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We are going to give necessary and sufficient conditions for
a multivariate stationary stochastic process to be completely
regular. We also give the answer to a question of V.V. Peller
concerning the spectral measure characterization of such pro-
cesses.

1. Introduction.

In this paper we shall give a necessary and sufficient condition for a multi-
variate stationary stochastic process to be completely regular. For the scalar
case the description of completely regular processes was obtained by Helson
an Sarason, see [2, 9]. Almost none of the scalar methods is available in the
vector situation. The explanation is simple. Our problem will be reduced to
verifying L2 weighted inequalities for a certain integral operator. The weight
will be a matrix weight arising from the spectral measure of the process. All
the pointwise estimates of integral operators become too crude for the vec-
tor valued case. For example, if a positive kernel is majorized by another
one, and this second kernel gives the bounded operator in L2(µ), then the
original kernel obviously corresponds to a bounded operator in L2(µ) too.
But this is not the case if µ is a matrix measure even for scalar kernels.

The study of prediction theory for multivariate stationary stochastic pro-
cesses was started by Kolmogorov and Wiener in the 50’s, see, for example
[13], [14], and [4]. It was later continued in works of I. Ibragimov, Yu.
Rozanov, V. Solev, A. Yaglom, V. Peller, S. Khruschev, N.J. Young. An
extensive bibliography can be found in [6] (for scalar processes) and in [5]
(for vector ones).

Let us recall that a multivariate stationary stochastic process with discrete
time is a sequence of d-tuples x(n) = (x1(n), x2(n), . . . , xd(n)), n ∈ Z of
scalar random variables such that E|xj(n)|2 < ∞ and the correlation matrix
Q(n, k)

Q(n, k) = {Q(n, k)i,j}1≤i,j≤d :=
{

Exi(n)xj(k)
}

1≤i,j≤d

depends only on the difference n − k; here E denotes mathematical expec-
tation.
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It is well known (see [8]) that there exists a matrix-valued nonnegative
measure M on the unit circle T whose Fourier coefficients coincide with
entries of the correlation matrix

Q(n, k) = M̂(n− k) , n, k ∈ Z .

The measure M is called the spectral measure of the process {x(n)}n∈Z.
The random variables xj(n) can be treated as elements of Hilbert space

L2(Ω, dP ), where Ω is the probability space and P is the probability, so
x(n) can be treated as elements of the Rd-valued L2 space L2

Rd(Ω, dP ) For
a moment n of time we can consider the past Xn and the future X n of the
process, which are defined as the subspaces

Xn = span {xj(k) : 1 ≤ j ≤ d, k < n}
X n = span {xj(k) : 1 ≤ j ≤ d, k ≥ n}

of L2(Ω, dP ).
A process is called regular if ∩n≥0X n = {0}. In this case (see [8]) the

spectral measure M of the process is absolutely continuous with respect to
Lebesgue measure. Let W be the density of M with respect to Lebesgue
measure. The matrix-valued function W is called the spectral density of the
process.

A process {x(n)}n∈Z is called completely regular if its past is asymptoti-
cally orthogonal to the future, namely if

sup
{
|E(ξη)| : ξ ∈ X0, η ∈ X n, E|ξ|2 ≤ 1, E|η|2 ≤ 1

}
−→ 0 as n →∞ .

Of course, complete regularity implies regularity. If the process is Gaussian
(i.e. all random variables xj(k) have normal distribution) then the complete
regularity means simply that past and future are almost independent. The
problem we are dealing with is to characterize completely regular processes
in terms of spectral measure.

It has been already mentioned (see again [8]) that if the process is com-
pletely regular, then its spectral measure is absolutely continuous, dM =
Wdm where dm is the normalized (m(T) = 1) Lebesgue measure on the
unit circle T.

The reader is referred to [8] once more to see that there exists d0 ≤ d
(the rank of the process) such that the spectral density W (t) has rank d0

for almost all t ∈ T. If d0 = d then the process {x(n)} is said to be a full
rank.

The study of processes of arbitrary rank can be easily reduced to the
study of the processes of full rank, see [3]. So in this paper we shall consider
only processes of full rank.

For the scalar case the description of completely regular processes was
obtained by Helson an Sarason, see [2, 9]. To state their result we need a
couple of definitions.
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Let us recall that a function f on the unit circle T belongs to the space
BMO (bounded mean oscillation) if

sup
I

1
|I|

∫
I
|f − fI |dm = ‖f‖BMO < ∞ ;

here fI denotes the mean value of f on the interval I: fI := |I|−1
∫
I fdm

and the supremum is taken over all subarcs I of T.
The space VMO (vanishing mean oscillation) consists of all function f ∈

BMO such that

sup
I

1
|I|

∫
I
|f − fI |dm −→ 0 as |I| → 0 .

Theorem 1.1 (Helson, Sarason). Let w be the spectral density of a scalar
stationary process. Then the process is completely regular if and only if w
admits a representation

w = |p|2eϕ ,

where p is a polynomial with roots on the unit circle T and ϕ is a real-valued
function in VMO.

It was conjectured by V. Peller in [5] that the same result holds for mul-
tivariate stationary processes. Namely he conjectured that a multivariate
stationary process is completely regular if and only if its spectral density W
admits the following representation

W = P ∗eΦP,

where P is a polynomial matrix whose determinant has roots on T and the
matrix function Φ = Φ∗ belongs VMO.

In this direction he was able to prove the following theorem:

Theorem 1.2. A multivariate stationary process is completely regular if
and only if its spectral density W admits the factorization

W = P ∗W1P,

where P is a polynomial matrix whose determinant has roots on T and W1 is
the density of a completely regular stationary process such that W−1

1 ∈ L1.
1.1. The main result. Let us recall that a measure µ on the unit disk D
is called Carleson if

sup
I

µ(Q(I)) ≤ C · |I|

and is called the vanishing Carleson measure if

lim sup
|I|→0

µ(Q(I))/|I| = 0

where limsup is taken over all subarcs I of T . Here Q(I) denotes the “Car-
leson square” for the arc I,

Q(I) = {z ∈ D : z/|z| ∈ I, 1− |I| ≤ |z| < 1}.
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For a function F on the unit circle let F (λ), λ ∈ D, denote its harmonic
extension at the point λ.

