry,y) + (uRz,y) + (Ry, pz) + (uRz, pz)
= (Ry,y) + 2Re[u(Rz, y)].

Similarly, (Gz, ) = (Gy,y) + 2Re[u(Gz, y)].
Let p = re™. Substituting all this in (4.7), we obtain that

(4.9)  (|lyl|* + 73 [A + 2rRe(e'¥ B)]
= {(Ry,y) + 2rRele” (Rz,y)]}* — {(Gy, y) + 2rRe[e™ (Gz,y)]}>.
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Set
C = (Ry,y)Rele™ (Rz,y)] = (Gy,y)Rele(Gz,y)]  and
E = {Re[¢"(Rz,y)]}* — {Re[e" (Gz,y)]}*.
Since R and G are symmetric, (Ry,y) and (Gy,y) are real. Hence
C = Re{e™[(Ry,y)(Rz,y) — (Gy,y)(Gz,y)]}.
Comparing the coefficients of the same powers of 7 in (4.9), we obtain that
Re(¢¥B) =0, A=4E and C=0.

Taking into account that Re (e K) = 0, for 0 < ¢ < 27, implies K = 0,
we obtain that C' = 0 implies

(4.10) (Ry, y)(Rz,y) — (Gy,y)(Gz,y) = 0.
Set (Rz,y) = ae® and (Gz,y) = ce’. Then

E=a* [Re (ei(erb))] ‘L c [Re <e"(w+d))} ’
= a®cos®(1p + b) — 2 cos*(¢p + d).

Since A = 4F and since A does not depend on v, neither does E. Hence
a?>=c?andd=bord=>b+m. Since a >0 and ¢ > 0, a = ¢. Thus

(4.11) (Rz,y) = £(Gz,y), for y € Dy.
Since D is dense in H, D is dense in the subspace {Cz}+. Hence (4.11)
holds for all y € {Cz}*. From (4.9) it follows that Rz = zp € {Cz}*.

Substituting Rz for y in (4.11), we obtain ||Rz| = (Rz, Rz) = £(Gz, Rz).
Let Gz = vRz 4+ u, where v € C and u is orthogonal to Rz. Then

|Rz||* = £(Gz, Rz) = +v||Rz|*.
Since Rz # 0 (see (4.4)), v = £1. Taking (4.9) into account, we obtain
|Rz||* = ||G2||* = (vRz + u, vRz + u)
— P Re? + llul? = | R2? + lu
Hence u = 0 and either Rz = Gz or Rz = —Gz.

Step 3. Let Rz = Gz. Set W = R— G. Then W is symmetric, Wz = 0 and
it follows from (4.10) that

[(Ry,y) — (Gy, 9)l(Rz,y) = (Wy,y)(Rz,y) =0, for y € Dy.
Any z € D can be represented in the form © = y + pz where p € C and
y € D%. Then Wx = Wy and, since (Rz,2) = 0, we have (Rz,7) = (Rz,y).
Since Wz =0,

(Wz,z)(Rz,z) = (Wy,y + pz)(Rz,y)
= [(Wy,y) + (y, kW 2)|(Rz,y) = Wy, y)(Rz,y) = 0.
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Therefore
(4.12) (Wz,z)(Rz,z) =0, for z € D.

Let X = {z € H : (Rz,z) = 0} be the orthogonal complement of the
subspace {CRz} in H. By (4.4), Rz # 0, so X has codimension 1. Set
D={xeD:x¢ X} Since D is dense in H, D is also dense in H. For
x € D, we have (Rz,z) # 0. Hence, by (4.12),

(Wz,z) =0.

If 2,y € D, there is » > 0 such that = 4+ re’¥y € D, for all 0 < ¢ < 2.
Taking into account that W is symmetric, we obtain that

0=W((x+ reiwy), T+ rewy) = Wz,x) + QTRe[eiw(Wy, x)] + r2(Wy, Y)
= 2rRele™ (Wy, z)].

Hence (Wy,x) = 0. Since D is dense in H, we have Wy = 0, for y € D.

Let uw € DN X, so that (Rz,u) = 0. For y € D, (Rz,y+u) = (Rz,y) # 0.
Hence y+u €D and 0 = W(y +u) = Wy + Wu = Wu. Thus Wz = 0, for
all x € D, so that R = G. Hence S — sl = F —tly. Setting A = s — t, we
obtain that

S—ANg=F=UTU".

