Pacific Journal of Mathematics

DUAL SPACES AND ISOMORPHISMS OF SOME DIFFERENTIAL BANACH *-ALGEBRAS OF OPERATORS

Edward Kissin and Victor S. Shulman

Volume 190 No. 2

October 1999

DUAL SPACES AND ISOMORPHISMS OF SOME DIFFERENTIAL BANACH *-ALGEBRAS OF OPERATORS

EDWARD KISSIN AND VICTOR S. SHULMAN

The paper continues the study of differential Banach *algebras \mathcal{A}_S and \mathcal{F}_S of operators associated with symmetric operators S on Hilbert spaces H. The algebra \mathcal{A}_{S} is the domain of the largest *-derivation δ_S of B(H) implemented by S and the algebra \mathcal{F}_S is the closure of the set of all finite rank operators in \mathcal{A}_S with respect to the norm $||A|| = ||A|| + ||\delta_S(A)||$. When S is selfadjoint, \mathcal{F}_S is the domain of the largest *derivation of the algebra C(H) implemented by S. If S is bounded, $\mathcal{F}_S = C(H)$ and $\mathcal{A}_S = B(H)$, so \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S . For unbounded selfadjoint operators S the paper establishes the full analogy with the bounded case: \mathcal{A}_{S} is isometrically isomorphic to the second dual of \mathcal{F}_S . The paper also classifies the algebras \mathcal{A}_S and \mathcal{F}_S up to isometrical *-isomorphism and obtains some partial results about bounded but not necessarily isometrical *-isomorphisms of the algebras \mathcal{F}_{S} .

1. Introduction and preliminaries.

Extensive development of non-commutative geometry requires elaborating of the theory of differential Banach *-algebras, that is, dense *-subalgebras of C^* -algebras whose properties in many respects are analogous to the properties of algebras of differentiable functions.

Blackadar and Cuntz [2] and the authors [12] introduced and studied various classes of differential Banach *-algebras; the most interesting class consists of **D**-algebras, that is, dense *-subalgebras \mathcal{A} of C^* -algebras ($\mathfrak{U}, \|\cdot\|$) which, in turn, are Banach *-algebras with respect to another norm $\|\cdot\|_1$ and the norms $\|\cdot\|$ and $\|\cdot\|_1$ on \mathcal{A} satisfy the inequality:

(1.1)
$$||xy|| \le D(||x|| ||y||_1 + ||x||_1 ||y||), \text{ for } x, y \in \mathcal{A},$$

for some D > 0. This class contains, for example, the domains $D(\delta)$ of closed unbounded *-derivations δ of C^* -algebras \mathfrak{U} where the norm $\|\cdot\|_1$ on $D(\delta)$ is defined, as usual, by the formula

$$||A||_1 = ||A|| + ||\delta(A)||, \text{ for } A \in D(\delta).$$

Much work has been done on the investigation of properties of the differential Banach *-algebras (see Blackadar and Cuntz [2] and Kissin and Shulman [12, 13]) and the algebras $D(\delta)$ in particular (see, for example, Bratteli and Robinson [3] and Sakai [16]).

In many cases closed *-derivations of C^* -algebras \mathfrak{U} of operators on Hilbert spaces are implemented by closed symmetric operators. In particular, Bratteli and Robinson [3] showed that if \mathfrak{U} contains the ideal of all compact operators then any closed *-derivation of \mathfrak{U} is implemented by a symmetric operator.

Any closed symmetric operator S on a Hilbert space H implements closed *-derivations of various C^* -algebras of operators on H. Among all these derivations there is the largest one - δ_S with domain $D(\delta_S)$ (which we denote by \mathcal{A}_S) containing the domains of all derivations implemented by S:

$$\mathcal{A}_{S} = \left\{ A \in B(H) : AD(S) \subseteq D(S), \ A^{*}D(S) \subseteq D(S) \text{ and} \\ (SA - AS)|_{D(S)} \text{ extends to a bounded operator } A_{S} \right\}$$

and $\delta_{S}(A) = i \operatorname{Closure}(SA - AS), \text{ for } A \in \mathcal{A}_{S}.$

The closure of \mathcal{A}_S with respect to the norm $\|\cdot\|$ in B(H) is the enveloping C^* -algebra which we denote by \mathfrak{U}_S .

The algebra \mathcal{A}_S is a unital Banach *-algebra with respect to the norm

(1.2)
$$||A||_S = ||A|| + ||A_S||.$$

If S implements a *-derivation δ of a C*-algebra \mathfrak{U} of operators on H then

$$D(\delta) \subseteq \mathcal{A}_S, \quad \mathfrak{U} \subseteq \mathfrak{U}_S \text{ and } \delta = \delta_S | \mathfrak{U}.$$

By C(H) we denote the algebra of all compact operators on H. The *-algebras

$$\mathcal{K}_S = \mathcal{A}_S \cap C(H)$$
 and $\mathcal{J}_S = \{A \in \mathcal{K}_S : \delta_S(A) \in C(H)\}$

are dense in C(H) and are the domains of the largest closed *-derivations from C(H) into B(H) and C(H), respectively, implemented by S.

By \mathcal{F}_S we denote the closure with respect to the norm $\|\cdot\|_S$ of the subalgebra of all finite rank operators in \mathcal{A}_S .

It was shown in [13] that $(\mathcal{K}_S, \|\cdot\|_S)$ and $(\mathcal{J}_S, \|\cdot\|_S)$ are semisimple Banach *-algebras, that $(\mathcal{F}_S, \|\cdot\|_S)$ is a simple Banach *-algebra and

$$\mathcal{F}_S \subseteq \mathcal{J}_S \subseteq \mathcal{K}_S \subseteq \mathcal{A}_S.$$

Furthermore, \mathcal{F}_S , \mathcal{J}_S and \mathcal{K}_S are closed two-sided ideals of $(\mathcal{A}_S, \|\cdot\|_S)$ and \mathcal{F}_S is contained in any closed two-sided ideal of $(\mathcal{A}_S, \|\cdot\|_S)$. The relation between the ideals \mathcal{F}_S , \mathcal{J}_S and \mathcal{K}_S and the question of how the properties of the operator S are reflected in the structure of \mathcal{K}_S , \mathcal{J}_S and \mathcal{F}_S were investigated in [13]. In particular, it was established that $(\mathcal{K}_S)^2 = (\mathcal{J}_S)^2 = \mathcal{F}_S$, for all

symmetric S, and that the ideals \mathcal{J}_S and \mathcal{F}_S have a bounded approximate identity if and only if S is selfadjoint. For selfadjoint S, it was also proved that $\mathcal{K}_S \neq \mathcal{J}_S = \mathcal{F}_S$.

In spite of the fact that the structure of the algebras \mathcal{F}_S , \mathcal{J}_S , \mathcal{K}_S , \mathcal{A}_S and \mathfrak{U}_S is comparatively simple, many important questions still remain open. In Section 2 we mainly study the structure of the algebras \mathcal{A}_S and \mathfrak{U}_S in the case when S is a selfadjoint operator. However, we also consider the case when S is a symmetric operator with at least one finite deficiency index and show that the algebras \mathcal{A}_S and \mathfrak{U}_S contain closed ideals of finite codimension.

If S is a bounded symmetric operator on H then $\mathcal{F}_S = C(H)$ and $\mathcal{A}_S = B(H)$, so \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S . In Section 3 we investigate the structure of the dual and the second dual spaces of the algebras \mathcal{F}_S for unbounded symmetric operators S. In the case when S is selfadjoint we establish the full analogy with the bounded case: The algebra \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S .

In Section 4 we study the problem of classification of the algebras \mathcal{F}_S and \mathcal{A}_S up to *-isomorphism. For isometrical *-isomorphism this problem is completely solved in Theorem 4.4. For bounded but not necessarily isometrical *-isomorphism we obtain some interesting partial results in the case when S is selfadjoint.

2. Structure of the algebras \mathcal{A}_S and the enveloping C^* -algebras \mathfrak{U}_S .

The main purpose of this section is to study the structure of the algebras \mathcal{A}_S and \mathfrak{U}_S in the case when S is a selfadjoint operator. However, we start the section by considering the case when S is a symmetric operator with at least one finite deficiency index. Making use of the existence of a J-symmetric representation of \mathcal{A}_S on the deficiency space of S, we will show that the algebras \mathcal{A}_S and \mathfrak{U}_S contain closed ideals of finite codimension.

Let S be symmetric, S^* be the adjoint operator, let $N_-(S)$ and $N_+(S)$ be the deficiency spaces of S and

$$n_{\pm}(S) = \dim\left(N_{\pm}(S)\right)$$

be the deficiency indices of S. It is well known that $D(S^*)$ is a Hilbert space with respect to the scalar product

$$\langle x, y \rangle = (x, y) + (S^*x, S^*y), \text{ for } x, y \in D(S^*),$$

and it is the orthogonal sum of the closed subspaces $D(S), N_{-}(S)$ and $N_{+}(S)$:

$$D(S^*) = D(S)_{\langle + \rangle} N_{-}(S)_{\langle + \rangle} N_{+}(S).$$

Set $N(S) = N_{-}(S)_{\langle + \rangle} N_{+}(S)$ and let Q be the projection on N(S) in $D(S^*)$. It was shown in [7] and [8] that

$$[x,y] = i(x,S^*y) - i(S^*x,y), \text{ for } x,y \in N(S),$$

is an indefinite non-degenerate sesquilinear form on N(S), that

$$\pi_S(A) = QA|_{N(S)}, \text{ for } A \in \mathcal{A}_S,$$

is a bounded representation of $(\mathcal{A}_S, \|\cdot\|_S)$ on N(S) and that it is *J*-symmetric:

$$[\pi_S(A)x, y] = [x, \pi_S(A^*)y], \text{ for } x, y \in N(S).$$

A subspace L in N(S) is *neutral* if

[x, y] = 0, for all $x, y \in L$.

The operator S is well-behaved if the representation π_S has no neutral invariant subspace.

Let $\kappa_S = \min(n_-(S), n_+(S))$ and assume that $0 < \kappa_S < \infty$. It was proved in [10] that the representation π_S has a κ_S -dimensional subrepresentation σ . Let ρ be an irreducible subrepresentation of σ . It was shown in [11] that ρ is bounded with respect to the operator norm $\|\cdot\|$ in \mathcal{A}_S and, therefore, extends to a bounded *-representation of the enveloping C^* -algebra \mathfrak{U}_S . If Sis well-behaved, it follows from Theorem 28.13 [14] that $\mathcal{K}_S \subseteq \operatorname{Ker}(\rho)$. This yields

Theorem 2.1. Let S be a symmetric unbounded operator and $0 < \kappa_S < \infty$.

- (i) There exists a closed two-sided ideal J in the Banach *-algebra (A_S, || · ||) such that the quotient algebra A_S/J is isomorphic to the full matrix algebra M_n(ℂ) with 0 < n ≤ κ_S.
- (ii) The uniform closure \overline{J} of J in \mathfrak{U}_S is a closed two-sided ideal and the quotient algebra $\mathfrak{U}_S/\overline{J}$ is isomorphic to the full matrix algebra $M_n(\mathbb{C})$.
- (iii) If S is well-behaved then $\mathcal{K}_S \subseteq J$ and $C(H) \subseteq \overline{J}$.

Example 2.2. Let $H = L^2(0, 1)$ and $S = i\frac{d}{dt}$ with domain D(S) consisting of all absolutely continuous functions h such that $h' \in L^2(0, 1)$ and h(0) = h(1) = 0. Then S is a symmetric operator and $n_-(S) = n_+(S) = 1$.

It was proved in [9] that S is well-behaved. Therefore it follows from Theorem 2.1 that there exists a closed two-sided ideal J in $(\mathcal{A}_S, \|\cdot\|)$ containing \mathcal{K}_S such that dim $(\mathcal{A}_S/J) = 1$ and that the uniform closure of J in \mathfrak{U}_S is an ideal of codimension 1.

Let S be the same as in Example 2.2 and let Lip (0, 1) be the algebra of all functions on [0, 1] satisfying a Lipshitz condition: $|g(t) - g(s)| \leq K_g |t - s|$ for some $K_g > 0$ and all $t, s \in [0, 1]$. For $g \in \text{Lip}(0, 1)$, denote by M_g the operator of multiplication by g on $L^2(0, 1)$ and set $\mathcal{B} = \{M_g : g \in \text{Lip}(0, 1)\}$. Then $M_g D(S) \subseteq D(S)$, $(M_g)^* D(S) = M_{\overline{g}} D(S) \subseteq D(S)$ and $SM_g - M_g S$ extends to the operator $iM_{g'}$ which is bounded, since g' is essentially bounded on [0, 1]. Thus $\mathcal{B} \subset \mathcal{A}_S$.

(The authors are grateful to the referee of the paper for pointing out an error in the definition of the algebra \mathcal{B} in the first version of the paper.)

Problem 2.3. Is $\mathcal{A}_S = \mathcal{B} + \mathcal{K}_S$?

The assumption that a symmetric operator S is selfadjoint makes the task of studying the structure of the algebras \mathcal{A}_S and \mathfrak{U}_S easier. First of all, the structure of the ideals \mathcal{K}_S , \mathcal{J}_S and \mathcal{F}_S is simpler. While for arbitrary symmetric operators S it is only known (see [13]) that $(\overline{\mathcal{K}_S})^2 = (\overline{\mathcal{J}_S})^2 = \mathcal{F}_S$, where the closure is taken with respect to the norm $\|\cdot\|_S$, for selfadjoint operators S it was shown in [13] that $\mathcal{F}_S = \mathcal{J}_S \neq \mathcal{K}_S$. Secondly, in the selfadjoint case we can employ the Spectral Theorem to establish the structure of \mathcal{A}_S and \mathfrak{U}_S .

Let

$$S = \int_{-\infty}^{\infty} \lambda \, dE_S(\lambda)$$

be the spectral decomposition of S. For every integer n, set

(2.1)
$$P_S(n) = E_S(n+1) - E_S(n)$$
 and $[S] = \sum_{-\infty}^{\infty} n P_S(n).$

Then [S] is a selfadjoint operator, $\text{Sp}([S]) \subseteq \mathbb{Z}$ and the operator S - [S] is bounded. Therefore it follows that

$$\mathcal{A}_S = \mathcal{A}_{[S]}, \quad \mathcal{K}_S = \mathcal{K}_{[S]} \quad \text{and} \quad \mathcal{F}_S = \mathcal{F}_{[S]}$$

and the norms $\|\cdot\|_S$ and $\|\cdot\|_{[S]}$ are equivalent on \mathcal{A}_S . This reduces the problem of the description of the structure of the algebras \mathcal{A}_S and \mathfrak{U}_S to the case when $\operatorname{Sp}(S) \subseteq \mathbb{Z}$.