The main result of the paper is the following theorem.

Theorem 1.3. Let the density W of a stationary process satisfy W−1 ∈ L1.
Then the the following are equivalent:

1) The process is completely regular;
2) W−1 is the spectral density of a completely regular process;

3) lim sup
|I|→0

∥∥∥∥( 1
|I|

∫
I
Wdm

)1/2( 1
|I|

∫
I
W−1dm

)1/2
∥∥∥∥ = 1; here supremum is

taken over all subarcs I of T;

4) lim sup
|λ|→1

∥∥∥∥(W (λ)
)1/2(

W−1(λ)
)1/2

∥∥∥∥ = 1, where W (λ) and W−1(λ) are

harmonic extensions of functions W
∣∣T and W−1

∣∣T respectively at point
λ ∈ D.

5) lim sup
|λ|→1

{
det
(
W (λ)

)
exp
(
−
[
log det W

]
(λ)
)}

= 1, where W (λ) and

[log det W
]
(λ) are harmonic extensions of functions W

∣∣T and
log det W

∣∣T respectively at point λ ∈ D.
6) The measures∥∥∥∥W (z)−1/2

(
∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

and ∥∥∥∥W (z)−1/2

(
∂

∂y
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

are vanishing Carleson measures.

Together with Theorem 1.2 the above theorem yields the complete de-
scription of completely regular stationary processes.

Theorem 1.4. A stationary process with spectral density W is completely
regular if and only if W admits the representation

W = P ∗WP,

where P is a polynomial matrix whose determinant has roots on T and the
matrix-function W satisfies W−1 ∈ L1 and one of equivalent conditions 3-6
of Theorem 1.3.

Let us discuss the main result (Theorem 1.3) a little bit. First of all it
is not difficult to show directly that in the scalar case the conditions 3-6 of
Theorem 1.3 are equivalent to W = eϕ, ϕ ∈ VMO. We are leaving this as
an exercise for the reader.
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Usually in probability only real valued stationary processes are considered.
In that case the spectral density of a process should satisfy W (z) = W (z),
and only such functions can be realized as densities of stationary processes.

If one allow complex-valued processes, any nonnegative matrix function
is the spectral density of some stationary process.

Our theorem deals with arbitrary nonnegative matrix-functions and can
be applied to complex-valued processes (as well as to real-valued).

2. Scheme of the proof of the main result.

The diagram of the proof will be the following: 1 =⇒ 4 =⇒ 5 =⇒ 6 =⇒ 1.
Then we will show that 1 =⇒ 2 and so automatically 2 =⇒ 1.

And in this section we will show that 3 ⇐⇒ 4.

Lemma 2.1. For a scalar weight w the following conditions are equivalent:

1) lim sup
|I|→0

( 1
|I|

∫
I
w
)( 1
|I|

∫
I
w−1

)
= 1;

2) lim sup
|λ|→1

w(λ)w−1(λ) = 1, where w(λ) and w−1(λ) denote the harmonic

extensions of w and w−1 respectively at the point λ;
3) w = eϕ, where ϕ ∈ VMO.

Proof. First of all let us rewrite condition 1. Let ϕ := log w. For a function
f let f

I
denote its average over the arc I, f

I
:= |I|−1

∫
I f . Then clearly

w
I
· (w−1)

I
=
[
w

I
exp(−ϕ

I
)
]
·
[
(w−1)

I
exp(ϕ

I
)
]
.

By Jensen inequality (geometric mean ≤ arithmetic mean) the expressions
in brackets are at least 1, so the condition 1 splits into the following 2
conditions

lim sup
|I|→0

[
w

I
exp(−ϕ

I
)
]

= 1, and lim sup
|I|→0

[
(w−1)

I
exp(ϕ

I
)
]

= 1.

Let f+ denote the positive part of the function f , f+(x) := max(f(x), 0).
Then the inequality

x ≤ ex − 1 for x ≥ 0
implies

1
|I|

∫
I
(ϕ− ϕ

I
)+ ≤

1
|I|

∫
I

(
exp(ϕ− ϕ

I
)− 1

)
= w

I
exp(−ϕ

I
)− 1 → 0 as |I| → 0.

Since
∫
I |ϕ− ϕ

I
| = 2

∫
I(f − f

I
)+, one can conclude that ϕ ∈ VMO.

Similarly, using Poisson averages instead of averages over intervals one
can get from condition 2 of the lemma that harmonic extension of |ϕ−ϕ(λ)|
at the point λ tends to 0 as λ → 1. But that is an equivalent definition of
VMO, so the condition 2 also implies that ϕ ∈ VMO.
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On the other hand, if ϕ ∈ VMO, John-Nirenberg Theorem (see [1, Chap-
ter VI]) claims that the measure of the set {t ∈ I : |ϕ(t) − ϕ

I
| > a} is

estimated from above by Ce−Ka, where K = K
I
→ ∞ as |I| → 0. There-

fore for x > 1 the measure of the set {t ∈ I : exp(ϕ(t)−ϕ
I
) > x} is estimated

from above by Cx−K . Integrating this distribution function one can get that
lim sup|I|→0 w

I
exp(−ϕ

I
) ≤ 1 (in fact, it is 1, because by Jensen inequality

w
I
exp(−ϕ

I
) ≥ 1). Similarly, lim sup|I|→0(w−1)

I
exp(ϕ

I
) = 1. Multiplying

the above two inequalities one gets condition 1.
The proof that 3 =⇒ 2 is similar. For a point λ ∈ D let Iλ be an

interval with center at λ/|λ| of length (1− |λ|)1/3. Since the Poisson Kernel
Pλ(z) = (1 − |λ|2) · |1 − λz|−2 satisfies supz∈T\Iλ

Pλ(z) → 0 as |λ| → 1, the
distribution inequality for ϕ on Iλ implies that w(λ) · exp(−ϕ(λ)) → 1 as
|λ| → 1, and therefore the condition 2 of the lemma. �

The following Lemma is probably well known and can be easily from the
distribution function inequality for VMO (John-Nirenberg Theorem).