Similarly, in the case when Rz = —Gz we obtain that S — A\lg = —F =
—UTU* which concludes the proof of the theorem. O

In the rest of this section we study conditions for the algebras Fg and
Fr to be *-isomorphic but not necessarily isometrically *-isomorphic in the
case when S and T are selfadjoint operators. Taking Theorem 4.2(ii) into
account, we may assume, without loss of generality, that Fg = Fr and
D(S) = D(T).

In Example 4.7 we show that the coincidence of the domains of selfadjoint
operators S and T' even in the case when Sp(S) C Z, Sp(T') C Z and S and
T have the same sets of eigenvectors is not sufficient for Fg = Fr. In
other words, the algebras Fg and Fr may be the closures of the same set of
finite rank operators and, nevertheless, be non-isomorphic. Necessary and
sufficient conditions for these algebras to be *-isomorphic will be obtained
in Theorem 4.6.

Let $ be a Hilbert space with an orthogonal basis {e;}3°__ . Every op-
erator T' in B($)) has a matrix representation T' = (t;;), —oo < 4,j < 00,
where t;; = (Tej,e;). A matrix M = (m;;), —oo < 4,5 < 00, is called a
Schur multiplier, if, for any T' = (t;;) € B($), the matrix M o T = (myjti;)
belongs to B($)). Then T'— M o T is a bounded map of B($)) into itself; it
will also be denoted by M and its norm by |M|pg(g).
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Let H = Y ;2 ®H; be an orthogonal sum of Hilbert spaces H;. Ev-
ery operator A in B(H) has a block-matrix representation A = (4;;),
—00 < 4,j < 00, where A;; are bounded operators from H; into H;.

Lemma 4.5. Let M = (my;) be a Schur multiplier on $). It defines a
bounded operator M on B(H) by the formula

Mx A= (miinj), where A = (AZ]) S B(H),
and |M|py = IM| -

Proof. Let G = {g;}72_., and F' = {f;}32__, be sequences of elements
such that g;, f; € Hj and |g;| = [If;|| = 1. For A = (A;;) € B(H), let
TGF(A) = (aiGjF) , —00 < 1,j < 00, be the matrix such that

(4.13) agF = (Aijgj,fi) e C.
For a = Z;’i_oo Gaje; € H and [ = Z;’i_oo ®Bje; € 9, set
0o o0
= Z ®ojg; and yg = Z DB f;-
j=—o0 j=—oo
Then xg,yg € H, H$§H = |||, = || || and

(Axa,yﬁ) = Z Z ajBi(Aijgj7fi)

1=—00 j——oo

= Z Z a;fiai’ = (TF (A)a, B) .

1=—00 j=—00

Therefore T%¥(A) € B($) and

‘ Azg, yg ‘
(4.14) Al = sup u
w8 Gr gl ||o5
G.F
= sup Sup|(T (A)auﬁ)‘ —SupHTGF A)H
r \as  NlllIA oF

It follows from (4.13) that T (M x A) = M oT%¥(A). Since M is a Schur
multiplier, M o T%F(A) € B($) and, by (4.14),

M x Al = sup HTG’F(M x A)|| = sup HMoTG’F(A)H
G.F G.F
< sup [M (s |77 (A)]| = [M |5 sp |77 (4)]

= |M|ps)IAll.



DIFFERENTIAL *-ALGEBRAS OF OPERATORS 355

Hence |[M|py < [M|p(g). On the other hand, it is easy to see that
|M|p(g) < [M|pr). Thus IM|pm) = |M|p(s)- O

Let S and T be selfadjoint operators on H and assume that Sp(S) C Z,
Sp(T') C Z and that

oo
H = Z @H; where S’Hl :SilHia T’H,- :ti]-H“

1=—00

si#s; and t; #t; ifi # j.

Set
5 — 5
M = (m;;) where m;; = tz tj’ for i #j, and m; =0, and
t b
ti —t

N = (n;j) where n;; = , for i#£ 74, and nyg =0.

Si — 85
Theorem 4.6. Fgs = Fr if and only if M and N are Schur multipliers.

Proof. In every H; we choose a non-decreasing sequence of finite-dimensional
projections {QY }gozl which converge to 1p, in the strong operator topology
as p — 00. Set Qp = >_7_  @©QF. The finite-dimensional projections @,
commute with S and T, belong to FsNFr and converge to 1 in the strong
operator topology. Therefore |Qplls = [|@QpllT = [|@Qp| = 1.