We denote by $S_{\mathbb{Z}}$ the set of all selfadjoint operators S on H such that $Sp(S) \subseteq \mathbb{Z}$ and set

(2.2)
$$H_S(n) = P_S(n)H, \text{ for } n \in \operatorname{Sp}(S).$$

Then

(2.3)
$$H = \sum_{n \in \operatorname{Sp}(S)} \oplus H_S(n).$$

We omit the proof of the following simple result.

Proposition 2.4. Let $S, T \in S_{\mathbb{Z}}$. If there exists a one-to-one mapping φ from $\operatorname{Sp}(T)$ onto $\operatorname{Sp}(S)$ such that $\dim(H_T(n)) = \dim(H_S(\varphi(n)))$, for $n \in \operatorname{Sp}(T)$, and

$$\sup_{n\in\mathrm{Sp}(T)}|\varphi(n)-n|<\infty$$

then there exists a unitary operator U such that $\mathcal{A}_T = U \mathcal{A}_S U^*$.

Let $S \in S_{\mathbb{Z}}$. Every operator A in B(H) has a block-matrix form $A = (A_{ij})$, $i, j \in \operatorname{Sp}(S)$, with respect to decomposition (2.3). We denote by \mathcal{D}_S the C^* algebra of all block-diagonal operators $A = (A_{ij})$ in B(H), that is, $A_{ij} = 0$ if $i \neq j$. By \mathcal{R} we denote the subalgebra of all operators $A = (A_{ij})$ in B(H)with only finite number of non-zero entries A_{ij} . Then, clearly,

$$\mathcal{D}_S \subseteq \mathcal{A}_S$$
 and $\mathcal{R}_S \subseteq \mathcal{A}_S$.

Let $\overline{\mathcal{R}}_S$ be the closure of \mathcal{R}_S in $(\mathcal{A}_S, \|\cdot\|_S)$ and let $C_S(H)$ be the uniform closure of \mathcal{R}_S in B(H).

Lemma 2.5. $\mathcal{D}_S + C_S(H)$ is a C^{*}-subalgebra of \mathfrak{U}_S and $\mathcal{D}_S + \overline{\mathcal{R}}_S$ is a closed *-subalgebra of $(\mathcal{A}_S, \|\cdot\|_S)$.

Proof. Let \mathcal{L} be the uniform closure of $\mathcal{D}_S + \mathcal{R}_S$ in B(H). Then \mathcal{L} is a C^* -subalgebra of \mathfrak{U}_S . Since \mathcal{R}_S is a two-sided ideal of the algebra $\mathcal{D}_S + \mathcal{R}_S$, the C^* -algebra $C_S(H)$ is a two-sided ideal of \mathcal{L} . Therefore it follows from Corollary 1.8.4 [4] that $\mathcal{D}_S + C_S(H)$ is a C^* -algebra, so $\mathcal{L} = \mathcal{D}_S + C_S(H)$.

For $A \in B(H)$, set

$$\phi(A) = \sum_{n \in \operatorname{Sp}(S)} P_S(n) A P_S(n) \text{ and } \widetilde{A} = A - \phi(A).$$

Then ϕ is a conditional expectation from B(H) onto \mathcal{D}_S and

(2.4)
$$\|\phi(A)\| \le \|A\|$$
 and $\|\widetilde{A}\| \le 2\|A\|$.

If $A \in \mathcal{A}_S$ then $\widetilde{A} \in \mathcal{A}_S$ and Closure (SA - AS) =Closure $(S\widetilde{A} - \widetilde{A}S)$. Assume that $\{A_n\}$ converge to A in \mathcal{A}_S with respect to $\|\cdot\|_S$. Then

 $||A - A_n|| \to 0$ and $||\text{Closure} \left(S(A - A_n) - (A - A_n)S\right)|| \to 0$, as $n \to \infty$, and therefore, by (1.2) and (2.4),

$$\|\widetilde{A} - \widetilde{A}_n\|_S = \|\widetilde{A} - \widetilde{A}_n\| + \|\operatorname{Closure}\left(S(\widetilde{A} - \widetilde{A}_n) - (\widetilde{A} - \widetilde{A}_n)S\right)\|$$

$$(2.5) \leq 2\|A - A_n\| + \|\operatorname{Closure}\left(S(A - A_n) - (A - A_n)S\right)\| \to 0,$$
as $n \to \infty.$

Hence \widetilde{A}_n converge to \widetilde{A} with respect to $\|\cdot\|_S$.

Suppose now that $B \in \overline{\mathcal{R}}_S$. Then there are $\{B_n\}$ in \mathcal{R}_S converging to B with respect to $\|\cdot\|_S$. It follows from (2.5) that \widetilde{B}_n converge to \widetilde{B} with respect to $\|\cdot\|_S$ and, since \widetilde{B}_n belong to \mathcal{R}_S , we obtain that $\widetilde{B} \in \overline{\mathcal{R}}_S$.

Finally, let $C_n = A_n + B_n$ converge to C in \mathcal{A}_S with respect to $\|\cdot\|_S$ where $A_n \in \mathcal{D}_S$ and $B_n \in \overline{\mathcal{R}}_S$. Then $\widetilde{C}_n = \widetilde{B}_n$ and, by (2.5), \widetilde{B}_n converge to \widetilde{C} with respect to $\|\cdot\|_S$. Since, by the above argument, all \widetilde{B}_n belong to $\overline{\mathcal{R}}_S$, the operator \widetilde{C} also belong to $\overline{\mathcal{R}}_S$. Hence $C \in \mathcal{D}_S + \overline{\mathcal{R}}_S$ and $\mathcal{D}_S + \overline{\mathcal{R}}_S$ is a closed *-subalgebra of $(\mathcal{A}_S, \|\cdot\|_S)$. Let $S \in S_{\mathbb{Z}}$. We number the elements of $\operatorname{Sp}(S)$ in such a way that $\operatorname{Sp}(S) = \{n_i\}_{i \in I}$ is an increasing sequence,

$$0 \le n_i$$
, for $0 \le i$, and $0 > n_i$, for $0 > i$.

Then $|i| \leq |n_i|$ and, depending on S, the set I is either the set \mathbb{Z} of all integers, or the set of all integers from $-\infty$ to some m, or from m to ∞ . We consider the case when $I = \mathbb{Z}$. Two other cases can be considered similarly. Set

$$\rho_S(k) = \left(\inf_{i \in \mathbb{Z}} |n_{i+k} - n_i| \right)^{-1}, \text{ for } k \neq 0, \text{ and } \rho_S(0) = 0.$$

Since $\inf_{i \in \mathbb{Z}} |n_{i+k} - n_i| \ge |k|$,

$$0 < \rho_S(k) \le \frac{1}{|k|}, \quad \text{for } k \neq 0.$$

Proposition 2.6. If

(2.6)
$$\lim_{|i| \to \infty} (n_{i+1} - n_i) = \infty$$

(2.7) and
$$\sum_{k \in \mathbb{Z}} \rho(k)$$
 converges

then $\mathfrak{U}_S = \mathcal{D}_S + C_S(H).$

Proof. Let $A = (A_{ij}) \in \mathcal{A}_S$, where A_{ij} are bounded operators from $H_S(n_j)$ into $H_S(n_i)$. Then the operator

$$B = SA - AS = (B_{ij}), \text{ where } B_{ij} = (n_i - n_j)A_{ij},$$

is bounded. Set $b = ||B||$. Since $||B_{ij}|| \le ||B||$, for all $i, j \in \mathbb{Z}$,

(2.8)
$$||A_{ij}|| \le \frac{b}{|n_i - n_j|}, \quad \text{for } i \ne j.$$

For $k \in \mathbb{Z} \setminus 0$ and m > 0, let

$$G_{ij}^{km} = A_{ij}$$
, if $j = i + k$ and $-m \le i \le m$, and $G_{ij}^{km} = 0$ otherwise.

Then the operator $G^{km} = (G_{ij}^{km})$ belongs to \mathcal{R}_S . Taking into account (2.6) and (2.8), we obtain that the operators G^{km} converge uniformly in B(H) to a bounded operator $G^k = (G_{ij}^k)$, as $m \to \infty$, where

$$G_{ij}^k = A_{ij}$$
, if $j = i + k$, and $G_{ij}^k = 0$ otherwise.

Therefore $G^k \in C_S(H)$ and, by (2.8),

$$||G^k|| = \sup_i ||A_{ii+k}|| \le b\rho_S(k).$$

It follows from (2.7) that the operator $G = \sum_{k \in \mathbb{Z} \setminus 0} G^k$ belongs to $C_S(H)$. Since $A - G \in \mathcal{D}_S$, we obtain that $A \in \mathcal{D}_S + C_S(H)$, so that $\mathcal{A}_S \subseteq \mathcal{D}_S + C_S(H)$. It follows from Lemma 2.5 that $\mathfrak{U}_S = \mathcal{D}_S + C_S(H)$. \Box

Corollary 2.7. If there are a > 0, c > 0 and an integer N such that

$$c|i|^a \le n_{i+1} - n_i \quad for \ N \le |i|$$

then $\mathfrak{U}_S = \mathcal{D}_S + C_S(H).$

Proof. Condition (2.6), clearly, holds. Let k > 4N. Then

$$\rho_S(k)^{-1} = \inf_{i \in \mathbb{Z}} |n_{i+k} - n_i| = \inf_{i \in \mathbb{Z}} \sum_{p=1}^{\kappa} (n_{i+p} - n_{i+p-1})$$
$$\geq c \sum_{m=N}^{\left[\frac{k}{2}\right]} m^a \geq \frac{c}{a+1} \left(\left[\frac{k}{2}\right]^{a+1} - (N-1)^{a+1} \right)$$
$$\geq \frac{c}{a+1} \left(\frac{k}{4}\right)^{a+1}.$$

Similarly, if k < -2N then $\rho_S(k)^{-1} \ge \frac{c}{a+1} \left(\frac{|k|}{4}\right)^{a+1}$. Therefore condition (2.7) also holds and the result follows from Proposition 2.6.

Suppose now that $\dim(H_S(n)) = \infty$ for all $n \in \operatorname{Sp}(S)$ and let $n_0 \in \operatorname{Sp}(S)$. Set $K = H_S(n_0)$. Then there exists a Hilbert space \mathcal{H} with $\dim(\mathcal{H}) = \infty$ such that the C^* -algebra $C_S(\mathcal{H})$ is isomorphic to the tensor product $B(K) \otimes C(\mathcal{H})$ where $C(\mathcal{H})$ is the C^* -algebra of all compact operators on \mathcal{H} . Choosing a basis $\{e_n\}_{n=1}^{\infty}$ in \mathcal{H} , we obtain that the algebra \mathcal{D}_S is isomorphic to the von Neumann algebra tensor product $B(K) \otimes \mathcal{L}$ of B(K) and the W^* -algebra \mathcal{L} of all operators on \mathcal{H} diagonal with respect to $\{e_n\}_{n=1}^{\infty}$. From this and from Proposition 2.6 we obtain the following result.

Corollary 2.8. Let $S \in S_{\mathbb{Z}}$. If dim $(H_S(n)) = \infty$ for all $n \in \text{Sp}(S)$ and conditions (2.6) and (2.7) hold then there exist Hilbert spaces K and \mathcal{H} such that \mathfrak{U}_S is isomorphic to $B(K) \otimes \mathcal{L} + B(K) \otimes C(\mathcal{H})$, where \mathcal{L} is the W^* -algebra of all operators on \mathcal{H} diagonal with respect to some basis.

Assume now that $\dim(H_S(n)) < \infty$ for all $n \in \operatorname{Sp}(S)$. Then $C_S(H)$ coincides with the algebra C(H) of all compact operators on H. Taking into account the definition of the ideal \mathcal{K}_S and applying Proposition 2.6 we obtain the following result.

Corollary 2.9. Let $S \in S_{\mathbb{Z}}$ and $\dim(H_S(n)) < \infty$ for all $n \in \operatorname{Sp}(S)$. If conditions (2.6) and (2.7) hold then $\mathfrak{U}_S = \mathcal{D}_S + C(H)$ and $\mathcal{A}_S = \mathcal{D}_S + \mathcal{K}_S$.

Example 2.10. Let $\{e_i\}_{i=-\infty}^{\infty}$ be an orthonormal basis in H and let

$$Se_i = \text{sgn}(i)|i|^{1+a}e_i, \text{ where } a > 0.$$

Then $S \in \mathcal{S}_{\mathbb{Z}}$ and $n_i = \operatorname{sgn}(i)|i|^{1+a}$, so that

$$\lim_{|i| \to \infty} \frac{n_{i+1} - n_i}{\operatorname{sgn}(i)|i|^a} = 1 + a.$$

Therefore, by Corollaries 2.7 and 2.9, $\mathfrak{U}_S = \mathcal{D}_S + C(H)$ and $\mathcal{A}_S = \mathcal{D}_S + \mathcal{K}_S$ where \mathcal{D}_S is the algebra of all operators diagonal with respect to $\{e_i\}_{i=-\infty}^{\infty}$. Thus the quotient algebra $\mathcal{A}_S/\mathcal{K}_S$ is isomorphic to the commutative C^* -algebra $\mathcal{D}_S/\mathfrak{L}$ where \mathfrak{L} is the algebra of all compact diagonal operators on H.

Let $\{e_i\}_{i=-\infty}^{\infty}$ be an orthonormal basis in H and let

$$Se_i = ie_i$$
 and $Ue_i = e_{i+1}$, for all $i \in \mathbb{Z}$.

Then $S \in \mathcal{S}_{\mathbb{Z}}$ and U is the shift operator. We have that

 $UD(S) \subseteq D(S), U^*D(S) \subseteq D(S)$ and $(SU - US)|_{D(S)}$ extends to U,

so that $U \in \mathcal{A}_S$. Hence \mathfrak{U}_S contains the C^* -algebra $C(\mathcal{D}_S, U)$ generated by U and by the commutative algebra \mathcal{D}_S of all operators diagonal with respect to $\{e_i\}_{i=-\infty}^{\infty}$.

Problem 2.11. Is $\mathfrak{U}_S = C(\mathcal{D}_S, U)$?