Lemma 2.2. For λ ∈ D let Iλ be an interval centered at λ/|λ| of length
1− |λ|. If ϕ ∈ VMO, then ϕ

Iλ
− ϕ(λ) → 0 as |λ| → 1.

Corollary 2.3. Let ϕ ∈ VMO and let w = eϕ. Then for Iλ as in the above
lemma we have

lim
|λ|→1

w(λ)
w

Iλ

= 1.

Proof. By the above lemma lim|λ|→1 exp(ϕ(λ))/ exp(ϕ
Iλ

) = 1. On the other
hand it follows from the proof of Lemma 2.1 that

lim
|λ|→1

w(λ)/ exp(ϕ(λ)) = 1 and lim
|I|→0

w
I
/ exp(ϕ

I
) = 1.

Taking the ration of the last 2 identities (with I = Iλ) we get the statement
we need. �

Now to show equivalence of condition 3 and 4 of Theorem 1.3 is enough
to show that these conditions imply that for a fixed vector e ∈ Cd scalar
weight w(z) = (W (z)e, e) satisfies conditions 1 and 2 of Lemma 2.1. Then
Corollary 2.3 implies that the averages W

Iλ
and W (λ) are equivalent, the

same holds for W−1, and we are done.
It remains now to show that the scalar weight w(z) = (W (z)e, e) satisfies

condition 1 (equivalently 2) of Lemma 2.1. The easiest way to do that is to
recall where the Muckenhoupt condition (A2) came from, see [10].

Recall that the quantity
∥∥[W

I
]1/2[(W−1)

I
]1/2
∥∥ is just the norm of the

averaging operator f 7→ f
I
·χ

I
in the weighted space L2(W ), see [10, Lemma

2.1]. Then [w
I
]1/2[(w−1)

I
]1/2 is the norm of the restriction of the above
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averaging operator onto the subspace of L2(W ) consisting of functions of
form fe where f is a scalar function. Therefore

1 ≤ [w
I
]1/2[(w−1)

I
]1/2 ≤

∥∥[W
I
]1/2[(W−1)

I
]1/2
∥∥

so the weight w satisfies condition 1 of the lemma.
Similarly, the quantity

∥∥W (λ)1/2W−1(λ)1/2
∥∥ is just the norm of another

averaging operator
(
f 7→

∫
T fkλ

)
kλ, where kλ is the normalized reproducing

kernel of H2, kλ(z) = (1 − |λ|2)1/2(1 − λz)−1, see [10, Lemma 2.1], so
condition 4 of the theorem implies condition 2 of the lemma for the weight
w.

3. Eliminating probability.

The problem of description of completely regular processes can be now stated
without mentioning any probability theory at all.

First of all notice that without loss of generality we can assume that the
process is complex-valued. Namely, if we have a real stationary process
{x(n)}n∈Z we can consider its comlexification, namely the same process but
in the complex Hilbert space L2

Cd(Ω, dP ). Consider the comlexificated past
(Xn)C and future (X n)C

(Xn)C = span {xj(k) : 1 ≤ j ≤ d, k < n}
(X n)C = span {xj(k) : 1 ≤ j ≤ d, k ≥ n}

where span now means the closed linear span in the complex Hilbert space
L2

Cd(Ω, dP ). It is easy to see that

sup
{
|E(ξη)| : ξ ∈ X0, η ∈ X n, E|ξ|2 ≤ 1, E|η|2 ≤ 1

}
= sup

{
|E(ξη̄)| : ξ ∈ (X0)C, η ∈ (X n)C, E|ξ|2 ≤ 1, E|η|2 ≤ 1

}
,

so a process and its comlexification are completely regular simultaneously.
So we indeed can assume from the beginning that our process is complex
valued.

Consider now the vector space L2(W ) of Cd-valued functions on the unit
circle with the norm

‖f‖2L2(W ) =
∫

T
(W (ξ)f(ξ), f(ξ))

Cd
dm(ξ)

(of course we have to take the quotient space over the functions of norm
0). The mapping xj(k) 7→ zkej , where ej , j = 1, ..., d is the standard
orthonormal basis in Cd, is an isometric isomorphism between span{xj(k) :
1 ≤ j ≤ d, k ∈ Z} and L2(W ).
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The past Xn and future X n are mapped to the spaces Xn and Xn of
L2(W )

Xn = span{zkCd : k < n}(3.1)

Xn = span{zkCd : k ≥ n} .(3.2)

So the problem of describing completely regular stationary processes can
be reformulated as follows: Describe all matrix weights W such that the
spaces X0 and Xn are asymptotically (as n →∞) orthogonal to each other,

(3.3) ρn = sup
{
|(ξ, η)

L2(W )
| : ξ ∈ X0, η ∈ Xn,

‖ξ‖
L2(W )

≤ 1, ‖η‖
L2(W )

≤ 1
}
−→ 0,

as n →∞.

4. Necessity (1 =⇒ 4).

In this section we are going to prove the implication 1 =⇒ 4 (see Theorem
4.1 below) and the equivalence 1 ⇐⇒ 2 (see Lemma 4.4).

For a function F defined on the unit circle T let F (λ) denote its harmonic
extension at the point λ ∈ D.

Theorem 4.1. Let W be a matrix valued weight such that W−1 ∈ L1. Sup-
pose the “past” X0 and “future” Xn defined by (3.1), (3.2) are asymptotically
orthogonal, which is

ρn = sup
{
|(ξ, η)

L2(W )
| : ξ ∈ X0, η ∈ Xn,

‖ξ‖
L2(W )

≤ 1, ‖η‖
L2(W )

≤ 1
}
−→ 0

as n →∞. Then

lim sup
|λ|→1

∥∥∥∥(W (λ)
)1/2(

W−1(λ)
)1/2

∥∥∥∥ = 1 .