For any A = (A4;;) € As N Ar,

As=SA—AS = (AY) and Ap =TA— AT = (4]),
where A;-gj = (s; — sj)Ai; and Ag; = (t; —tj)Aij. Set B = Ap. Then Ag =
M x B,
(4.15) [Alls = 1Al + [ As]| = [|All + [[M > B[ and
1Al = Al + [[ A7 = Al + || B]-

We assume now that M and N are Schur multipliers and show that Fg =
Fr. By Lemma 4.5 and (4.15),

(4.16) [Alls < [[Al + [M] ]| B
< Al + [M] ([[Allz — [[All) < (IM] + 1)[|Allz.
Similarly,
(4.17) [Allr < (INT+ D[ Alls-
Let A € Fs. Then Q,A € Fg and, since @, commute with S,
(QpA)s = Closure (SQ,A — QpAS) = Closure Q,(SA — AS) = Q,As.

Since A and Ag are compact and since ), converge to 1y in the strong
operator topology,

[A—QpA|l — 0 and [[As — (QpA)s|| = |As — QpAs| — 0, as p — oo.
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Hence [|[A—QpA||s — 0, so that {Q,} is a bounded approximate identity in
Fg. Similarly, it is a bounded approximate identity in Fr.

Let A € Fg. For any p, Q,T = Q,7Q, = TQ, is a finite rank operator.
Hence

(QpAQy)T = T(QpAQp) — (QpAQy)T = (TQp)AQ, — QpA(Q,T)
is a finite rank operator. Therefore Q,AQ), € Fs N Fr and, by (4.17),

HQp+kAQp+k - QPAQPHT < (|N| + 1)HQp+kAQp+k - QPAQPHS'

Since {Qp} is a bounded approximate identity in Fg, the operators Q,AQ,
converge to A with respect to || - ||s. From the above inequality it follows
that {Q,AQ,} is a fundamental sequence with respect to |- ||7. Hence there
is Ay € Fr such that [|[A1 —QpAQy|1r — 0, as p — oo. Since ||A—QpAQ,| <
|A= QuAQylls — 0 and [|A4; — QuAQ, | < [[ A1 — QyAQy |7 — 0, as p — oo,
we obtain that A = Ay, so Fg C Fp. Similarly, Fr C Fg. Thus we conclude
that Fg = Fr.

Suppose now that Fg = Fr. Choose elements e; € H; such that [|e;|| =1
and let $) be the subspace of H generated by all e;, —oo < ¢ < co. Then $) is
invariant for S and T, Se; = s;e; and T'e; = t;e;. By Sg and Ty we denote
the restrictions of S and T to $). Since Fg = Fr,

Fs, = Fr

b 5
We shall show now that M and N are Schur multipliers on $).

The function f(t) = i(m —t) on [0, 2] has Fourier coefficients ¢y = 0 and
Cn = %, for n = £1,42,... . Let ‘H be a Hilbert space with an orthonormal
basis {hy}7> . and R = (1), —oo < k,l < o0, be a Toeplitz matrix such
that rgp = 0 and ry = ¢y = ﬁ, k # 1. Then R € B(H) and it follows
from Theorem 8.1 [1] that R is a Schur multiplier and |R| = sup |f(t)| = 7.

Identifying e; in $ with A, in H, we can consider §) as a subspace of H.
For B = (bpm) € B($), where by, = (Bem,ex), let B = (bij) € B(H) be
such that B|s = B and B|g. = 0. Then ||B|| = || B,

gt}gtm = (Ehtm, htk) = (B@m,ek) = bkm, and

bij = (Ehj, hi) =0 if either ¢ £t or j # tp,.
Since R is a Schur multiplier, the operator C = (¢ij) =Ro B belongs to
B(H), where
it = Ttxtmbttm = (b — tm) b, if k#m, and
cij = 0 if either i #t, or j#t, or i =7 =1
Setting C' = C|g, we obtain that C' = (cgm) € B($), where

Chom = Ctytyy = (tkh — tm) "Opm, if k#m, and cp, =0,
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that ||C|| = ||C|| and that C = W o B, where W = (wj,y,) is a matrix such
that

Wi = (ty —tm) ™Y, k#m, and wy, = 0.
From this it follows that W is a Schur multiplier on $ and

Iwo Bl =|cl = || =|reB| <irl |B]| = 1115

Thus |W| < |R| = 7.

Let P, be the orthoprojections in $ on the subspaces Z;”:fn@{(Cej}.
Then P, are finite rank operators commuting with operators Sg and T’y and
P.$ € D(Sg). Hence P, € Fg, . For every B € B($), P,BP, are finite
rank operators preserving D(Sg) and their adjoints P, B*P,, also preserve

D(Sy,). Therefore
(4.18) P,BP, € Fs,.