3. Dual and second dual spaces of the algebras \mathcal{F}_S .

Let S be a closed symmetric operator. Recall that \mathcal{F}_S is the closure with respect to the norm $\|\cdot\|_S$ (see (1.2)) of the subalgebra of all finite rank operators in \mathcal{A}_S . If S is a bounded symmetric operator on H, it follows that $\mathcal{F}_S = C(H)$ and $\mathcal{A}_S = B(H)$, so that \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S . In this section we study the structure of the dual and the second dual spaces of the algebra \mathcal{F}_S for unbounded symmetric operators S. In the case when S is selfadjoint we establish the full analogy with the bounded case: The algebra \mathcal{A}_S is isometrically isomorphic to the second dual of \mathcal{F}_S .

By T(H) we denote the Banach *-algebra of trace class operators on H with the norm

$$|A| = \sum_{i=1}^{\infty} s_i(A) = \operatorname{Tr}\left((A^*A)^{1/2} \right),$$

where $\{s_i(A)\}_{i=1}^{\infty}$ is the set of all eigenvalues of the positive compact operator $(A^*A)^{1/2}$.

It is well known that T(H) can be identified with the dual space of the algebra C(H): For any $T \in T(H)$,

$$F_T(A) = \operatorname{Tr}(AT), \quad A \in C(H),$$

is a bounded linear functional on C(H) and $||F_T|| = |T|$; and that B(H) can be identified with the dual space of T(H): For any $B \in B(H)$,

$$\theta_B(T) = \operatorname{Tr}(BT), \quad T \in T(H),$$

is a bounded linear functional on T(H) and $\|\theta\| = \|B\|$.

Set $\widehat{B}(H) = B(H) \oplus B(H)$ and $\widehat{C}(H) = C(H) \oplus C(H)$. Then $\widehat{B}(H)$ and $\widehat{C}(H)$ are Banach spaces with the norm

$$||A \oplus B|| = ||A|| + ||B||.$$

Set $\widehat{T}(H) = T(H) \oplus T(H)$. It is a Banach space with the norm

$$|R \oplus T| = \max(|R|, |T|), \quad T, R \in T(H),$$

and it can be identified with the dual space of $\widehat{C}(H)$: For $R, T \in T(H)$,

(3.1)
$$F_{R\oplus T}(A\oplus B) = \operatorname{Tr}(AR) + \operatorname{Tr}(BT), \quad A\oplus B \in \widehat{C}(H),$$

is a bounded linear functional on $\widehat{C}(H)$ and $||F_{R\oplus T}|| = |R \oplus T|$. Similarly, $\widehat{B}(H)$ can be identified with the dual space of $\widehat{T}(H)$: For $A, B \in B(H)$,

(3.2)
$$\theta_{A\oplus B}(R\oplus T) = \operatorname{Tr}(AR) + \operatorname{Tr}(BT), \quad R\oplus T\in\widehat{T}(H),$$

is a bounded linear functional on $\widehat{T}(H)$ and $\|\theta_{A\oplus B}\| = \|A \oplus B\|$. Set

$$\widehat{\mathcal{A}}_S = \{A \oplus A_S : A \in \mathcal{A}_S\} \text{ and } \widehat{\mathcal{F}}_S = \{A \oplus A_S : A \in \mathcal{F}_S\},\$$

where $A_S = \text{Closure}(SA - AS)$. Then $(\mathcal{A}_S, \|\cdot\|_S)$ and $(\widehat{\mathcal{A}}_S, \|\cdot\|), (\mathcal{F}_S, \|\cdot\|_S)$ and $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ are isometrically isomorphic, since

$$||A||_S = ||A|| + ||A_S|| = ||A \oplus A_S||.$$

Therefore $\widehat{\mathcal{A}}_S$ is a closed subspace of $\widehat{B}(H)$ and $\widehat{\mathcal{F}}_S$ is a closed subspace of $\widehat{C}(H)$, since $A \in \mathcal{F}_S$ implies $A_S \in C(H)$. Set

$$\mathfrak{T}_S = \Big\{ T \in T(H) : TD(S) \subseteq D(S^*), \ T^*D(S) \subseteq D(S^*) \text{ and the operator} \\ (S^*T - TS)|_{D(S)} \text{ extends to a bounded trace class operator } \mathbb{T} \Big\}.$$

If $T \in \mathfrak{T}_S \cap \mathcal{A}_S$ then $\mathbb{T}_S = T_S$. In particular, if S is selfadjoint then $\mathbb{T}_S = T_S$ for all $T \in \mathfrak{T}_S$. Clearly, \mathfrak{T}_S is a linear subspace in T(H) and

$$\check{\mathfrak{T}}_S = \{\mathbb{T}_S \oplus T : T \in \mathfrak{T}_S\}$$

is a linear subspace in $\widehat{T}(H)$. For $T \in \mathfrak{T}_S$ and $z, u \in D(S)$,

$$-((\mathbb{T}_S)^*z, u) = -(z, \mathbb{T}_S u) = -(z, (S^*T - TS)u) = ((S^*T^* - T^*S)z, u),$$

so that

(3.3)
$$-(\mathbb{T}_S)^*|_{D(S)} = (S^*T^* - T^*S)|_{D(S)} = (\mathbb{T}^*)_S|_{D(S)}.$$

Therefore $T^* \in \mathfrak{T}_S$.

For $x, y \in H$, the rank one operator $x \otimes y$ on H is defined by the formula (3.4) $(x \otimes y)z = (z, x)y.$ It is easy to check that

(3.5)
$$\begin{aligned} \|x \otimes y\| &= \|x\| \|y\|, \\ (x \otimes y)^* &= y \otimes x, \ (x \otimes y)(u \otimes v) = (v, x)(u \otimes y), \\ R(x \otimes y) &= x \otimes Ry, \ \text{and} \ (x \otimes y)R \text{ extends to } (R^*x) \otimes y, \end{aligned}$$

if R is a densely defined operator, $y \in D(R)$ and $x \in D(R^*)$. Let $\{e_j\}_{j=1}^{\infty}$ be a basis in H. Then

(3.6)
$$\operatorname{Tr}(x \otimes y) = \sum_{j=1}^{\infty} ((x \otimes y)e_j, e_j) = \sum_{j=1}^{\infty} (e_j, x)(y, e_j)$$
$$= \left(y, \sum_{j=1}^{\infty} (x, e_j)e_j\right) = (y, x).$$

Let $x, y \in D(S^*)$ and $T = x \otimes y$. By (3.4) and (3.5),

(3.7)
$$Tz = (z, x)y \in D(S^*)$$
$$T^*z = (y \otimes x)z = (z, y)x \in D(S^*), \text{ for } z \in H,$$

and
$$\mathbb{T}_S = S^*T - TS = x \otimes S^*y - (S^*x) \otimes y \in T(H),$$

so that $T \in \mathfrak{T}_S$. By Φ_S we denote the set of all linear combinations of the operators $x \otimes y$, for $x, y \in D(S^*)$. Clearly, $\Phi \subset \mathfrak{T}_S$ and

$$\dot{\Phi}_S = \{\mathbb{T}_S \oplus T : T \in \Phi_S\}$$

is a linear subspace of $\check{\mathfrak{T}}_S$.

Let X^* be the dual space of a Banach space X and Y be a linear subspace of X. The *annihilator*

$$Y^{\perp} = \{F \in X^* : F(y) = 0, \text{ for all } y \in Y\}$$

of Y in X^* is a closed subspace of X^* and from the general theory of Banach spaces (see [5] II.4.18 and [15] III, Problem 30) we have the following lemma.

Lemma 3.1. The dual space Y^* of a closed subspace Y of X is isometrically isomorphic to the quotient space X^*/Y^{\perp} and the second dual Y^{**} of Y is isometrically isomorphic to $Y^{\perp \perp}$ where

$$Y^{\perp\perp} = \{ \theta \in X^{**} : \theta(F) = 0, \text{ for all } F \in Y^{\perp} \}.$$

Since $\widehat{\mathcal{F}}_S \subseteq \widehat{C}(H)$, the annihilator $(\widehat{\mathcal{F}}_S)^{\perp}$ is a closed subspace of the dual space $\widehat{C}(H)^* = \widehat{T}(H)$ and, since $\check{\Phi}_S \subseteq \check{\mathfrak{T}}_S \subseteq \widehat{T}(H)$, the annihilator $(\check{\Phi}_S)^{\perp}$ is a closed subspace of the dual space $\widehat{T}(H)^* = \widehat{B}(H)$.

Theorem 3.2. (i) $\check{\mathfrak{T}}_S$ is a closed subspace in $\widehat{T}(H)$ and $(\widehat{\mathcal{F}}_S)^{\perp} = \check{\mathfrak{T}}_S$. (ii) $(\check{\mathfrak{T}}_S)^{\perp} \subseteq (\check{\Phi}_S)^{\perp} = \{A \oplus A_S : A \in \mathcal{A}_S \text{ and } AD(S^*) \subseteq D(S)\} \subseteq \widehat{\mathcal{A}}_S$. *Proof.* Let $\mathbb{T}_S \oplus T \in \check{\mathfrak{T}}_S$ and $x, y \in D(S)$. Then $A = x \otimes y \in \mathcal{F}_S$ and, by (3.3) and (3.5),

(3.8)
$$A_S = S(x \otimes y) - (x \otimes y)S = x \otimes Sy - (Sx) \otimes y,$$
$$A_ST = (x \otimes Sy)T - ((Sx) \otimes y)T = (T^*x) \otimes Sy - (T^*Sx) \otimes y,$$
$$A\mathbb{T}_S = (x \otimes y)\mathbb{T}_S = ((\mathbb{T}_S)^*x) \otimes y = ((T^*S - S^*T^*)x) \otimes y.$$

Therefore, by (3.1), (3.6) and (3.8),

$$F_{\mathbb{T}_S \oplus T}(A \oplus A_S) = \operatorname{Tr} (A\mathbb{T}_S) + \operatorname{Tr} (A_S T) = (y, (T^*S - S^*T^*)x) + (Sy, T^*x) - (y, T^*Sx) = 0.$$

It follows from Lemma 3.1 [13] that any finite rank operator A in \mathcal{F}_S has the form $A = \sum_{i=1}^n x_i \otimes y_i$ where $x_i, y_i \in D(S)$. Hence $F_{\mathbb{T}_S \oplus T}(A \oplus A_S) = 0$ for any finite rank operator $A \in \mathcal{F}_S$. Since, by definition of \mathcal{F}_S , finite rank operators are dense in $(\mathcal{F}_S, \|\cdot\|_S)$ and since $(\mathcal{F}_S, \|\cdot\|_S)$ and $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ are isometrically isomorphic, the operators $A \oplus A_S$, where A are finite rank operators, are dense in $\widehat{\mathcal{F}}_S$. Since $F_{\mathbb{T}_S \oplus T}$ is continuous on $\widehat{C}(H)$, $F_{\mathbb{T}_S \oplus T}(A \oplus A_S) = 0$, for all $A \in \mathcal{F}_S$. Therefore $F_{\mathbb{T}_S \oplus T} \in (\widehat{\mathcal{F}}_S)^{\perp}$, so that $\mathfrak{T}_S \subseteq (\widehat{\mathcal{F}}_S)^{\perp}$.

Conversely, let $R \oplus T \in (\widehat{\mathcal{F}}_S)^{\perp} \subseteq \widehat{T}(H)$ and let $A = x \otimes y \in \mathcal{F}_S$, where $x, y \in D(S)$. From (3.1), (3.5), (3.6) and (3.8) it follows that

$$0 = F_{R \oplus T}(A \oplus A_S) = \operatorname{Tr}(AR) + \operatorname{Tr}(A_ST)$$

= $\operatorname{Tr}((R^*x) \otimes y) + \operatorname{Tr}[(T^*x) \otimes Sy - (T^*Sx) \otimes y]$
= $(y, R^*x) + (Sy, T^*x) - (y, T^*Sx).$

Hence

$$(Sy, T^*x) = (y, (T^*S - R^*)x), \text{ for all } x, y \in D(S).$$

Therefore $T^*x \in D(S^*)$ and $S^*T^*x = (T^*S - R^*)x$. Thus $T^*D(S) \subseteq D(S^*)$ and

$$(Sx, Ty) = (T^*Sx, y) = (S^*T^*x, y) + (R^*x, y) = (x, TSy) + (x, Ry).$$

From this it follows that $Ty \in D(S^*)$ and $S^*Ty = TSy + Ry$. Hence

$$TD(S) \subseteq D(S^*)$$
 and $R|_{D(S)} = S^*T|_{D(S)} - TS|_{D(S)}$.

Therefore $T \in \mathfrak{T}_S$ and $R = \mathbb{T}_S$. Thus $(\widehat{\mathcal{F}}_S)^{\perp} \subseteq \check{\mathfrak{T}}_S$, so that $(\widehat{\mathcal{F}}_S)^{\perp} = \check{\mathfrak{T}}_S$. From this we also obtain that $\check{\mathfrak{T}}_S$ is a closed subspace of $\widehat{T}(H)$. Part (i) is proved.

Since $\check{\Phi}_S \subseteq \check{\mathfrak{T}}_S$, we have $(\check{\mathfrak{T}}_S)^{\perp} \subseteq (\check{\Phi}_S)^{\perp}$. Let now $A \oplus A_S \in \widehat{\mathcal{A}}_S$ and $AD(S^*) \subseteq D(S)$. It was shown in Lemma 3.1 [13] that

$$A_S|_{D(S^*)} = (S^*A - AS^*)|_{D(S^*)}.$$

For $x, y \in D(S^*)$, the operator $T = x \otimes y$ belongs to Φ_S and, taking the above equality into account, we obtain from (3.5) and (3.7) that

$$A_ST = x \otimes A_Sy = x \otimes (S^*A - AS^*)y \text{ and} A\mathbb{T}_S = A(x \otimes S^*y - (S^*x) \otimes y) = x \otimes AS^*y - (S^*x) \otimes Ay.$$

Therefore, by (3.2) and (3.6),

$$\begin{aligned} \theta_{A \oplus A_S}(\mathbb{T}_S \oplus T) &= \operatorname{Tr}(A\mathbb{T}_S) + \operatorname{Tr}(A_S T) \\ &= (AS^*y, x) - (Ay, S^*x) + (S^*Ay, x) - (AS^*y, x) \\ &= (S^*Ay, x) - (Ay, S^*x). \end{aligned}$$

Since $AD(S^*) \subseteq D(S)$, it follows that $S^*Ay = SAy$ and $(Ay, S^*x) = (SAy, x)$. Hence $\theta_{A \oplus A_S}(\mathbb{T}_S \oplus T) = 0$ and, by linearity, it holds for all $T \in \Phi_S$. Therefore

(3.9)
$$\{A \oplus A_S : A \in \mathcal{A}_S \text{ and } AD(S^*) \subseteq D(S)\} \subseteq (\check{\Phi}_S)^{\perp}.$$

Conversely, let $A \oplus B \in (\check{\Phi}_S)^{\perp}$. Then, for every $x, y \in D(S^*), T = x \otimes y \in \Phi_S$ and

$$\theta_{A\oplus B}(\mathbb{T}_S\oplus T) = \operatorname{Tr}(AT_S) + \operatorname{Tr}(BT) = 0.$$

By (3.5), $BT = x \otimes By$ and, as above, $A\mathbb{T}_S = x \otimes AS^*y - (S^*x) \otimes Ay$. Hence, by (3.6),

$$0 = (AS^*y, x) - (Ay, S^*x) + (By, x).$$

Thus

$$(Ay, S^*x) = (AS^*y, x) + (By, x), \text{ for all } x, y \in D(S^*).$$

Therefore $Ay \in D(S^{**})$ and $S^{**}Ay = AS^*y + By$. Since S is closed, $S^{**} = S$ and we obtain that

(3.10)
$$AD(S^*) \subseteq D(S) \text{ and } B|_{D(S^*)} = (SA - AS^*)|_{D(S^*)}.$$

Restricting (3.10) to D(S), we have

$$AD(S) \subseteq D(S)$$
 and $B|_{D(S)} = (SA - AS)|_{D(S)}$.