Proof. First of all let us show that if W−1 is completely regular and W−1 ∈
L1 then W satisfies the Muckenhoupt (A2) condition

sup
λ∈D

∥∥∥∥(W (λ)
)1/2(

W−1(λ)
)1/2

∥∥∥∥ < ∞ .(Ap)

Recall that
∥∥∥∥(W (λ)

)1/2(
W−1(λ)

)1/2
∥∥∥∥ is exactly the norm of the operator

f 7→ (f, kλ)kλ in the weighted space L2(W ); here kλ denotes the normalized
reproducing kernel for H2,

kλ(z) :=
(1− |λ|2)1/2

1− λz
, λ ∈ D,
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‖kλ‖2 = 1. Note that k0 ≡ 1. So if W−1 ∈ L1 the operator f 7→ (f, 1)1
is bounded in L2(W ), and therefore by translation invariance the operators
f 7→ (f, zn)zn = f̂(n)zn are bounded as well (they all have the same norm).

We know that the spaces X0 and Xn are asymptotically orthogonal,
so we can say that for large enough N the operator P+ restricted onto
span{X0, X

N} = span{znCd : n /∈ [0, N ]} is bounded, say by 2,

‖P+f‖
L2(W )

≤ 2‖f‖
L2(W )

, ∀f ∈ span{X0, X
N} = span{znCd : n /∈ [0, N ]}.

Since f −
∑N

n=0 f̂(n)zn ∈ span{X0, X
N} = span{znCd : n /∈ [0, N ]}, one

can conclude that the operator P+ is bounded in L2(W ), and so the weight
satisfies the Muckenhoupt condition (A2).

We will need the following simple lemma about Muckenhoupt weights.

Lemma 4.2. If w is a scalar Muckenhoupt weight, then its harmonic ex-
tension w(λ) cannot decay too fast near the boundary of the disk. Namely,
if the Muckenhoupt norm of w is at most M there is a function α = α

M
,

α : [0, 1) → (0,∞), α(t) ↘ 0 as t → 1+ such that

(1− |λ|2)w(0)
w(λ)

≤ α(|λ|).

Proof of the lemma. For an arc I ⊂ T and k > 0 let kI denote the arc of
length k|I| with the same center as I.

We are going to show that for a Muckenhoupt weight w with the Muck-
enhoupt norm at most M

w
2nI

≤ M2(2− ε)nw
I
, ε = ε(M) > 0 .(4.1)

Applying this formula in the case 2nI = T and using the trivial estimate

w(λ) ≥ Cw
Iλ

where Iλ is the arc with center at the point λ/|λ|, |Iλ| = 1−|λ|2 and C is an
absolute constant, we can get from there (recall that |Iλ| = 1− |λ|2 = 2−n)

w(λ) ≥ c(2−ε)−n ·w(0) = c(2−ε)log2(1−|λ|2) ·w(0) = c·(e−δ)log(1−|λ|2) ·w(0),

where δ = δ(ε) > 0; here e is the base of the natural logarithm, not a
vector in Cd. This estimate implies the conclusion of the lemma with α(t) =
c−1(1− t2) · (e− δ)− log(1−t2).

To prove (4.1) we notice the since the weight w−1 is the Muckenhoupt
(A2) weight with the same Muckenhoupt norm as w, it is doubling and
therefore

(w−1)
2I
≥ (2− ε)−1(w−1)

I
,

where ε depends only on the Muckenhoupt norm of w. Iterating this in-
equality n times we get

(w−1)
2nI

≥ (2− ε)−n(w−1)
I
.
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The last estimate and the Muckenhoupt condition imply

w
2nI

≤ M/(w−1)
2nI

≤ M · (2− ε)n/(w−1)
I
≤ M2(2− ε)nw

I

and that is exactly what we need. �

Corollary 4.3. If a matrix weight W satisfies the Muckenhoupt condition
(A2) with the Muckenhoupt norm at most M then for any e ∈ Cd

(1− |λ|2) ·
(W (0)e, e)

Cd

(W (λ)e, e)
Cd

≤ α(|λ|) → 0 as |λ| → 1,

where α = αM is the function from Lemma 4.2.

Proof of the corollary. The proof follows immediately from the fact that the
scalar weight w, w(ξ) =

(
W (ξ)e, e

)
Cd is the Muckenhoupt (A2) weight with

the Muckenhoupt norm at most M (see [11], proof of Corollary 2.4). �

We now return to the proof of the theorem.
The condition W−1 ∈ L1 implies that

∫
T log det W (ξ)dm(ξ) > −∞, hence

(see [7]) there exists a factorization of W of the form W = F ∗F , where F
is an outer matrix function in H2.

Take e ∈ Cd and let us compute the distance

dist
L2(W )

{z−1e, span{znCd : n ≥ 0}} = dist
L2(W )

{e, span{znCd : n > 0}}.

By the vectorial version of the Szegö theorem (see [7]) this distance is exactly
‖F (0)e‖. Using the Möbius transformation of the disk one can get from there

dist
L2(W )

{
(1− |λ|2)1/2

z − λ
e, span{znCd : n ≥ 0}

}
= ‖F (λ)e‖

Cd
.