Any B = (bgm) € B($) can be represented in the form B = By + By,
where By is the diagonal operator such that (Bg) = bgx. Then

(4.19) |Ball < |Bl| and ||Boll = || B — Ball < 2| B
We have that
(4.20) M o (P,BP,) = P,(M o B)P,.

Since myg = 0 in the matrix M = (mgy,),
(4.21) M o (P,BP,) = M o (P,ByF,).

Set A = W o B. Since W is a Schur multiplier, A € B(9) and, by (4.18),
P, AP, € Fs, . It is easy to check that

(4.22) P.BoP, = T4(P,AP,) — (P,AP,) Ty = (P,AP,)1,,, and

M o (PaBoP,) = Sg(PuAP,) — (P, AP,)Sg = (P, AP,)s, .
Since Fs, = Fry,, it follows from Lemma 4.1(i) that the norms || - ||s,
and | - ||, are equivalent. Therefore there exists D > 0 such that

| PnAP, s, < D||PyAP, |1, . Hence we obtain from (4.19), (4.21) and (4.22)
that

M o (PBP,)|| = [|M o (P,BoPy)|| = H(PnAPn)Sﬁ H
< ||PLAP,||s, < D|PyAP, |1,
= D (| PaAP|| + ||(PaAP) 14 ||)
< D(| Al + [[PnBoFul) < D([IA[l + [ Bol|)
= D(W o B| + [Boll) < DR[| BI| + 2[|B]}) = p-

Thus all operators M o (P,BP,), 1 <n < oo, lie in the ball B, of B($)) of
radius p. Compactness of B, in the weak operator topology implies that the
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sequence {M o (P, BP,)}>% has a cluster point K € B($)). Therefore there
is a subsequence {M o (P, BP,;)} such that for all e and e,

(Keg,em) = jll)IgO(M o (Pn; BPy;)ek, em).

If nj > max(|k|,|m|) then P, e} = e} and Py e, = en and, by (4.20),
(M o (Py,BPy,) eg,em) = (Po,(M o B)Py,ep, €m) = (M o Beg, em).

j
Hence (Keg,em) = (M o B)eg, en,), —00 < k,m < co. Thus K = M o B,
so M is a Schur multiplier. Similarly, we obtain that N is also a Schur
multiplier. O

Example 4.7. Let
s;=1i and t; = (—1)4
in Theorem 4.6. If Fg = Fr then, by Theorem 4.6, M is a Schur multiplier

and we have that |m;;| < |M| for all ¢ and j. Let ¢ = 2k and j = —2k + 1.
Then s; = t; = 2k and s; = —t; = —2k + 1. Hence

SZ'—Sj
'm,'j: :

=4k —-1— 00, as k — oc.
i — 1t

This shows that M is not a Schur multiplier and, therefore, Fg # Frp.

Making use of Theorem 4.6, we obtain the following result of a more
general character.

Theorem 4.8. Let S and T be selfadjoint operators on H and H respec-
tively. If there exists a bijection ¢ of Z onto Z such that

dim(Hr(p(i))) = dim(Hg(z)), for all i€ Z,
(see (2.2) for definition of Hr(i) and Hg(i)) and if

M = (m;;) where m;; = go(zi : Q',O(‘]), for i#j, and m;; =0, and
i— .,
N = (ny;) where n;; = —————, for i #j, and n;; =0
() = o0 -¢0) j

are Schur multipliers then the algebras Fs and Fr are *-isomorphic.

Proof. Consider the operators [S] and [T] (see (2.1)) and the corresponding
decompositions

H = Z@Hs(i) and H = Z@HT(i)
iE€EZ i€Z
where Hg(i) = Ps(i)H and Hr(i) = Pr(i)H (see (2.3)). The operators
S —[S] and T' — [T'] are bounded, so Fs = Fg and Fr = Fi7).
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Consider the selfadjoint operator R on H such that all subspaces Hg(1)
are invariant for R and R|gyq) = ¢(i)1pg(;)- Since M and N are Schur
multipliers, it follows from Theorem 4.6 that Fr = Fg).

On the other hand, since dim(Hr(p(i))) = dim(Hg(7)), for all i € Z,
there exists an isometry operator U from H onto H which maps Hg(i) onto
Hr(p(i)). Then U*[T]U = R. By Lemma 4.1, the algebras Fr and F) are
*_isomorphic. Hence the algebras Fg and Fp are *-isomorphic. O
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