Making use of (3.10), we obtain that for $z \in D(S)$ and $u \in D(S^*)$,

$$(A^*z, S^*u) = (z, AS^*u) = (z, SAu) - (z, Bu) = (A^*Sz, u) - (B^*z, u).$$

Therefore $A^*z \in D(S^{**})$. Since $S^{**} = S$, we have $A^*D(S) \subseteq D(S)$. Thus $A \in \mathcal{A}_S$ and $B = A_S$, so $A \oplus B = A \oplus A_S \in \widehat{\mathcal{A}}_S$. Taking into account that $AD(S^*) \subseteq D(S)$, we obtain that

$$(\check{\Phi}_S)^{\perp} \subseteq \{A \oplus A_S : A \in \mathcal{A}_S \text{ and } AD(S^*) \subseteq D(S)\}.$$

Combining this with (3.9), we complete the proof of the theorem.

Since the Banach spaces $(\mathcal{F}_S, \|\cdot\|_S)$ and $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ and the Banach spaces $(\mathcal{A}_S, \|\cdot\|_S)$ and $(\widehat{\mathcal{A}}_S, \|\cdot\|)$ are isometrically isomorphic and since $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ is a closed subspace of $\widehat{C}(H)$, Lemma 3.1 and Theorem 3.2 yield:

Corollary 3.3. The dual space of the Banach *-algebra $(\mathcal{F}_S, \|\cdot\|_S)$ is isometrically isomorphic to the quotient space $\widehat{T}(H)/\check{\mathfrak{T}}_S$ and the second dual space of $(\mathcal{F}_S, \|\cdot\|_S)$ is isometrically isomorphic to a closed subspace of $(\mathcal{A}_S, \|\cdot\|_S)$.

The following example shows that if S is not selfadjoint then, generally speaking, $(\check{\Phi}_S)^{\perp} \neq \widehat{\mathcal{A}}_S$, so that $(\mathcal{F}_S)^{\perp \perp} \neq \widehat{\mathcal{A}}_S$ and the second dual space of $(\mathcal{F}_S, \|\cdot\|_S)$ is isometrically isomorphic to a proper subspace of $(\mathcal{A}_S, \|\cdot\|_S)$.

Example 3.4. Let, as in Example 2.2, $H = L^2(0, 1)$ and the operator $S = i\frac{d}{dt}$ with domain $D(S) = \{h(t) : h, h' \in L_2(0, 1) \text{ and } h(0) = h(1) = 0\}$. Then S is a symmetric operator, non-selfadjoint and

$$D(S^*) = \{h(t) : h, h' \in L^2(0,1)\}.$$

Let g(t) be a differentiable function on [0,1] such that $g(0) \neq 0$ and let M_g be the bounded operator of multiplication by g(t) on H. Then $M_g \in \mathcal{A}_S$. If $h(t) \in D(S^*)$ and $h(0) \neq 0$ then $(M_g h)(0) = g(0)h(0) \neq 0$, so that $M_g h \notin D(S)$. Thus $M_g \oplus (M_g)_S \notin \{A \oplus A_S : A \in \mathcal{A}_S \text{ and } AD(S^*) \subseteq D(S)\}$. Hence $(\check{\Phi}_S)^{\perp} \neq \mathcal{A}_S$.

Assume now that S is selfadjoint. Then $D(S^*) = D(S)$, $\mathbb{T}_S = T_S$, for $T \in \mathfrak{T}_S$, and

$$\mathfrak{T}_S = \{T \in T(H) \cap \mathcal{A}_S : T_S \in T(H)\} \subseteq \mathcal{A}_S$$

It is well known (see, for example, [5] and [6]) that the algebra T(H) is a two-sided ideal of B(H) and if $A \in B(H)$ and $B \in T(H)$ then

(3.11)
$$|AB| \le ||A|| ||B|, ||B^*|| = ||B|| \text{ and } ||B|| \le ||B||.$$

We consider now two equivalent norms on \mathfrak{T}_S :

$$|T|_1 = |T| + |T_S|$$
 and $|T|_2 = \max(|T|, |T_S|)$, for $T \in \mathfrak{T}_S$.

Since

$$\mathbb{T}_S = T$$
 and $|T|_2 = \max(|T|, |T_S|) = |\mathbb{T}_S \oplus T|$, for $T \in \mathfrak{T}_S$,

 $(\mathfrak{T}_S, |\cdot|_2)$ is isometrically isomorphic to \mathfrak{T}_S .

Proposition 3.5. Let S be selfadjoint. Then:

- (i) $\mathfrak{T}_S \subset \mathcal{F}_S$ and $(\mathfrak{T}_S, |\cdot|_2)$ is a two-sided Banach \mathcal{A}_S -module;
- (ii) $(\mathfrak{T}_S, |\cdot|_1)$ is a Banach *-algebra and a **D**-subalgebra of C(H)(see (1.1)) with D = 1.

Proof. It was shown in [13] that if S is selfadjoint then \mathcal{F}_S coincides with the algebra $\mathcal{J}_S = \{A \in \mathcal{A}_S : A \text{ and } A_S \text{ belong to } C(H)\}$. Since $\mathfrak{T}_S \subset \mathcal{J}_S$, we obtain that $\mathfrak{T}_S \subset \mathcal{F}_S$.

In Theorem 3.2(i) it was shown that $\check{\mathfrak{T}}_S$ is a closed subspace of $\widehat{T}(H)$. Since $(\mathfrak{T}_S, |\cdot|_2)$ is isometrically isomorphic to $\check{\mathfrak{T}}_S$, it is a Banach space. Since the norms $|\cdot|_1$ and $|\cdot|_2$ are equivalent, $(\mathfrak{T}_S, |\cdot|_1)$ is also a Banach space.

For
$$A, B \in \mathcal{A}_S$$
,
 $(AB)_S|_{D(S)} = (SAB - ABS)|_{D(S)}$
 $= [(SA - AS)B + A(SB - BS)]|_{D(S)} = (A_SB + AB_S)|_{D(S)}$,

so that

$$(3.12) (AB)_S = A_S B + A B_S$$

Let $T \in \mathfrak{T}_S$ and $A \in \mathcal{A}_S$. Then $T, T_S \in T(H)$. Since $\mathfrak{T}_S \subset \mathcal{A}_S$ and T(H) is a two-sided ideal of B(H), it follows that $AT \in T(H) \cap \mathcal{A}_S$ and, by (3.12),

$$(AT)_S = A_ST + AT_S \in T(H).$$

Therefore $AT \in \mathfrak{T}_S$. Making use of (3.11), we obtain that

$$|AT|_{2} = \max(|AT|, |(AT)_{S}|) \le \max(||A|| |T|, ||A_{S}|| |T| + ||A|| |T_{S}|) \le (||A|| + ||A_{S}||) \max(|T|, |T_{S}|) = ||A||_{S}|T|_{2}.$$

Similarly, $TA \in \mathfrak{T}_S$ and $|TA|_2 \leq ||A||_S |T|_2$. Thus $(\mathfrak{T}_S, |\cdot|_2)$ is a two-sided Banach \mathcal{A}_S -module. Part (i) is proved.

From (i) and from the fact that $\mathfrak{T}_S \subseteq \mathcal{A}_S$, we have that \mathfrak{T}_S is an algebra. We also have that $T^* \in \mathfrak{T}_S$ and, since $\mathbb{T}_S = T_S$, it follows from (3.3) that $(T^*)_S = -(T_S)^* \in T(H)$. Taking this and (3.11) into account, we obtain that

$$|T^*|_1 = |T^*| + |(T^*)_S| = |T^*| + |-(T_S)^*| = |T| + |T_S| = |T|_1$$

and

$$|TR|_{1} = |TR| + |(TR)_{S}| = |TR| + |T_{S}R + TR_{S}|$$

$$\leq ||T|| |R| + |T_{S}| ||R|| + ||T|| |R_{S}|$$

$$\leq |T||R| + |T_{S}| |R| + |T| |R_{S}| \leq |T|_{1} |R|_{1},$$

for $T, R \in \mathfrak{T}_S$. Hence $(\mathfrak{T}_S, |\cdot|_1)$ is a Banach *-algebra.

Clearly, \mathfrak{T}_S is dense in C(H). For $T, R \in \mathfrak{T}_S$, it follows from (3.11) that

$$\begin{aligned} |TR|_1 &= |TR| + |(TR)_S| = |TR| + |T_SR + TR_S| \\ &\leq ||T|| |R| + |T_S| ||R|| + ||T|| |R_S| \\ &\leq ||T|| (|R| + |R_S|) + (|T| + |T_S|) ||R|| \\ &= ||T|| |R|_1 + |T|_1 ||R||. \end{aligned}$$

Thus $(\mathfrak{T}_S, |\cdot|_1)$ is a **D**-subalgebra of C(H) with the constant D = 1.

If S is selfadjoint, it follows from Theorem 3.2 that $(\check{\Phi}_S)^{\perp} = \widehat{\mathcal{A}}_S$ and

$$\left(\widehat{\mathcal{F}}_{S}\right)^{\perp\perp} = \left(\check{\mathfrak{T}}_{S}\right)^{\perp} \subseteq \left(\check{\Phi}_{S}\right)^{\perp} = \widehat{\mathcal{A}}_{S}.$$

In order to prove that $(\widehat{\mathcal{F}}_S)^{\perp\perp} = \widehat{\mathcal{A}}_S$ it suffices to show that $\check{\Phi}_S$ is dense in $\check{\mathfrak{T}}_S$. For this we need the following lemma which is a partial case of the general result obtained by Gohberg and Krein [6, Theorem 6.3] for symmetrically normable ideals.

Lemma 3.6. Let $T \in T(H)$ and let Q_n be finite rank projections which converge to $\mathbf{1}_H$ in the strong operator topology. Then

$$|T - Q_n T| \to 0$$
 and $|T - TQ_n| \to 0$, as $n \to \infty$.

Proof. Let $A = x \otimes y, x, y \in H$. By (3.5), $A^*A = ||y||^2 (x \otimes x)$ and the operator $(A^*A)^{1/2} = \frac{||y||}{||x||} (x \otimes x)$ has only one non-zero eigenvalue $\lambda = ||x|| ||y||$. Hence

(3.13)
$$|x \otimes y| = |A| = \operatorname{Tr}(A^*A)^{1/2} = \lambda = ||x|| ||y||.$$

If $T = \sum_{i=1}^{k} x_i \otimes y_i$ is a finite rank operator then, by (3.5) and (3.13),

$$|T - Q_n T| = \left| \sum_{i=1}^k x_i \otimes (y_i - Q_n y_i) \right| \le \sum_{i=1}^k |x \otimes (y_i - Q_n y_i)|$$
$$= \sum_{i=1}^k ||x_i|| ||y_i - Q_n y_i|| \to 0,$$

as $n \to \infty$. For any T in T(H) and any $\varepsilon > 0$, there is a finite rank operator T_{ε} such that $|T - T_{\varepsilon}| < \varepsilon$. Making use of the inequality (3.11), we obtain that

$$|T - Q_n T| \le |T - T_{\varepsilon}| + |T_{\varepsilon} - Q_n T_{\varepsilon}| + |Q_n (T - T_{\varepsilon})|$$

$$\le \varepsilon + |T_{\varepsilon} - Q_n T_{\varepsilon}| + ||Q_n|| |T - T_{\varepsilon}|$$

$$\le 2\varepsilon + |T_{\varepsilon} - Q_n T_{\varepsilon}|.$$

Since T_{ε} is a finite rank operator, by the above argument, there is n_{ε} such that $|T_{\varepsilon} - Q_n T_{\varepsilon}| \leq \varepsilon$, for $n > n_{\varepsilon}$. Hence $|T - Q_n T| \leq 3\varepsilon$ and $|T - Q_n T| \to 0$, as $n \to \infty$. Similarly, one can prove that $|T - TQ_n| \to 0$, as $n \to \infty$. \Box

Proposition 3.7. Let S be selfadjoint. Then Φ_S is dense in $(\mathfrak{T}_S, |\cdot|_1)$.

Proof. Let [S] be the selfadjoint operator constructed in Section 2. Then D(S) = D([S]), so that $\Phi_S = \Phi_{[S]}$. Since B = S - [S] is a bounded operator, $BT - TB \in T(H)$, for $T \in T(H)$. Therefore, taking into account that

$$(ST - TS)_{D(S)} = ([S]T - T[S])_{D(S)} + (BT - TB)_{D(S)},$$

we conclude that $\mathfrak{T}_S = \mathfrak{T}_{[S]}$ and $T_S = T_{[S]} + BT - TB$.

Making use of (3.11), we obtain that for any $T \in \mathfrak{T}_S$,

$$\begin{aligned} |T| + |T_S| &= |T| + \left| T_{[S]} + BT - TB \right| \\ &\leq |T| + \left| T_{[S]} \right| + 2||B|| |T| \\ &\leq (1 + 2||B||) \left(|T| + \left| T_{[S]} \right| \right). \end{aligned}$$

Similarly, $|T| + |T_{[S]}| \leq (1+2||B||)(|T|+|T_S|)$. Thus the norms $|\cdot|_1$ generated by the operators S and [S] on \mathfrak{T}_S are equivalent. Hence to obtain the proof we only have to show that $\Phi_{[S]}$ is dense in $(\mathfrak{T}_{[S]}, |\cdot|_1)$.