Writing the Fourier series expansion of (1−|λ|2)1/2

z−λ

(1− |λ|2)1/2

z − λ
= (1− |λ|2)1/2

∞∑
n=0

λnz−(n+1)

one can see that for any fixed N > 0 the function (1−|λ|2)1/2

z−λ e is almost in
the “past” X−N

as |λ| → 1. Namely,

fλ =
(1− |λ|2)1/2

z − λ
e

= (1− |λ|2)1/2
N−1∑
n=0

λnz−(n+1)e + (1− |λ|2)1/2
∞∑

n=N

λnz−(n+1)e

= f1
λ + f2

λ ,
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where f2
λ ∈ X−N

, and f1
λ is small,

‖f1
λ‖L2(W )

‖fλ‖L2(W )

≤
(1− |λ|2)1/2N · ‖e‖

L2(W )(
W (λ)e, e

)1/2

Cd

=
(1− |λ|2)1/2N ·

(
W (0)e, e

)1/2

Cd(
W (λ)e, e

)1/2

Cd

≤ Nα(|λ|)1/2 → 0,

as |λ| → 1, where α(.) is as in Lemma 4.2 and Corollary 4.3.
Since X0 and XN are asymptotically orthogonal, the shift invariance im-

plies that the subspaces X−N and X0 are asymptotically orthogonal as well.
Taking |λ| → 1 and then N →∞ we can conclude that

‖F (λ)e‖
Cd

/‖W (λ)1/2e‖
Cd

= dist
L2(W )

{
(1− |λ|2)1/2

z − λ
e, span{znCd : n ≥ 0}

}
/ ‖fλ‖

L2(W )

≥ 1− β(|λ|) → 1,

where β(.) depends only on the Muckenhoupt norm of W and β(|λ|) → 0 as
|λ| → 1.

The last inequality implies

‖W (λ)1/2F (λ)−1‖ ≤ (1− β(|λ|))−1.(4.2)

Note that since ‖F (λ)e‖
Cd

/‖W (λ)1/2e‖
Cd
≤ 1 for all e ∈ Cd, we have

‖W (λ)1/2F (λ)−1‖ ≥ 1.

We will show a little later that under assumptions of the theorem the
subspaces X0 and XN in the weighted space L2(W−1) are asymptotically
orthogonal as well. The factorization W = F ∗F yields the factorization
W−1 = F−1(F−1)∗ of W−1. Similarly to the previous case

dist
L2(W−1)

{
(1− |λ|2)1/2

1− λz
e, span{znCd : n ≥ 0}

}
= ‖F−1(λ)∗e‖

Cd
= ‖F (λ)−1∗e‖

Cd
.

Acting as before we get

‖W−1(λ)1/2F (λ)∗‖ ≤ (1− β1(|λ|))−1(4.3)

where β1(|λ|) → 0 as |λ| → 1.
Combining (4.2) and (4.3) we get

‖W (λ)1/2W−1(λ)1/2‖ ≤ (1− β(|λ|))−1(1− β1(|λ|))−1 → 1 as |λ| → 1 .

So, we completed the proof modulo the following lemma. �



372 S. TREIL AND A. VOLBERG

This lemma also gives us the equivalence 1 ⇐⇒ 2.

Lemma 4.4. Under assumptions of Theorem 4.1 the weight W−1 is a spec-
tral density of a completely regular process, i.e., the spaces X0 and XN are
asymptotically orthogonal (as N →∞) in the weighted space L2(W−1).

Proof. It is enough to show that

‖P+

∣∣ span{X0, X
N}‖

L2(W−1)→L2(W−1)
→ 1 as N →∞.

The later is true because

‖P+

∣∣ span{X0, X
N}‖

L2(W−1)→L2(W−1)

= ‖W−1/2
(
P+

∣∣ span{X0, X
N}
)
W 1/2‖

L2→L2

= ‖W 1/2
(
P+

∣∣ span{X0, X
N}
)
W−1/2‖

L2→L2

= ‖P+

∣∣ span{X0, X
N}‖

L2(W )→L2(W )

and
‖P+

∣∣ span{X0, X
N}‖

L2(W )→L2(W )
→ 1 as N →∞

(since X0 and XN are asymptotically orthogonal in L2(W )). �

5. Vanishing Carleson measures.

Recall that W (λ) and W−1(λ) denote harmonic extensions at the point
λ ∈ D of the weights W and W−1 respectively.

Lemma 5.1. Let a matrix weight W satisfy

lim
|λ|→1

‖W (λ)1/2
(
W−1

)
(λ)1/2‖ = 1.

Then
lim sup
|λ|→1

{
det
(
W (λ)

)
exp
(
−
[
log det W

]
(λ)
)}

= 1 .

Proof. First of all let us notice that the assumption of the lemma implies that
W,W−1 ∈ L1(T), therefore log(det W ) ∈ L1(T). Therefore there exists a
factorization W = F ∗F a.e. on T, where F is an outer function in H2(Md×d).

Since F is an outer function in H2, det F is an outer function in H2/d.
Therefore

|det F (z)| = exp {(log |det F |) (z)} = exp
{

1
2

(log det W ) (z)
}

.(5.1)

It is well known fact that F ∗(z)F (z) ≤ W (z) for any z ∈ D, where ≤
means the inequality for quadratic forms. There are many proofs of this
fact, for example it admits a very simple operator-theoretic interpretation
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which is in fact hidden in the proof of Theorem 4.1. Explanation that we
present here is more function-theoretic: Direct computation shows that

∆ (F (z)∗F (z)) = 4
(
∂̄F (z)∗

)
(∂F (z)) = 4 (∂F (z))∗ (∂F (z)) ≥ 0 ,

so for any e ∈ Cd the function ‖F (z)e‖2 is subharmonic and coincide with
(W (ξ)e, e) on T.

We can do the same factorization for W−1. Namely, let G be an outer
matrix-valued function in H2(Md×d) such that W−1 = G∗G on T. We should
point out to the reader that in general G does not necessarily coincide with
F−1. However, applying (5.1) to G one can conclude that

|det G(z)| = exp
{

1
2
(
log det W−1

)
(z)
}

= |det F (z)|−1.(5.2)

Now we are in position to prove the lemma. By the assumption

lim
|z|→1

∥∥∥W (z)1/2(W−1)(z)1/2
∥∥∥ = 1,(5.3)

and therefore,
lim
|z|→1

∣∣det(W (z)) det
(
(W−1)(z)

)∣∣ = 1.

Using (5.2) one can rewrite the last identity as

lim
|z|→1

{[
det W (z)/|det F (z)|2

] [
det W−1(z)/|det G(z)|2

]}
= 1.

Since F (z)∗F (z) ≤ W (z) and G(z)∗G(z) ≤ W−1(z), expressions in brackets
are at least 1, so, taking into account (5.1) we get

lim
|z|→1

[detW (z)/ exp {(log det W )(z)}] = 0

or equivalently

lim
|z|→1

log {det(W (z))} − (log det W ) (z) = 0 .(5.4)

�

Theorem 5.2. A matrix weight W satisfies

lim sup
|λ|→1

{
det
(
W (λ)

)
exp
(
−
[
log det W

]
(λ)
)}

= 1

if and only if the measures∥∥∥∥W (z)−1/2

(
∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

and ∥∥∥∥W (z)−1/2

(
∂

∂y
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

are vanishing Carleson measures.
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The implication 3 =⇒ 4 of Theorem 1.3 follows immediately from Theo-
rem 5.2 and Lemma 5.1.

To prove the theorem we need the following well known description of
vanishing Carleson measures:

Lemma 5.3. A measure µ in the unit disk D is a vanishing Carleson mea-
sure if and only if

lim
|λ|→1

∫
D

1− |λ|2

|1− λz|2
dµ(z) = 0.

We also need the following lemma that was proved in [11], see Lemma
3.1 there.

Lemma 5.4. Let W be a harmonic function of n variables with values in
the space of strictly positive d× d matrices (W (x) = W (x)∗ > 0 ∀x). Then

∆ (log(det W )) = −
n∑

j=1

trace

((
W−1/2 ∂W

∂xj
W−1/2

)2
)

.

Proof of Theorem 5.2. The proof below follows the lines of the proof of The-
orem 3.2 of [11].

By Green’s formula and Lemma 5.4

log {det(W (s))} − (log det W ) (s)

= − 1
2π

∫∫
D

log
∣∣∣∣1− sz

z − s

∣∣∣∣∆ log {det(W (z))} dxdy

=
1
4π

∫∫
D

{
trace

(
W (z)−1/2 ∂W (z)

∂x
W (z)−1/2

)2

+ trace
(

W (z)−1/2 ∂W (z)
∂y

W (z)−1/2

)2
}

log
∣∣∣∣1− sz

z − s

∣∣∣∣2 dxdy.

Using an elementary inequality log(1/a) ≥ 1 − a for 0 < a ≤ 1 and the
fact that ‖A‖ ≤ traceA for a nonnegative matrix A, the last integral is at
least

1
4π

∫∫
D

∥∥∥∥W (z)−1/2 ∂W (z)
∂x

W (z)−1/2

∥∥∥∥2

log
∣∣∣∣1− sz

z − s

∣∣∣∣2 dxdy

≥ 1
4π

∫∫
D

∥∥∥∥W (z)−1/2 ∂W (z)
∂x

W (z)−1/2

∥∥∥∥2
(

1−
∣∣∣∣ z − s

1− sz

∣∣∣∣2
)

dxdy

=
∫∫

D

∥∥∥∥W (z)−1/2 ∂W (z)
∂x

W (z)−1/2

∥∥∥∥2

· (1− |s|2)(1− |z|2)
|1− sz|2

dxdy.
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Together with (5.4) this imply

lim
|s|→1

∫∫
D

(1− |s|2)
|1− sz|2

·
∥∥∥∥W (z)−1/2 ∂W (z)

∂x
W (z)−1/2

∥∥∥∥2

(1− |z|2) dxdy = 0

that yields that the measure
∥∥W (z)−1/2

(
∂
∂xW (z)

)
W (z)−1/2

∥∥2
(1−|z|2) dxdy

is a vanishing Carleson measure.

The measure
∥∥∥W (z)−1/2

(
∂
∂yW (z)

)
W (z)−1/2

∥∥∥2
(1− |z|2) dxdy is treated

similarly.
To prove the opposite implication, let us estimate the integral∫∫

D
trace

(
W (z)−1/2 ∂W (z)

∂x
W (z)−1/2

)2

log
∣∣∣∣1− sz

z − s

∣∣∣∣2 dxdy

(the integral with ∂W/∂y can be estimated absolutely the same way). De-
note by bs a Blaschke factor with zero at the point s, bs(z) = (z−s)(1−sz)−1.

First of all, we can estimate the trace by d · ‖ · ‖, where d is dimension of
the space. So we can estimate the integral by

C

∫∫
D

∥∥∥∥W (z)−1/2 ∂W (z)
∂x

W (z)−1/2

∥∥∥∥2

log |bs(z)|−2dxdy

=
∫∫

|bs(z)|<ε

· · · +
∫∫

|bs(z)|≥ε

· · · .

To estimate the second integral we notice that

log |bs(z)|−2dxdy ≤ C(ε)
(1− |s|2)(1− |z|2)

|1− sz|2

for |bs(z)| ≥ ε, and since the measure is a vanishing Carleson measure we
can make the integral as small as we want when |s| → 1.

To estimate the first integral let make a trivial observation: If w ∈ L1(T),
w ≥ 0 and w(z) denotes its harmonic extension at the point z, then for all
z such that |z| ≤ 1/2 (and therefore for all z such that |z| < ε ≤ 1/2)

∂

∂x
w(z) ≤ Cw(0),

where C is an absolute constant. Combining this observation with the Har-
nack inequality w(0) ≤ C ′w(z), |z| ≤ 1/2, and applying it to functions
w(.) =

(
W (·)e, e)Cd we get the inequality for quadratic forms

∂

∂x
W (z) ≤ CεW (0) ≤ C1W (z).

This implies∥∥∥∥W (z)−1/2
( ∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥ ≤ C1, ∀z : |z| < ε ≤ 1/2.
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Using the Möbius transformation z 7→ bs(z) we get∥∥∥∥W (z)−1/2
( ∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥ ≤ Cε , ∀z : |bs(z)| < ε ≤ 1/2 .