In every subspace $H_S(n)$ (see (2.2)) we choose an increasing sequence of finite-dimensional projections $\{Q_n^k\}_{k=1}^{\infty}$ converging to the projection $P_S(n)$ (see (2.1)) in the strong operator topology as $k \to \infty$. Set

$$Q^k = \sum_{n=-k}^k \oplus Q_n^k.$$

Then Q^k are finite-dimensional projections commuting with [S]. Hence $Q^k \in \Phi_{[S]}$. The projections Q^k converge to $\mathbf{1}_H$ in the strong operator topology. Let $T \in \mathfrak{T}_{[S]}$. Then $Q_n T \in \Phi_{[S]}$ and

$$[S]Q^{k}T - Q^{k}T[S] = Q^{k}[S]T - Q^{k}T[S] = Q^{k}([S]T - T[S]) = Q^{k}T_{[S]}.$$

Therefore $(Q^k T)_{[S]} = Q^k T_{[S]}$.

Since $T, T_{[S]} \in T(H)$, we obtain from Lemma 3.6 that

$$|T - Q^k T| \to 0$$
 and $|T_{[S]} - (Q^k T)_{[S]}| = |T_{[S]} - Q^k T_{[S]}| \to 0$, as $k \to \infty$.

Hence

$$|T - Q^k T|_1 = |T - Q^k T| + |T_{[S]} - (Q^k T)_{[S]}| \to 0$$

as $k \to \infty$, so that $\Phi_{[S]}$ is dense in $(\mathfrak{T}_{[S]}, |\cdot|_1)$.

Corollary 3.8. Let S be a selfadjoint operator. Then:

- (i) the Banach *-algebra $(\mathfrak{T}_S, |\cdot|_1)$ is simple;
- (ii) $(\check{\mathfrak{T}}_S)^{\perp} = (\check{\Phi}_S)^{\perp} = \widehat{\mathcal{A}}_S;$
- (iii) the dual space of $(\mathfrak{T}_S, |\cdot|_2)$ is isometrically isomorphic to the quotient space $\widehat{B}(H)/\widehat{\mathcal{A}}_S$.

Proof. Let I be a closed two-sided ideal of $(\mathfrak{T}_S, |\cdot|_1)$ and $0 \neq T \in I$. Since D(S) is dense in H, there is $x \in D(S)$ such that $Tx \neq 0$. Since S is selfadjoint, it follows from the definition of \mathfrak{T}_S that $Tx \in D(S)$. From this and from the discussion before Lemma 3.1 we obtain that the rank one operators $y \otimes x$ and $Tx \otimes z$ belong to \mathfrak{T}_S for any $y, z \in D(S)$. By (3.5), $T(y \otimes x) = (y \otimes Tx) \in I$ and

$$(Tx \otimes z)(y \otimes Tx) = ||Tx||^2(y \otimes z) \in I.$$

Thus $y \otimes z \in I$ and, therefore, $\Phi_S \subseteq I$. Since I is closed, we obtain from Proposition 3.7 that $I = \mathfrak{T}_S$. Part (i) is proved.

Since the norms $|\cdot|_1$ and $|\cdot|_2$ are equivalent on \mathfrak{T}_S , it follows from Proposition 3.7 that Φ_S is dense in $(\mathfrak{T}_S, |\cdot|_2)$. Taking into account that $(\mathfrak{T}_S, |\cdot|_2)$ is isometrically isomorphic to the closed subspace $\check{\mathfrak{T}}_S$ of $\widehat{T}(H)$,

we obtain that the linear subspace $\check{\Phi}_S$ is dense in $\check{\mathfrak{T}}_S$. From this and from Theorem 3.2(ii) we obtain $(\check{\mathfrak{T}}_S)^{\perp} = (\check{\Phi}_S)^{\perp} = \widehat{\mathcal{A}}_S$. Part (ii) is proved.

The dual space of $(\mathfrak{T}_S, |\cdot|_2)$ is isometrically isomorphic to the dual space of the closed subspace \mathfrak{T}_S of $\widehat{T}(H)$. Since $\widehat{T}(H)^* = \widehat{B}(H)$, part (iii) follows from (ii) and from Lemma 3.1.

Theorem 3.9. If S is a selfadjoint operator then $(\widehat{\mathcal{F}}_S)^{\perp\perp} = \widehat{\mathcal{A}}_S$ and the second dual space of the algebra $(\mathcal{F}_S, \|\cdot\|_S)$ is isometrically isomorphic to the algebra $(\mathcal{A}_S, \|\cdot\|_S)$.

Proof. Combining Theorem 3.2(i) and Corollary 3.8(ii) yields $(\widehat{\mathcal{F}}_S)^{\perp\perp} = \widehat{\mathcal{A}}_S$. Therefore it follows from Lemma 3.1 that the second dual space of $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ is isometrically isomorphic to $(\widehat{\mathcal{A}}_S, \|\cdot\|)$. Taking into account that $(\mathcal{F}_S, \|\cdot\|_S)$ is isometrically isomorphic to $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ and that $(\mathcal{A}_S, \|\cdot\|_S)$ is isometrically isomorphic to $(\widehat{\mathcal{F}}_S, \|\cdot\|)$ and that $(\mathcal{A}_S, \|\cdot\|_S)$ is isometrically isomorphic to $(\widehat{\mathcal{A}}_S, \|\cdot\|)$, we complete the proof.

4. Isomorphism of the algebras \mathcal{F}_S and \mathcal{A}_S .

In this section we study the problem of classification of the algebras \mathcal{F}_S and \mathcal{A}_S up to *-isomorphism. For isometrical *-isomorphism this problem is completely solved in Theorem 4.4. As far as bounded but not necessarily isometrical *-isomorphism is concerned, we have obtained some partial results in Theorems 4.6 and 4.8 for the case when S is selfadjoint.

Banach *-algebras $(\mathcal{A}, || ||_{\mathcal{A}})$ and $(\mathcal{B}, || ||_{\mathcal{B}})$ are *-isomorphic if there is a bounded *-isomorphism φ from \mathcal{A} onto \mathcal{B} . They are isometrically *-isomorphic if, in addition, $\|\varphi(A)\|_{\mathcal{B}} = \|A\|_{\mathcal{A}}$, for $A \in \mathcal{A}$.

Let $(\mathcal{A}, || ||_{\mathcal{A}})$ and $(\mathcal{B}, || ||_{\mathcal{B}})$ be Banach *-algebras of operators on Hilbert spaces H and \mathcal{H} (the norms $|| \cdot ||_{\mathcal{A}}$ and $|| \cdot ||_{\mathcal{B}}$ do not, generally speaking, coincide with the operator norms in B(H) and $B(\mathcal{H})$) and let φ be a bounded *-isomorphism from \mathcal{A} onto \mathcal{B} . An isometry operator U from H into \mathcal{H} implements φ if

$$\varphi(A) = UAU^*, \quad A \in \mathcal{A}.$$

Lemma 4.1. Let R and T be symmetric operators on \mathcal{H} , S be a symmetric operators on H, U be an isometry operator from \mathcal{H} onto H and $t \in \mathbb{R}$.

- (i) If $\mathcal{F}_R = \mathcal{F}_T$ then the norms $\|\cdot\|_R$ and $\|\cdot\|_T$ on this algebra are equivalent, so that the Banach *-algebras $(\mathcal{F}_R, \|\cdot\|_R)$ and $(\mathcal{F}_T, \|\cdot\|_T)$ are *-isomorphic.
- (ii) If $R = \pm T + t\mathbf{1}_{\mathcal{H}}$ then $\mathcal{F}_R = \mathcal{F}_T$ and the norms $\|\cdot\|_R$ and $\|\cdot\|_T$ coincide.
- (iii) If $S = \lambda UTU^* + B$, where $0 \neq \lambda \in R$ and B is a bounded selfadjoint operator, then $A \to UAU^*$ is a bounded *-isomorphism from $(\mathcal{F}_T, \|\cdot\|_T)$ onto $(\mathcal{F}_S, \|\cdot\|_S)$. If $\lambda = \pm 1$ and $B = t\mathbf{1}_H$ then $A \to UAU^*$ is an isometric *-isomorphism.

The same results hold for the algebras \mathcal{A}_S .

Proof. By Proposition 3.2 [13], the algebras \mathcal{F}_R and \mathcal{F}_T are semisimple. Hence if $\mathcal{F}_R = \mathcal{F}_T$ then it follows from Johnson's uniqueness of norm theorem that the norms $\|\cdot\|_R$ and $\|\cdot\|_T$ on this algebra are equivalent. Therefore the identity mapping is a bounded *-isomorphism from $(\mathcal{F}_R, \|\cdot\|_R)$ onto $(\mathcal{F}_T, \|\cdot\|_T)$.

Let $R = \pm T + t\mathbf{1}_{\mathcal{H}}$. Then D(R) = D(T) and $A_T = A_R$ for any $A \in \mathcal{A}_T$. Hence $||A||_R = ||A||_T$ and $\mathcal{A}_R = \mathcal{A}_T$. The sets of finite rank operators in the algebras \mathcal{F}_R and \mathcal{F}_T coincide and, since these algebras are the closures of these sets with respect to the norm $|| \cdot ||_T$, we obtain that $\mathcal{F}_S = \mathcal{F}_T$.

If $S = \lambda UTU^* + B$ then D(S) = UD(T) and, for $A \in \mathcal{A}_T$,

$$UAU^*D(S) = UAD(T) \subseteq UD(T) = D(S) \text{ and}$$
$$SUAU^* - UAU^*S = \lambda U(TA - AT)U^* + (BA - AB),$$

so that $UAU^* \in \mathcal{A}_S$ and $(UAU^*)_S = \lambda UA_TU^* + (BA - AB)$. Thus $\mathcal{A}_S = U\mathcal{A}_TU^*$ and

$$||UAU^*||_S = ||UAU^*|| + ||(UAU^*)_S|| = ||A|| + ||\lambda UA_T U^* + (BA - AB)||$$

$$\leq ||A|| + \lambda ||A|| + 2||B|| ||A|| \leq \max(\lambda, 1 + 2||B||) ||A||_T,$$

so that $\psi(A) = UAU^*$ is a bounded *-isomorphism from $(\mathcal{A}_T, \|\cdot\|_T)$ onto $(\mathcal{A}_S, \|\cdot\|_S)$. If A is a finite rank operator in \mathcal{A}_T then UAU^* is a finite rank operator in \mathcal{A}_S . Therefore $\mathcal{F}_S = \psi(\mathcal{F}_T)$.

Let S be a symmetric operator with domain D(S). It was shown in Lemma 3.1 [13] that a finite rank operator A belongs to \mathcal{F}_S if and only if

(4.1)
$$A = \sum_{i=1}^{n} x_i \otimes y_i, \text{ where } x_i, y_i \in D(S).$$

Theorem 4.2. Let S and T be symmetric operators on H and H and let \mathcal{B} and \mathcal{C} be closed *-subalgebras of $(\mathcal{A}_S, \|\cdot\|_S)$ and $(\mathcal{A}_T, \|\cdot\|_T)$, respectively, such that $\mathcal{F}_S \subseteq \mathcal{B}$ and $\mathcal{F}_T \subseteq \mathcal{C}$. Let ψ be a bounded *-isomorphism from \mathcal{C} onto \mathcal{B} and let $\varphi = \psi | \mathcal{F}_T$. Then:

- (i) φ is a bounded *-isomorphism of $(\mathcal{F}_T, \|\cdot\|_T)$ onto $(\mathcal{F}_S, \|\cdot\|_S)$;
- (ii) there is an isometry operator U from \mathcal{H} onto H implementing ψ :

$$\psi(A) = UAU^*, \quad for \ A \in \mathcal{C},$$

and D(S) = UD(T) and $\mathcal{F}_{UTU^*} = \mathcal{F}_S$.

Proof. For $x, y \in D(T)$, $x \neq 0$, $y \neq 0$, set $Y = \varphi(x \otimes y)$. If Y is not a rank one operator, there are $z, u \in D(S)$ such that $Yz \neq 0$, $Yu \neq 0$ and $Yz \perp Yu$. Since $Y \in \mathcal{A}_S$, we have that $Yz, Yu \in D(S)$, so that $Yz \otimes z \in \mathcal{F}_S$ and $u \otimes Yu \in \mathcal{F}_S$. By (3.5)

(4.2)
$$(Yz \otimes z)(u \otimes Yu) = (Yu, Yz)(u \otimes z) = 0.$$

Since $(z \otimes z)^* = z \otimes z$ and φ is a *-isomorphism, it follows from (3.5) that

$$(\varphi^{-1}(z \otimes z)x) \otimes y = (x \otimes y) [\varphi^{-1}(z \otimes z)]^*$$

= $\varphi^{-1}(Y)\varphi^{-1}(z \otimes z) = \varphi^{-1}(z \otimes Yz) \neq 0$

Thus $\varphi^{-1}(z \otimes z)x \neq 0$. Similarly, $\varphi^{-1}(u \otimes u)x \neq 0$. From this and from (3.5) and (4.2) it follows that

$$0 = \varphi^{-1}((Yz \otimes z)(u \otimes Yu)) = \varphi^{-1}((z \otimes z)Y^*Y(u \otimes u))$$

= $\varphi^{-1}(z \otimes z)\varphi^{-1}(Y^*)\varphi^{-1}(Y)\varphi^{-1}(u \otimes u)$
= $\varphi^{-1}(z \otimes z)(y \otimes x)(x \otimes y)\varphi^{-1}(u \otimes u)$
= $\varphi^{-1}(z \otimes z)||y||^2(x \otimes x)\varphi^{-1}(u \otimes u)$
= $||y||^2([\varphi^{-1}(u \otimes u)x] \otimes [\varphi^{-1}(z \otimes z)x]) \neq 0.$

This contradiction shows that Y is a rank one operator. Hence $Y \in \mathcal{F}_S$ and, by (4.1), φ maps all finite rank operators in \mathcal{F}_T into finite rank operators in \mathcal{F}_S . Since φ is bounded $\varphi(\mathcal{F}_T) \subseteq \mathcal{F}_S$. Similarly, $\varphi^{-1}(\mathcal{F}_S) \subseteq \mathcal{F}_T$, so that φ is a bounded *-isomorphism from \mathcal{F}_T onto \mathcal{F} . Part (i) is proved.