Since ∫∫
|bs(z)|≤ε

log |bs(z)|−2dxdy ≤ Cε2 log
1
ε

,

we can estimate the first integral by Cε2 log(1/ε); we can make this number
as small as we want by picking sufficiently small ε.

�

6. Embedding theorem and equivalent norms.

By analogy with the scalar case (see [12]) we will say that a matrix weight
W satisfies the invariant A∞ condition if

sup
s∈D

{
det
(
W (s)

)
exp
(
−
[
log det W

]
(s)
)}

< ∞ .(invA∞)

The supremum is called the invariant A∞ norm of W .
Theorem 5.2 implies that if the measures∥∥∥∥W (z)−1/2

(
∂

∂x
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

and ∥∥∥∥W (z)−1/2

(
∂

∂y
W (z)

)
W (z)−1/2

∥∥∥∥2

(1− |z|2)dxdy

are vanishing Carleson measures then the weight W satisfies the invariant
A∞ condition.

Literally repeating the proof of Theorem 5.2 one can obtain that the
weight W satisfies the invariant A∞ condition if and only if the above mea-
sures are Carleson.

We will need the following “embedding theorem”. More general result
was proved in [11], Lemma 4.1.

Lemma 6.1. Let W be a matrix weight satisfying the invariant A∞ condi-
tion, and let µ be a Carleson measure with the Carleson norm ‖µ‖

C
. Then

for any analytic (or antianalytic) vector-function f , the following inequality
holds,∫∫

D
(W (z)f(z), f(z)) dµ(z) ≤ C‖µ‖

C

∫
T
(W (ξ)f(ξ), f(ξ))dm(ξ),

where the constant C depends the dimension d and the invariant A∞ norm
of W .
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Proof. The invariant A∞ condition implies that log det W ∈ L1, so there
exists (see [7]) an outer function F ∈ H2(Md×d) such that W = F ∗F . It is
well known (see again [7]) that

|det F (z)| = exp
{

1
2
[
log det W

]
(z)
}

.

It is well known and it was already shown it in the proof of Lemma 5.1 that
F (z)∗F (z) ≤ W (z). Hence

‖W (z)1/2F (z)−1e‖ ≥ ‖e‖, e ∈ Cd .(6.5)

Since∣∣∣det
{

W (z)1/2F (z)−1
}∣∣∣ = {det

(
W (λ)

)
exp
(
−
[
log det W

]
(λ)
)}1/2

≤ C

we can estimate
‖W (z)1/2F (z)−1e‖ ≤ C .

Together with (6.5) it implies that (W (z)e, e) and ‖F (z)e‖2 are equivalent
in a sense of two-sided estimate. Therefore∫∫

D
(W (z)f(z), f(z)) dµ(z)

≤ C

∫∫
D
(F (z)f(z), F (z)f(z)) dµ(z)

≤ C‖µ‖
C

∫
T
(F (ξ)f(ξ), F (ξ)f(ξ))dm(ξ)

= C‖µ‖
C

∫
T
(W (ξ)f(ξ), f(ξ))dm(ξ).

�

We also need the following simple lemma.

Lemma 6.2 (equivalence of weighted norms). Let W be a matrix weight
satisfying the invariant A∞ condition. There exist a constant C such that for
any analytic or antianalytic vector-function f in L2(W ) satisfying f(0) = 0

1
C

∫
T
(Wf, f)dm ≤

∫∫
D
(W (z)f ′(z), f ′(z)) log

1
|z|

dxdy ≤ C

∫
T
(Wf, f)dm.

Proof. Let us recall the the operators ∂ and ∂ are defined as

∂f =
1
2

(
∂f

∂x
− i

∂f

∂y

)
, ∂f =

1
2

(
∂f

∂x
+ i

∂f

∂y

)
.

Recall that for analytic functions ∂f = f ′ and ∂f = 0.
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Let f be an analytic function, f(0) = 0. Using the Green’s formula and
taking into account that f(0) = 0 and ∆ = 4∂∂ = 4∂∂ we get∫

T

(
Wf, f

)
dm =

1
2π

∫∫
D

∆
(
W (z)f(z), f(z)

)
log

1
|z|

dxdy

=
2
π

∫∫
D

(
∂W (z)f ′(z), f(z)

)
log

1
|z|

dxdy

+
2
π

∫∫
D

(
∂W (z)f(z), f ′(z)

)
log

1
|z|

dxdy

+
2
π

∫∫
D

(
W (z)f ′(z), f ′(z)

)
log

1
|z|

dxdy

=
2
π

(I1 + I2 + I3).

The last integral I3 is exactly the integral we want to estimate. Let us
denote A2 :=

∫
T
(
Wf, f

)
dm, B2 := I3. We want to show that A � B in a

sense of two sided estimate. Let us estimate I1:

|I1|

=
∣∣∣ ∫∫

D

(
W (z)−1/2∂W (z)W (z)−1/2W (z)1/2f ′(z),W (z)1/2f(z)

)
· log

1
|z|

dxdy
∣∣∣

≤
∣∣∣ ∫∫

D

∥∥W (z)−1/2∂W (z)W (z)−1/2
∥∥ · ∥∥W (z)1/2f ′(z)

∥∥ · ∥∥W (z)1/2f(z)
∥∥

· log
1
|z|

dxdy
∣∣∣

≤
(∫∫

D

∥∥W (z)−1/2∂W (z)W (z)−1/2
∥∥2(

W (z)f(z), f(z)
)

Cd log
1
|z|

dxdy

)1/2

·
(∫∫

D

(
W (z)f ′(z), f ′(z)

)
Cd log

1
|z|

dxdy

)1/2

.

The measure
∥∥W (z)−1/2∂W (z)W (z)−1/2

∥∥2 log 1
|z|dxdy is Carleson, so by

Lemma 6.1 the first term in the product is estimated by KA (K is a con-
stant). The second term is just B so |I1| ≤ KAB. Similarly |I2| ≤ KAB.
So

A2 = B2 + I1 + I2 ,

where
|I1|, |I2| ≤ KAB .