Fix $x_0 \in D(T)$, $||x_0|| = 1$. Since $x_0 \otimes x_0$ is a projection, $\varphi(x_0 \otimes x_0)$ is a one-dimensional projection in \mathcal{F}_S . By (4.1), we can choose ξ_0 in D(S), $||\xi_0|| = 1$, such that $\varphi(x_0 \otimes x_0) = \xi_0 \otimes \xi_0$. Let $y \in D(T)$. Making use of the equality $x_0 \otimes y = (x_0 \otimes y)(x_0 \otimes x_0)$, we obtain that

$$\varphi(x_0 \otimes y) = \varphi(x_0 \otimes y)\varphi(x_0 \otimes x_0)$$

= $\varphi(x_0 \otimes y)(\xi_0 \otimes \xi_0) = \xi_0 \otimes \varphi(x_0 \otimes y)\xi_0.$

Since $\varphi(x_0 \otimes y) \in \mathcal{F}_S$, it follows from (4.1) that $\varphi(x_0 \otimes y)\xi_0$ belongs to D(S).

Now $U: y \in D(T) \to \varphi(x_0 \otimes y)\xi_0$ is a linear mapping from D(T) into D(S) and $\varphi(x_0 \otimes y) = \xi_0 \otimes Uy$. Then

$$\begin{aligned} \varphi((y \otimes x_0)(x_0 \otimes y)) &= \|y\|^2 \varphi(x_0 \otimes x_0) = \|y\|^2 (\xi_0 \otimes \xi_0) \\ &= \varphi((x_0 \otimes y)^*) \varphi(x_0 \otimes y) \\ &= (Uy \otimes \xi_0) (\xi_0 \otimes Uy) = \|Uy\|^2 (\xi_0 \otimes \xi_0). \end{aligned}$$

Thus $||Uy||^2 = ||y||^2$, for $y \in D(T)$, and U extends to an isometry operator from \mathcal{H} into H which we also denote by U. We have that, for $x, y \in D(T)$,

(4.3)
$$\varphi(x \otimes y) = \varphi((x_0 \otimes y)(x \otimes x_0)) = (\xi_0 \otimes Uy)(\xi_0 \otimes Ux)^*$$
$$= Ux \otimes Uy = U(x \otimes y)U^*.$$

Similarly, there is an isometry operator V which maps D(S) into D(T) such that $\varphi^{-1}(\xi \otimes \eta) = V\xi \otimes V\eta$, for $\xi, \eta \in D(S)$. Hence

$$\xi \otimes \eta = \varphi(\varphi^{-1}(\xi \otimes \eta)) = \varphi(V\xi \otimes V\eta) = UV\xi \otimes UV\eta.$$

Thus $UV\xi = \lambda(\xi)\xi$ where λ is a function on D(S) such that $|\lambda(\xi)| = 1$. Hence UD(T) = D(S). Since D(S) is dense in H and U is an isometry operator, we have $U\mathcal{H} = H$.

Let $A \in \mathcal{C}$ and set $R = U^* \psi(A) U$. Then $x \otimes y \in \mathcal{F}_T$, for any $x, y \in D(T)$, and, since \mathcal{F}_T is an ideal of \mathcal{A}_T , we have $A(x \otimes y) = x \otimes Ay \in \mathcal{F}_T$. By (4.3),

$$\begin{aligned} R(x\otimes y) &= U^*\psi(A)U(x\otimes y) = U^*\psi(A)U(x\otimes y)U^*U\\ &= U^*\psi(A)\varphi(x\otimes y)U = U^*\psi(A)\psi(x\otimes y)U\\ &= U^*\psi(A(x\otimes y))U = U^*\varphi(x\otimes Ay)U = x\otimes Ay. \end{aligned}$$

Therefore $R(x \otimes y) = x \otimes Ry = x \otimes Ay$, so that Ry = Ay. Thus R = A and $\psi(A) = UAU^*$.

The operator $F = UTU^*$ is symmetric and D(F) = UD(T) = D(S). By Lemma 4.1, $\mathcal{F}_F = U\mathcal{F}_T U^*$ and $A \to UAU^*$ is an isometric *-isomorphism from $(\mathcal{F}_T, \|\cdot\|_T)$ onto $(\mathcal{F}_F, \|\cdot\|_F)$. Hence

$$\varphi(U^*BU) = U(U^*BU)U^* = B, \quad \text{for } B \in \mathcal{F}_F,$$

is a bounded *-isomorphism from \mathcal{F}_F onto \mathcal{F}_S . Therefore $\mathcal{F}_F = \mathcal{F}_S$.

It was shown in Theorem 3.4 [13] that the algebra $(\mathcal{F}_S, \|\cdot\|_S)$ has a bounded approximate identity if and only if S is selfadjoint. Making use of this and of Theorem 4.2, we obtain the following result.

Corollary 4.3. If the algebras \mathcal{F}_S and \mathcal{F}_T are *-isomorphic or the algebras \mathcal{A}_S and \mathcal{A}_T are *-isomorphic then the operators S and T are either selfadjoint or non-selfadjoint at the same time.

Apart from the sufficient conditions of Lemma 4.1 and the necessary conditions of Corollary 4.3 for two algebras \mathcal{F}_S and \mathcal{F}_T to be *-isomorphic we do not know any other sufficient or necessary condition in the case when S and T are arbitrary symmetric operators. Later, in Theorem 4.6 and Corollary 4.8 we consider a particular case when the operators S and T are selfadjoint.

It follows from Theorem 4.2 that if \mathcal{F}_S and \mathcal{F}_T are *-isomorphic, they are unitary isomorphic. This, however, does not necessarily imply that they are isometrically isomorphic. In the following theorem we obtain necessary and sufficient conditions for algebras \mathcal{F}_S and \mathcal{F}_T to be *isometrically* *-isomorphic.

Theorem 4.4. The algebras $(\mathcal{F}_S, \|\cdot\|_S)$ and $(\mathcal{F}_T, \|\cdot\|_T)$ are isometrically *-isomorphic if and only if there are $\lambda \in \mathbb{R}$ and an isometry operator Usuch that $S - \lambda \mathbf{1}_H = \pm UTU^*$. The same result holds for $(\mathcal{A}_S, \|\cdot\|_S)$ and $(\mathcal{A}_T, \|\cdot\|_T)$.

Proof. From Lemma 4.1 it follows that the conditions of the theorem are sufficient. From Theorem 4.2 it follows that if these conditions are necessary for the algebras $(\mathcal{F}_S, \|\cdot\|_S)$ and $(\mathcal{F}_T, \|\cdot\|_T)$ to be isometrically *-isomorphic, they are also necessary for the algebras $(\mathcal{A}_S, \|\cdot\|_S)$ and $(\mathcal{A}_T, \|\cdot\|_T)$.

Let φ be an isometric *-isomorphism from $(\mathcal{F}_T, \|\cdot\|_T)$ onto $(\mathcal{F}_S, \|\cdot\|_S)$ and let U be the isometry operator as in Theorem 4.2 which implements φ :

$$\varphi(A) = UAU^*, \text{ for } A \in \mathcal{F}_T.$$

Set $F = UTU^*$. Then F is a symmetric operator on H, D(S) = D(F) = UD(T) and $\mathcal{F}_S = \mathcal{F}_F$. Since φ is isometric, the norms $\|\cdot\|_S$ and $\|\cdot\|_F$ coincide.

We will show that there is $\lambda \in \mathbb{R}$ such that either $S - \lambda \mathbf{1}_H = F$ or $S - \lambda \mathbf{1}_H = -F$.

Step 1. Suppose that $z \in D(S)$ is not an eigenvector of S and ||z|| = 1. Set

$$s = (Sz, z), \quad t = (Fz, z), \quad R = S - s\mathbf{1}_H \quad \text{and} \quad G = F - t\mathbf{1}_H$$

Since S an F are symmetric, $s,t\in\mathbb{R},$ the operators R and G are symmetric and

(4.4)
$$D(R) = D(G), \quad Rz \neq 0 \text{ and } (Rz, z) = (Gz, z) = 0.$$

Set D = D(R) = D(G). Since $\mathcal{F}_S = \mathcal{F}_F$ and the norms $\|\cdot\|_S$ and $\|\cdot\|_F$ coincide, it follows from Lemma 4.1 that $\mathcal{F}_R = \mathcal{F}_G$ and the norms $\|\cdot\|_R$ and $\|\cdot\|_G$ coincide.

Taking into account that R and G are symmetric, we obtain from (3.5) that

$$\begin{aligned} \|y \otimes x\|_{R} &= \|y \otimes x\| + \|y \otimes Rx - (Ry) \otimes x\| = \|y \otimes x\|_{G} \\ &= \|y \otimes x\| + \|y \otimes Gx - (Gy) \otimes x\|, \end{aligned}$$

for $x, y \in D$. Therefore

(4.5)
$$||y \otimes Rx - (Ry) \otimes x|| = ||y \otimes Gx - (Gy) \otimes x||.$$

Represent the elements Rx and Gx in the form

(4.6)
$$Rx = \alpha(x)x + x_R \text{ and } Gx = \beta(x)x + x_G,$$

where x_R and x_G are orthogonal to x. Then

$$\alpha(x) \|x\|^2 = (Rx, x) = (x, Rx) = \overline{\alpha(x)} \|x\|^2.$$

Thus $\alpha(x)$ is real, for $x \in D$. Therefore

$$\begin{aligned} x \otimes Rx - (Rx) \otimes x &= \alpha(x)(x \otimes x) + x \otimes x_R - \alpha(x)(x \otimes x) - x_R \otimes x \\ &= x \otimes x_R - x_R \otimes x. \end{aligned}$$

Since x and x_R are orthogonal, any $u \in H$ can be represented in the form $u = \nu x + \tau x_R + \tilde{u}$, where $\nu, \tau \in \mathbb{C}$ and \tilde{u} is orthogonal to x and x_R . Therefore

$$||u|| = |\nu|^2 ||x||^2 + |\tau|^2 ||x||^2 + ||\widetilde{u}||^2$$

and, by (3.5),

$$\begin{aligned} \|(x \otimes x_R + x_R \otimes x)u\|^2 &= \|(u, x)x_R + (u, x_R)x\|^2 \\ &= \|\nu\|x\|^2 x_R + \tau \|x_R\|^2 x\|^2 \\ &= |\nu|^2 \|x\|^4 \|x_R\|^2 + |\tau|^2 \|x_R\|^4 \|x\|^2 \\ &= \|x\|^2 \|x_R\|^2 (|\nu|^2 \|x\|^2 + |\tau|^2 \|x_R\|^2). \end{aligned}$$

Consequently,

$$\|x \otimes Rx - (Rx) \otimes x\|^{2} = \|x \otimes x_{R} - x_{R} \otimes x\|^{2} = \|x\|^{2} \|x_{R}\|^{2}.$$

Similarly, $||x \otimes Gx - (Gx) \otimes x||^2 = ||x||^2 ||x_G||^2$ and it follows from (4.5) that

$$||x_R|| = ||x_G||, \quad \text{for } x \in D.$$

Therefore we obtain from (4.6) that for $x \in D$

$$||x||^{2} ||Rx||^{2} - |(Rx,x)|^{2} = ||x||^{2} (|\alpha(x)|^{2} ||x||^{2} + ||x_{R}||^{2}) - |\alpha(x)|^{2} ||x||^{4}$$

$$= ||x||^{2} ||x_{R}||^{2} = ||x||^{2} ||x_{G}||^{2}$$

$$= ||x||^{2} ||Gx||^{2} - |(Gx,x)|^{2}.$$

Hence

(4.7)
$$||x||^{2}(||Rx||^{2} - ||Gx||^{2}) = |(Rx,x)|^{2} - |(Gx,x)|^{2}.$$

In particular, it follows from (4.4), (4.6) and (4.7) that

(4.8) $Rz = z_R, \quad Gz = z_G \text{ and } ||Rz|| = ||Gz||.$

Step 2. Set
$$D_Z^{\perp} = \{y \in D : y \text{ is orthogonal to } z\}$$
. Let $y \in D_Z^{\perp}$ and $x = y + \mu z$,
 $\mu \in \mathbb{C}$. Then $\|x\|^2 = \|y\|^2 + \|\mu z\|^2 = \|y\|^2 + |\mu|^2$ and, by (4.8),
 $\|Rx\|^2 - \|Gx\|^2 = \|Ry\|^2 + \|\mu Rz\|^2 + 2\operatorname{Re}[\mu(Rz, Ry)]$
 $- \|Gy\|^2 - \|\mu Gz\|^2 - 2\operatorname{Re}[\mu(Gz, Gy)]$
 $= A + 2\operatorname{Re}(\mu B),$

where

Since R

$$A = ||Ry||^2 - ||Gy||^2 \text{ and } B = (Rz, Ry) - (Gz, Gy).$$

is symmetric, it follows from (4.4) that

$$(Rx, x) = (Ry, y) + (\mu Rz, y) + (Ry, \mu z) + (\mu Rz, \mu z)$$

= (Ry, y) + 2Re[\mu(Rz, y)].

Similarly, $(Gx, x) = (Gy, y) + 2\operatorname{Re}[\mu(Gz, y)].$

Let $\mu = re^{i\psi}$. Substituting all this in (4.7), we obtain that

(4.9)
$$(||y||^2 + r^2)[A + 2r\operatorname{Re}(e^{i\psi}B)]$$

= $\{(Ry, y) + 2r\operatorname{Re}[e^{i\psi}(Rz, y)]\}^2 - \{(Gy, y) + 2r\operatorname{Re}[e^{i\psi}(Gz, y)]\}^2.$

Set

$$C = (Ry, y) \operatorname{Re}[e^{i\psi}(Rz, y)] - (Gy, y) \operatorname{Re}[e^{i\psi}(Gz, y)] \quad \text{and} \\ E = \{ \operatorname{Re}[e^{i\psi}(Rz, y)] \}^2 - \{ \operatorname{Re}[e^{i\psi}(Gz, y)] \}^2.$$

Since R and G are symmetric, (Ry, y) and (Gy, y) are real. Hence

$$C = \text{Re}\{e^{i\psi}[(Ry, y)(Rz, y) - (Gy, y)(Gz, y)]\}.$$

Comparing the coefficients of the same powers of r in (4.9), we obtain that

$$\operatorname{Re}(e^{i\psi}B) = 0, \quad A = 4E \quad \text{and} \quad C = 0.$$

Taking into account that $\operatorname{Re}(e^{i\psi}K) = 0$, for $0 \le \psi < 2\pi$, implies K = 0, we obtain that C = 0 implies

(4.10)
$$(Ry, y)(Rz, y) - (Gy, y)(Gz, y) = 0.$$

Set $(Rz, y) = ae^{ib}$ and $(Gz, y) = ce^{id}$. Then $E = a^2 \left[\operatorname{Re} \left(e^{i(\psi+b)} \right) \right]^2 - c^2 \left[\operatorname{Re} \left(e^{i(\psi+d)} \right) \right]^2$ $= a^2 \cos^2(\psi+b) - c^2 \cos^2(\psi+d).$

Since A = 4E and since A does not depend on ψ , neither does E. Hence $a^2 = c^2$ and d = b or $d = b + \pi$. Since $a \ge 0$ and $c \ge 0$, a = c. Thus

(4.11)
$$(Rz, y) = \pm (Gz, y), \quad \text{for } y \in D_Z^{\perp}$$

Since *D* is dense in \mathcal{H} , D_Z^{\perp} is dense in the subspace $\{\mathbb{C}z\}^{\perp}$. Hence (4.11) holds for all $y \in \{\mathbb{C}z\}^{\perp}$. From (4.9) it follows that $Rz = z_R \in \{\mathbb{C}z\}^{\perp}$. Substituting Rz for y in (4.11), we obtain $||Rz|| = (Rz, Rz) = \pm (Gz, Rz)$. Let $Gz = \nu Rz + u$, where $\nu \in \mathbb{C}$ and u is orthogonal to Rz. Then

$$||Rz||^{2} = \pm (Gz, Rz) = \pm \nu ||Rz||^{2}$$

Since $Rz \neq 0$ (see (4.4)), $\nu = \pm 1$. Taking (4.9) into account, we obtain

$$||Rz||^{2} = ||Gz||^{2} = (\nu Rz + u, \nu Rz + u)$$

= $|\nu|^{2} ||Rz||^{2} + ||u||^{2} = ||Rz||^{2} + ||u||^{2}.$

Hence u = 0 and either Rz = Gz or Rz = -Gz.