This immediately implies
1
C

A ≤ B ≤ CA
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for an appropriate choice of C. �

7. Proof of the implication 6 =⇒ 1.

To prove the implication 6 =⇒ 1 we need to estimate
∫

T(Wznf, g)dm, f ∈
X0, g ∈ X0, ‖f‖L2(W )

= ‖g‖
L2(W )

= 1.

Using the Green’s formula and taking into account that g(0) = 0 and
∆ = 4∂∂ = 4∂∂ we get∫

T
(Wznf, g)dm =

1
2π

∫∫
D

∆
(
W (z)znf(z), g(z)

)
Cd log

1
|z|

dxdy

=
2
π

∫∫
D

(
∂W (z)∂(znf(z)), g(z)

)
Cd log

1
|z|

dxdy

+
2
π

∫∫
D

(
∂W (z)(znf(z)), ∂g(z)

)
Cd log

1
|z|

dxdy

=
2
π

(I1 + I2).

The second integral is easy to estimate:

|I2|

=
∣∣∣ ∫∫

D

(
W (z)−1/2∂W (z)W (z)−1/2W (z)1/2(znf(z)),W (z)1/2∂g(z)

)
Cd

· log
1
|z|

dxdy
∣∣∣

≤
∫∫

D
‖W (z)−1/2∂W (z)W (z)−1/2‖ · ‖W (z)1/2(znf(z))‖ · ‖W (z)1/2∂g(z)‖

· log
1
|z|

dxdy

≤
(∫∫

D
|z|2n · ‖W (z)−1/2∂W (z)W (z)−1/2‖2 ·

(
W (z)f(z), f(z)

)
Cd

· log
1
|z|

dxdy

)1/2

·
(∫∫

D

(
W (z)∂g(z), ∂g(z)

)
Cd log

1
|z|

dxdy

)1/2

.

The last term is equivalent to the norm ‖g‖
L2(W )

(see Lemma 6.2), so by
Lemma 6.1

|I2| ≤ ‖f‖L2(W )
· ‖g‖

L2(W )

·
∥∥∥∥|z|2n · ‖W (z)−1/2∂W (z)W (z)−1/2‖ log

1
|z|

dxdy

∥∥∥∥1/2

C

.
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Since the measure ‖W (z)−1/2∂W (z)W (z)−1/2‖ log 1
|z|dxdy is a vanishing

Carleson measure, the Carleson norm∥∥∥∥|z|2n · ‖W (z)−1/2∂W (z)W (z)−1/2‖ log
1
|z|

dxdy

∥∥∥∥1/2

C

→ 0

as n →∞. So |I2| → 0 as n →∞.
To estimate I1 we pick r < 1 close to 1 and split the integral into two:

I1 =
∫∫

rD . . . +
∫∫

D\rD . . . . Acting as with I2 we can estimate∣∣∣∣∫∫
X

. . .

∣∣∣∣
≤
(∫∫

X
·‖W (z)−1/2∂W (z)W (z)−1/2‖2 ·

(
W (z)g(z), g(z)

)
Cd

· log
1
|z|

dxdy

)1/2

·
(∫∫

X

(
W (z)∂

(
znf(z)

)
, ∂
(
znf(z)

))
Cd log

1
|z|

dxdy

)1/2

,

where X is either rD or D\rD. Note that both terms are uniformly bounded.
We can say even more. If X = rD the second term can be made as small

as we wish by picking sufficiently large n.
Let now X = D\rD. The measure ‖W (z)−1/2∂W (z)W (z)−1/2‖ log 1

|z|dxdy

is a vanishing Carleson measure, so for r sufficiently close to 1 its restriction
onto D \ rD has the Carleson norm as small as we want. So by Lemma 6.1
the first term is as small as we want if r is sufficiently close to 1.

8. A counterexample to Peller’s conjecture.

In this section we are going to construct a weight W , such that W−1 ∈ L1,
log W ∈ VMO, but the corresponding stationary process is not completely
regular (i.e., the weight W does not satisfy any of the conditions 1–6 of
Theorem 1.3).

Let

W = U∗
(

1 0
0 δ(z)

)
U, U =

(
cos α − sinα
sinα cos α

)
.

Here
δ(eit) = 1/ log(1/|t|), −1/4 ≤ t ≤ 1/4,

and δ is a continuous function bounded away from 0 and ∞ on the rest of
the circle, and

α(eit) = (t/|t|)δ(eit)1/4, −1/4 ≤ t ≤ 1/4,

and again α is continuous on the rest of the circle.
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Then

log W = U∗
(

0 0
0 log δ

)
U =

(
sin2 α log δ sinα cos α log δ
sinα cos α log δ cos2 α log δ

)
,

and this matrix clearly belongs to VMO: log δ = log log 1/|t| (considered
only in a neighborhood of 0) is a “typical” unbounded function in VMO, so
cos2 α log δ ∈ VMO, and all other entries of the matrix are continuous.

Let us now show that the weight W does not even satisfies the Mucken-
houpt condition (A2). Direct computations show that

W =
(

cos2 α − sinα cos α
− sinα cos α sin2 α

)
+ δ

(
sin2 α sinα cos α

sinα cos α cos2 α

)
and

W−1 =
(

cos2 α − sinα cos α
− sinα cos α sin2 α

)
+ δ−1

(
sin2 α sinα cos α

sinα cos α cos2 α

)
.

If we pick I to be a symmetric arc [e−iε, eiε] (ε > 0 is small), then off-diagonal
entries of W

I
and (W−1)

I
equal 0, and so we can estimate

W
I
≥ C

(
cos2 α(ε) 0

0 sin2 α(ε)

)
,

(W−1)
I
≥ C

(
δ(ε)−1 sin2 α(ε) 0

0 δ(ε)−1 cos2 α(ε)

)
.

Therefore∥∥[W
I
]1/2[(W−1)

I
]1/2
∥∥ ≥ Cδ(ε)−1 sinα(ε) cos α(ε) →∞ as ε → 0 .
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