Step 3. Let Rz = Gz. Set W = R - G. Then W is symmetric, Wz = 0 and it follows from (4.10) that

$$[(Ry, y) - (Gy, y)](Rz, y) = (Wy, y)(Rz, y) = 0, \text{ for } y \in D_Z^{\perp}$$

Any $x \in D$ can be represented in the form $x = y + \mu z$ where $\mu \in \mathbb{C}$ and $y \in D_Z^{\perp}$. Then Wx = Wy and, since (Rz, z) = 0, we have (Rz, x) = (Rz, y). Since Wz = 0,

$$\begin{aligned} (Wx,x)(Rz,x) &= (Wy,y+\mu z)(Rz,y) \\ &= [(Wy,y)+(y,\mu Wz)](Rz,y) = (Wy,y)(Rz,y) = 0. \end{aligned}$$

Therefore

(4.12)
$$(Wx, x)(Rz, x) = 0, \text{ for } x \in D.$$

Let $X = \{x \in H : (Rz, x) = 0\}$ be the orthogonal complement of the subspace $\{\mathbb{C}Rz\}$ in H. By (4.4), $Rz \neq 0$, so X has codimension 1. Set $\mathcal{D} = \{x \in D : x \notin X\}$. Since D is dense in H, \mathcal{D} is also dense in H. For $x \in \mathcal{D}$, we have $(Rz, x) \neq 0$. Hence, by (4.12),

$$(Wx, x) = 0.$$

If $x, y \in \mathcal{D}$, there is r > 0 such that $x + re^{i\psi}y \in \mathcal{D}$, for all $0 \le \psi < 2\pi$. Taking into account that W is symmetric, we obtain that

$$0 = (W(x + re^{i\psi}y), x + re^{i\psi}y) = (Wx, x) + 2r\text{Re}[e^{i\psi}(Wy, x)] + r^2(Wy, y)$$

= $2r\text{Re}[e^{i\psi}(Wy, x)].$

Hence (Wy, x) = 0. Since \mathcal{D} is dense in H, we have Wy = 0, for $y \in \mathcal{D}$.

Let $u \in D \cap X$, so that (Rz, u) = 0. For $y \in \mathcal{D}$, $(Rz, y+u) = (Rz, y) \neq 0$. Hence $y + u \in \mathcal{D}$ and 0 = W(y+u) = Wy + Wu = Wu. Thus Wx = 0, for all $x \in D$, so that R = G. Hence $S - s\mathbf{1}_H = F - t\mathbf{1}_H$. Setting $\lambda = s - t$, we obtain that

$$S - \lambda \mathbf{1}_H = F = UTU^*.$$

Similarly, in the case when Rz = -Gz we obtain that $S - \lambda \mathbf{1}_H = -F = -UTU^*$ which concludes the proof of the theorem.

In the rest of this section we study conditions for the algebras \mathcal{F}_S and \mathcal{F}_T to be *-isomorphic but not necessarily isometrically *-isomorphic in the case when S and T are selfadjoint operators. Taking Theorem 4.2(ii) into account, we may assume, without loss of generality, that $\mathcal{F}_S = \mathcal{F}_T$ and D(S) = D(T).

In Example 4.7 we show that the coincidence of the domains of selfadjoint operators S and T even in the case when $\operatorname{Sp}(S) \subseteq \mathbb{Z}$, $\operatorname{Sp}(T) \subseteq \mathbb{Z}$ and S and T have the same sets of eigenvectors is not sufficient for $\mathcal{F}_S = \mathcal{F}_T$. In other words, the algebras \mathcal{F}_S and \mathcal{F}_T may be the closures of the same set of finite rank operators and, nevertheless, be non-isomorphic. Necessary and sufficient conditions for these algebras to be *-isomorphic will be obtained in Theorem 4.6.

Let \mathfrak{H} be a Hilbert space with an orthogonal basis $\{e_i\}_{i=-\infty}^{\infty}$. Every operator T in $B(\mathfrak{H})$ has a matrix representation $T = (t_{ij}), -\infty < i, j < \infty$, where $t_{ij} = (Te_j, e_i)$. A matrix $M = (m_{ij}), -\infty < i, j < \infty$, is called a *Schur multiplier*, if, for any $T = (t_{ij}) \in B(\mathfrak{H})$, the matrix $M \circ T = (m_{ij}t_{ij})$ belongs to $B(\mathfrak{H})$. Then $T \to M \circ T$ is a bounded map of $B(\mathfrak{H})$ into itself; it will also be denoted by M and its norm by $|M|_{B(\mathfrak{H})}$.

Let $H = \sum_{i=-\infty}^{\infty} \oplus H_i$ be an orthogonal sum of Hilbert spaces H_i . Every operator A in B(H) has a block-matrix representation $A = (A_{ij}), -\infty < i, j < \infty$, where A_{ij} are bounded operators from H_j into H_i .

Lemma 4.5. Let $M = (m_{ij})$ be a Schur multiplier on \mathfrak{H} . It defines a bounded operator \mathcal{M} on B(H) by the formula

$$\mathcal{M} \times A = (m_{ij}A_{ij}), \quad where \ A = (A_{ij}) \in B(H),$$

and $|\mathcal{M}|_{B(H)} = |M|_{B(\mathcal{H})}$.

Proof. Let $G = \{g_j\}_{j=-\infty}^{\infty}$ and $F = \{f_j\}_{j=-\infty}^{\infty}$ be sequences of elements such that $g_j, f_j \in H_j$ and $||g_j|| = ||f_j|| = 1$. For $A = (A_{ij}) \in B(H)$, let $T^{G,F}(A) = \left(a_{ij}^{GF}\right), -\infty < i, j < \infty$, be the matrix such that

set

(4.13)
$$a_{ij}^{GF} = (A_{ij}g_j, f_i) \in \mathbb{C}.$$

For $\alpha = \sum_{j=-\infty}^{\infty} \oplus \alpha_j e_j \in \mathfrak{H}$ and $\beta = \sum_{j=-\infty}^{\infty} \oplus \beta_j e_j \in \mathfrak{H},$
 $x_{\alpha}^G = \sum_{j=-\infty}^{\infty} \oplus \alpha_j g_j$ and $y_{\beta}^F = \sum_{j=-\infty}^{\infty} \oplus \beta_j f_j.$

Then $x_{\alpha}^{G}, y_{\beta}^{F} \in H$, $\left\|x_{\alpha}^{G}\right\| = \|\alpha\|$, $\left\|y_{\beta}^{F}\right\| = \|\beta\|$ and

$$(Ax_{\alpha}^{G}, y_{\beta}^{F}) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \alpha_{j} \bar{\beta}_{i}(A_{ij}g_{j}, f_{i})$$
$$= \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \alpha_{j} \bar{\beta}_{i} a_{ij}^{GF} = (T^{G,F}(A)\alpha, \beta)$$

Therefore $T^{G,F}(A) \in B(\mathfrak{H})$ and

(4.14)
$$\|A\| = \sup_{\alpha,\beta,G,F} \frac{\left| \left(A x_{\alpha}^{G}, y_{\beta}^{F} \right) \right|}{\|x_{\alpha}^{G}\| \|y_{\beta}^{F}\|}$$
$$= \sup_{G,F} \left(\sup_{\alpha,\beta} \frac{\left| \left(T^{G,F}(A)\alpha, \beta \right) \right|}{\|\alpha\| \|\beta\|} \right) = \sup_{G,F} \left\| T^{G,F}(A) \right\|$$

It follows from (4.13) that $T^{G,F}(\mathcal{M} \times A) = M \circ T^{G,F}(A)$. Since M is a Schur multiplier, $M \circ T^{G,F}(A) \in B(\mathfrak{H})$ and, by (4.14),

$$\|\mathcal{M} \times A\| = \sup_{G,F} \|T^{G,F}(\mathcal{M} \times A)\| = \sup_{G,F} \|M \circ T^{G,F}(A)\|$$

$$\leq \sup_{G,F} |M|_{B(\mathfrak{H})} \|T^{G,F}(A)\| = |M|_{B(\mathfrak{H})} \sup_{G,F} \|T^{G,F}(A)\|$$

$$= |M|_{B(\mathfrak{H})} \|A\|.$$

Hence $|\mathcal{M}|_{B(H)} \leq |M|_{B(\mathfrak{H})}$. On the other hand, it is easy to see that $|M|_{B(\mathfrak{H})} \leq |\mathcal{M}|_{B(H)}$. Thus $|\mathcal{M}|_{B(H)} = |M|_{B(\mathfrak{H})}$.

Let S and T be selfadjoint operators on H and assume that $\operatorname{Sp}(S) \subseteq \mathbb{Z}$, $\operatorname{Sp}(T) \subseteq \mathbb{Z}$ and that

$$H = \sum_{i=-\infty}^{\infty} \oplus H_i \quad \text{where} \quad S|_{H_i} = s_i \mathbf{1}_{H_i}, \quad T|_{H_i} = t_i \mathbf{1}_{H_i},$$
$$s_i \neq s_i \quad \text{and} \quad t_i \neq t_i \quad \text{if } i \neq j.$$

Set

$$M = (m_{ij}) \text{ where } m_{ij} = \frac{s_i - s_j}{t_i - t_j}, \text{ for } i \neq j, \text{ and } m_{ii} = 0, \text{ and}$$
$$N = (n_{ij}) \text{ where } n_{ij} = \frac{t_i - t_j}{s_i - s_j}, \text{ for } i \neq j, \text{ and } n_{ii} = 0.$$

Theorem 4.6. $\mathcal{F}_S = \mathcal{F}_T$ if and only if M and N are Schur multipliers.

Proof. In every H_i we choose a non-decreasing sequence of finite-dimensional projections $\{Q_i^p\}_{p=1}^{\infty}$ which converge to $\mathbf{1}_{H_i}$ in the strong operator topology as $p \to \infty$. Set $Q_p = \sum_{i=-p}^{p} \oplus Q_i^p$. The finite-dimensional projections Q_p commute with S and T, belong to $\mathcal{F}_S \cap \mathcal{F}_T$ and converge to $\mathbf{1}_H$ in the strong operator topology. Therefore $||Q_p||_S = ||Q_p||_T = ||Q_p|| = 1$.

For any $A = (A_{ij}) \in \mathcal{A}_S \cap \mathcal{A}_T$,

$$A_S = SA - AS = \left(A_{ij}^S\right)$$
 and $A_T = TA - AT = \left(A_{ij}^T\right)$,

where $A_{ij}^S = (s_i - s_j)A_{ij}$ and $A_{ij}^T = (t_i - t_j)A_{ij}$. Set $B = A_T$. Then $A_S = \mathcal{M} \times B$,

(4.15)
$$||A||_{S} = ||A|| + ||A_{S}|| = ||A|| + ||\mathcal{M} \times B|| \quad \text{and} \\ ||A||_{T} = ||A|| + ||A_{T}|| = ||A|| + ||B||.$$

We assume now that M and N are Schur multipliers and show that $\mathcal{F}_S = \mathcal{F}_T$. By Lemma 4.5 and (4.15),

(4.16)
$$\|A\|_{S} \le \|A\| + |M| \|B\|$$

$$\le \|A\| + |M| (\|A\|_{T} - \|A\|) \le (|M| + 1) \|A\|_{T}.$$

Similarly,

(4.17)
$$||A||_T \le (|N|+1)||A||_S.$$

Let $A \in \mathcal{F}_S$. Then $Q_p A \in \mathcal{F}_S$ and, since Q_p commute with S,

 $(Q_pA)_S = \text{Closure}\left(SQ_pA - Q_pAS\right) = \text{Closure}\,Q_p(SA - AS) = Q_pA_S.$

Since A and A_S are compact and since Q_p converge to $\mathbf{1}_H$ in the strong operator topology,

$$||A - Q_p A|| \to 0$$
 and $||A_S - (Q_p A)_S|| = ||A_S - Q_p A_S|| \to 0$, as $p \to \infty$.

Hence $||A - Q_p A||_S \to 0$, so that $\{Q_p\}$ is a bounded approximate identity in \mathcal{F}_S . Similarly, it is a bounded approximate identity in \mathcal{F}_T .

Let $A \in \mathcal{F}_S$. For any $p, Q_pT = Q_pTQ_p = TQ_p$ is a finite rank operator. Hence

$$(Q_pAQ_p)_T = T(Q_pAQ_p) - (Q_pAQ_p)T = (TQ_p)AQ_p - Q_pA(Q_pT)$$

is a finite rank operator. Therefore $Q_p A Q_p \in \mathcal{F}_S \cap \mathcal{F}_T$ and, by (4.17),

$$||Q_{p+k}AQ_{p+k} - Q_pAQ_p||_T \le (|N|+1)||Q_{p+k}AQ_{p+k} - Q_pAQ_p||_S.$$

Since $\{Q_p\}$ is a bounded approximate identity in \mathcal{F}_S , the operators Q_pAQ_p converge to A with respect to $\|\cdot\|_S$. From the above inequality it follows that $\{Q_pAQ_p\}$ is a fundamental sequence with respect to $\|\cdot\|_T$. Hence there is $A_1 \in \mathcal{F}_T$ such that $\|A_1 - Q_pAQ_p\|_T \to 0$, as $p \to \infty$. Since $\|A - Q_pAQ_p\| \leq \|A - Q_pAQ_p\| \leq \|A - Q_pAQ_p\|_S \to 0$ and $\|A_1 - Q_pAQ_p\| \leq \|A_1 - Q_pAQ_p\|_T \to 0$, as $p \to \infty$, we obtain that $A = A_1$, so $\mathcal{F}_S \subseteq \mathcal{F}_T$. Similarly, $\mathcal{F}_T \subseteq \mathcal{F}_S$. Thus we conclude that $\mathcal{F}_S = \mathcal{F}_T$.

Suppose now that $\mathcal{F}_S = \mathcal{F}_T$. Choose elements $e_i \in H_i$ such that $||e_i|| = 1$ and let \mathfrak{H} be the subspace of H generated by all $e_i, -\infty < i < \infty$. Then \mathfrak{H} is invariant for S and T, $Se_i = s_ie_i$ and $Te_i = t_ie_i$. By $S_{\mathfrak{H}}$ and $T_{\mathfrak{H}}$ we denote the restrictions of S and T to \mathfrak{H} . Since $\mathcal{F}_S = \mathcal{F}_T$,

$$\mathcal{F}_{S_{\mathfrak{H}}} = \mathcal{F}_{T_{\mathfrak{H}}}.$$

We shall show now that M and N are Schur multipliers on \mathfrak{H} .

The function $f(t) = i(\pi - t)$ on $[0, 2\pi]$ has Fourier coefficients $c_0 = 0$ and $c_n = \frac{1}{n}$, for $n = \pm 1, \pm 2, \ldots$. Let \mathcal{H} be a Hilbert space with an orthonormal basis $\{h_k\}_{k=-\infty}^{\infty}$ and $R = (r_{kl}), -\infty < k, l < \infty$, be a *Toeplitz* matrix such that $r_{kk} = 0$ and $r_{kl} = c_{k-l} = \frac{1}{k-l}, k \neq l$. Then $R \in B(\mathcal{H})$ and it follows from Theorem 8.1 [1] that R is a Schur multiplier and $|R| = \sup |f(t)| = \pi$.

Identifying e_i in \mathfrak{H} with h_{t_i} in \mathcal{H} , we can consider \mathfrak{H} as a subspace of \mathcal{H} . For $B = (b_{km}) \in B(\mathfrak{H})$, where $b_{km} = (Be_m, e_k)$, let $\widetilde{B} = (\widetilde{b}_{ij}) \in B(\mathcal{H})$ be such that $\widetilde{B}|_{\mathfrak{H}} = B$ and $\widetilde{B}|_{\mathfrak{H}^{\perp}} = 0$. Then $\|\widetilde{B}\| = \|B\|$,

$$\widetilde{b}_{t_k t_m} = \left(\widetilde{B}h_{t_m}, h_{t_k}\right) = (Be_m, e_k) = b_{km}, \quad \text{and} \\ \widetilde{b}_{ij} = \left(\widetilde{B}h_j, h_i\right) = 0 \text{ if either } i \neq t_k \text{ or } j \neq t_m$$

Since R is a Schur multiplier, the operator $\widetilde{C} = (\widetilde{c}_{ij}) = R \circ \widetilde{B}$ belongs to $B(\mathcal{H})$, where

$$\widetilde{c}_{t_k t_m} = r_{t_k t_m} \widetilde{b}_{t_k t_m} = (t_k - t_m)^{-1} b_{km}, \quad \text{if } k \neq m, \quad \text{and} \\ \widetilde{c}_{ij} = 0 \quad \text{if either } i \neq t_k \text{ or } j \neq t_m \text{ or } i = j = t_k.$$

Setting $C = C|_{\mathfrak{H}}$, we obtain that $C = (c_{km}) \in B(\mathfrak{H})$, where

$$c_{km} = \widetilde{c}_{t_k t_m} = (t_k - t_m)^{-1} b_{km}$$
, if $k \neq m$, and $c_{kk} = 0$,

that $\|\tilde{C}\| = \|C\|$ and that $C = W \circ B$, where $W = (w_{km})$ is a matrix such that

$$w_{km} = (t_k - t_m)^{-1}, \quad k \neq m, \text{ and } w_{kk} = 0.$$

From this it follows that W is a Schur multiplier on \mathfrak{H} and

$$||W \circ B|| = ||C|| = ||\widetilde{C}|| = ||R \circ \widetilde{B}|| \le |R| ||\widetilde{B}|| = |R| ||B||.$$

Thus $|W| \leq |R| = \pi$.

Let P_n be the orthoprojections in \mathfrak{H} on the subspaces $\sum_{j=-n}^{n} \oplus \{\mathbb{C}e_j\}$. Then P_n are finite rank operators commuting with operators $S_{\mathfrak{H}}$ and $T_{\mathfrak{H}}$ and $P_n\mathfrak{H} \subseteq D(S_{\mathfrak{H}})$. Hence $P_n \in \mathcal{F}_{S_{\mathfrak{H}}}$. For every $B \in B(\mathfrak{H})$, P_nBP_n are finite rank operators preserving $D(S_{\mathfrak{H}})$ and their adjoints $P_nB^*P_n$ also preserve $D(S_{\mathfrak{H}})$. Therefore

$$(4.18) P_n B P_n \in \mathcal{F}_{S_{\mathfrak{H}}}.$$

Any $B = (b_{km}) \in B(\mathfrak{H})$ can be represented in the form $B = B_d + B_0$, where B_d is the diagonal operator such that $(B_d) = b_{kk}$. Then

(4.19)
$$||B_d|| \le ||B||$$
 and $||B_0|| = ||B - B_d|| \le 2||B||.$

We have that

(4.20)
$$M \circ (P_n B P_n) = P_n (M \circ B) P_n$$

Since $m_{kk} = 0$ in the matrix $M = (m_{km})$,

(4.21)
$$M \circ (P_n B P_n) = M \circ (P_n B_0 P_n).$$

Set $A = W \circ B$. Since W is a Schur multiplier, $A \in B(\mathfrak{H})$ and, by (4.18), $P_n A P_n \in \mathcal{F}_{S_{\mathfrak{H}}}$. It is easy to check that

(4.22)
$$P_n B_0 P_n = T_{\mathfrak{H}}(P_n A P_n) - (P_n A P_n) T_{\mathfrak{H}} = (P_n A P_n)_{T_{\mathfrak{H}}}, \text{ and}$$
$$M \circ (P_n B_0 P_n) = S_{\mathfrak{H}}(P_n A P_n) - (P_n A P_n) S_{\mathfrak{H}} = (P_n A P_n)_{S_{\mathfrak{H}}}.$$

Since $\mathcal{F}_{S_5} = \mathcal{F}_{T_5}$, it follows from Lemma 4.1(i) that the norms $\|\cdot\|_{S_5}$ and $\|\cdot\|_{T_5}$ are equivalent. Therefore there exists D > 0 such that $\|P_nAP_n\|_{S_5} \leq D\|P_nAP_n\|_{T_5}$. Hence we obtain from (4.19), (4.21) and (4.22) that

$$\begin{split} \|M \circ (P_n B P_n)\| &= \|M \circ (P_n B_0 P_n)\| = \|(P_n A P_n)_{S_5}\| \\ &\leq \|P_n A P_n\|_{S_5} \leq D\|P_n A P_n\|_{T_5} \\ &= D\left(\|P_n A P_n\| + \|(P_n A P_n)_{T_5}\|\right) \\ &\leq D(\|A\| + \|P_n B_0 P_n\|) \leq D(\|A\| + \|B_0\|) \\ &= D(\|W \circ B\| + \|B_0\|) \leq D(|R| \|B\| + 2\|B\|) = \rho. \end{split}$$

Thus all operators $M \circ (P_n B P_n)$, $1 \le n < \infty$, lie in the ball \mathbf{B}_{ρ} of $B(\mathfrak{H})$ of radius ρ . Compactness of \mathbf{B}_{ρ} in the weak operator topology implies that the

sequence $\{M \circ (P_n B P_n)\}_{n=1}^{\infty}$ has a cluster point $K \in B(\mathfrak{H})$. Therefore there is a subsequence $\{M \circ (P_{n_j} B P_{n_j})\}$ such that for all e_k and e_m ,

$$(Ke_k, e_m) = \lim_{j \to \infty} (M \circ (P_{n_j} B P_{n_j}) e_k, e_m).$$

If $n_j \ge \max(|k|, |m|)$ then $P_{n_j}e_k = e_k$ and $P_{n_j}e_m = e_m$ and, by (4.20),

$$\left(M \circ \left(P_{n_j} B P_{n_j}\right) e_k, e_m\right) = \left(P_{n_j} (M \circ B) P_{n_j} e_k, e_m\right) = (M \circ B e_k, e_m).$$

Hence $(Ke_k, e_m) = ((M \circ B)e_k, e_m), -\infty < k, m < \infty$. Thus $K = M \circ B$, so M is a Schur multiplier. Similarly, we obtain that N is also a Schur multiplier.

Example 4.7. Let

$$s_i = i$$
 and $t_i = (-1)^i i$

in Theorem 4.6. If $\mathcal{F}_S = \mathcal{F}_T$ then, by Theorem 4.6, M is a Schur multiplier and we have that $|m_{ij}| \leq |M|$ for all i and j. Let i = 2k and j = -2k + 1. Then $s_i = t_i = 2k$ and $s_j = -t_j = -2k + 1$. Hence

$$m_{ij} = \frac{s_i - s_j}{t_i - t_j} = 4k - 1 \to \infty$$
, as $k \to \infty$.

This shows that M is not a Schur multiplier and, therefore, $\mathcal{F}_S \neq \mathcal{F}_T$.

Making use of Theorem 4.6, we obtain the following result of a more general character.

Theorem 4.8. Let S and T be selfadjoint operators on H and \mathcal{H} respectively. If there exists a bijection φ of \mathbb{Z} onto \mathbb{Z} such that

$$\dim(\mathcal{H}_T(\varphi(i))) = \dim(H_S(i)), \quad for \ all \ i \in \mathbb{Z},$$

(see (2.2) for definition of $\mathcal{H}_T(i)$ and $H_S(i)$) and if

$$M = (m_{ij}) \text{ where } m_{ij} = \frac{\varphi(i) - \varphi(j)}{i - j}, \text{ for } i \neq j, \text{ and } m_{ij} = 0, \text{ and}$$
$$N = (n_{ij}) \text{ where } n_{ij} = \frac{i - j}{\varphi(i) - \varphi(j)}, \text{ for } i \neq j, \text{ and } n_{ij} = 0$$

are Schur multipliers then the algebras \mathcal{F}_S and \mathcal{F}_T are *-isomorphic.

Proof. Consider the operators [S] and [T] (see (2.1)) and the corresponding decompositions

$$H = \sum_{i \in \mathbb{Z}} \oplus H_S(i) \text{ and } \mathcal{H} = \sum_{i \in \mathbb{Z}} \oplus \mathcal{H}_T(i)$$

where $H_S(i) = P_S(i)H$ and $\mathcal{H}_T(i) = P_T(i)\mathcal{H}$ (see (2.3)). The operators S - [S] and T - [T] are bounded, so $\mathcal{F}_S = \mathcal{F}_{[S]}$ and $\mathcal{F}_T = \mathcal{F}_{[T]}$.

Consider the selfadjoint operator R on H such that all subspaces $H_S(i)$ are invariant for R and $R|_{H_S(i)} = \varphi(i)\mathbf{1}_{H_S(i)}$. Since M and N are Schur multipliers, it follows from Theorem 4.6 that $\mathcal{F}_R = \mathcal{F}_{[S]}$.

On the other hand, since $\dim(\mathcal{H}_T(\varphi(i))) = \dim(H_S(i))$, for all $i \in \mathbb{Z}$, there exists an isometry operator U from H onto \mathcal{H} which maps $H_S(i)$ onto $\mathcal{H}_T(\varphi(i))$. Then $U^*[T]U = R$. By Lemma 4.1, the algebras \mathcal{F}_R and $\mathcal{F}_{[T]}$ are *-isomorphic. Hence the algebras \mathcal{F}_S and \mathcal{F}_T are *-isomorphic.

References

- [1] G. Bennett, Schur multipliers, Duke Math. J., 44 (1977), 603-639.
- [2] B. Blackadar and J. Cuntz, Differential Banach algebra norms and smooth subalgebras of C^{*}-algebras, J. Oper. Theory, 26 (1991), 255-282.
- [3] O. Bratteli and D.W. Robinson, Unbounded derivations of C^{*}-algebras, I, Comm. Math. Phys., 42 (1975), 253-268.
- [4] J. Dixmier, Les C^{*}-algebres et leurs Representations, Gauthier-Villars, Paris, 1969.
- [5] N. Dunford and J.T. Schwartz, *Linear Operators*, Vol. I+II, Interscience Inc., New York, 1988.
- [6] I.Ts. Gohberg and M.G. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert spaces, Nauka, Moscow, 1965.
- [7] P.E.T. Jorgensen and G.L. Price, Index theory and second quantization of boundary value problems, J. Funct. Anal., 104 (1992), 243-290.
- [8] E. Kissin, Symmetric operator extensions of unbounded derivations of C*-algebras, J. Funct. Anal., 81 (1988), 38-53.
- [9] $_$, Indices of unbounded derivations of C^* -algebras, Pacific J. Math., **152** (1992), 125-150.
- [10] E. Kissin, A.I. Loginov and V.S. Shulman, Derivations of C^{*}-algebras and almost Hermitian representations on Π_k-spaces, Pacific J. Math., **174** (1996), 411-430.
- [11] E. Kissin and V.S. Shulman, Dense Q-subalgebras of Banach and C^{*}-algebras and unbounded derivations of Banach and C^{*}-algebras, Proc. Edinburgh Math. Soc., 36 (1993), 261-276.
- [12] _____, Differential properties of some dense subalgebras of C^{*}-algebras, Proc. Edinburgh Math. Soc., 37 (1994), 399-422.
- [13] _____, Differential Banach *-algebras of compact operators associated with symmetric operators, J. Funct. Anal., **156** (1998), 1-29.
- [14] _____, Representations on Krein Spaces and Derivations of C^{*}-algebras, Addison Wesley Longman, London, 1997.
- [15] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York London, 1972.

[16] S. Sakai, Operator Algebras in Dynamical Systems, CUP, Cambridge, 1991.

Received December 10, 1997 and revised September 16, 1998.

UNIVERSITY OF NORTH LONDON GREAT BRITAIN *E-mail address*: 11kissine@unl.ac.uk

Polytechnic Institute of Vologda Vologda Russia