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Let g be a noncompact real form of the simple complex Lie
algebra gc of type E7. Up to isomorphism, there are exactly
three such algebras: EV, EVI, and EVII in Cartan notations.
For each of these algebras we obtain a list of representatives
of the adjoint orbits of standard triples (E, H, F ), i.e., triples
{E, H, F} ⊂ g spanning a subalgebra isomorphic to sl2(R),
and such that [H, E] = 2E, [H, F ] = −2F , and [F, E] = H.
These representative standard triples are chosen to be Cayley
triples with respect to a fixed Cartan decomposition of g.

1. Introduction.

The nilpotent adjoint orbits in noncompact real forms of exceptional simple
Lie algebras have been classified in our papers [4, 5]. This classification is
based on the so-called Kostant-Sekiguchi bijection for which we refer to [2]
and [7]. See Section 5 for a more detailed discussion of this bijection. In our
first two papers mentioned above, we did not compute the representatives
of the nilpotent orbits.

This paper is a sequel to [7] and we shall freely use the notations intro-
duced there. In that paper we have compiled a list of representatives of
G-orbits of standard triples (E,H, F ) in g where g is a noncompact real
form of gc, and gc is a simple complex Lie algebra of type G2, F4, or E6. In
fact these representative triples were chosen to be real Cayley triples with
respect to a fixed Cartan decomposition of g. In the present paper we ac-
complish the same objective for noncompact real forms g of gc when the
latter is of the type E7. Up to Gc-conjugacy, there are exactly 3 such real
forms. They are denoted by EV, EVI, EVII or E7(7), E7(−5), E7(−25), respec-
tively. The nilpositive elements E of these representative Cayley triples are
representatives of the nonzero nilpotent adjoint orbits.
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By using a result from our recent note [6] it is easy to determine which
complex nilpotent adjoint orbits possess real points. It is more delicate to
determine the number of real nilpotent orbits that are contained in a given
complex orbit.

We record here that D.R. King [8, p. 254] has detected an error in [5,
Table VIII]. Namely the last entry for orbit 5 of that table should be sl(3,C)
instead of 2su(2, 1).

Several misprints in our paper [4] have been mentioned in [7]. There is
one more: Namely on p. 515, in Table XII, the labels “020220 0” of the
orbit No. 31 (given in the second column) should be replaced by “020220
2”. Consequently these labels should also be corrected in [2, p. 158].

2. The root system of E7.

We denote by h a maximally split Cartan subalgebra of g which is stable
under the Cartan involution θ, and by hc its complexification. The number
of positive roots of gc = E7 is N = 63. The positive roots are enumerated as
α1, α2, . . . , αN with Π = {α1, . . . , α7} as a base. The enumeration is chosen
so that the heights increase, i.e., ht(αi) ≤ ht(αj) for i < j. The negative
root −αi is written also as α−i. The extended Dynkin diagram of E7 is
given in Fig. 1.

b b b b b b bα−63 α1 α3 α4 α5 α6 α7

b α2

Figure 1.

Since E7 is simply laced, if αi = k1α1 + · · · + k7α7 is a positive root,
then the corresponding coroot Hi is given by Hi = k1H1 + · · ·+ k7H7 . Our
enumeration of positive roots αi (and coroots Hi) is given in Table 1.
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Table 1.
Positive roots of E7.

i αi,Hi i αi,Hi i αi,Hi

1 1000000 22 0111100 43 1112210
2 0100000 23 0101110 44 1112111
3 0010000 24 0011110 45 0112211
4 0001000 25 0001111 46 1122210
5 0000100 26 1111100 47 1122111
6 0000010 27 1011110 48 1112211
7 0000001 28 0112100 49 0112221
8 1010000 29 0111110 50 1123210
9 0101000 30 0101111 51 1122211

10 0011000 31 0011111 52 1112221
11 0001100 32 1112100 53 1223210
12 0000110 33 1111110 54 1123211
13 0000011 34 1011111 55 1122221
14 1011000 35 0112110 56 1223211
15 0111000 36 0111111 57 1123221
16 0101100 37 1122100 58 1223221
17 0011100 38 1112110 59 1123321
18 0001110 39 1111111 60 1223321
19 0000111 40 0112210 61 1224321
20 1111000 41 0112111 62 1234321
21 1011100 42 1122110 63 2234321

3. The structure constants of E7.

As in [7], we use an algorithm of J. Kurtzke [9] to fix the choice of a Chevalley
basis of gc:

Hi, 1 ≤ i ≤ 7; Xi, X−i, 1 ≤ i ≤ 63.

If αi + αj = αk, then
[Xi, Xj ] = N(i, j)Xk.

As all roots of E7 have the same length, the nonzero structure constants are
±1, i.e., N(i, j) = ε(i, j).

We specify that N(1, 3) = +1. Then, by Kurtzke’s algorithm,

N(3, 4) = N(5, 6) = −1, N(4, 2) = N(4, 5) = N(6, 7) = +1,

and N(i, j) = +1 whenever αi + αj is a root and 1 ≤ i ≤ 7 < j ≤ 63.
Furthermore all other N(i, j)’s are uniquely determined.

For the convenience of the reader, we list in the Appendix, the nonzero
structure constants N(i, j) for all i > 0. For i < 0 one can use the formula

N(−i,−j) = N(i, j).
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4. The conjugation σ.

We recall that σ denotes the conjugation of gc with respect to g, and that
hc is σ-invariant. The action of σ on hc induces naturally an action on the
dual space of hc which preserves Φ. As σ acts on Φ as an automorphism, it
suffices to know the action of σ on Π. If σ(αi) = αj we also write σ(i) = j.
Note that σ(i) = j implies that σ(−i) = −j.

One can further assume that the Chevalley basis has been chosen so that,
in addition to the properties mentioned earlier, the action of σ on the Xi’s
is given by

σ(Xi) = ξiXσ(i)

where ξi = ±1. We recall that ξi = 1 whenever αi ∈ Φ0, and ξ−i = ξi for
all i. For all three noncompact real forms g of gc we may choose ξi = 1 for
1 ≤ i ≤ 7. With this information, one can compute the coefficients ξi for
arbitrary i.

For reader’s convenience we list the vectors σ(Xi), i > 0, in Table 2 for
EVI and Table 3 for EVII. When g is of type EV, i.e., g is the split real
form of gc, then the action of σ on Φ is trivial. Hence in that case we have
σ(Xi) = Xi for all i.

Table 2.
EVI = E7(−5) : Action of σ on the Xi’s.

i σ(Xi) i σ(Xi) i σ(Xi)
1 X1 22 −X10 43 X44

2 X−2 23 −X25 44 X43

3 X3 24 X36 45 −X35

4 X16 25 −X23 46 X47

5 X−5 26 −X14 47 X46

6 X19 27 X39 48 −X38

7 X−7 28 X28 49 X49

8 X8 29 −X31 50 X56

9 X11 30 X18 51 −X42

10 −X22 31 −X29 52 X52

11 X9 32 X32 53 −X54

12 X13 33 −X34 54 −X53

13 X12 34 −X33 55 X55

14 −X26 35 −X45 56 X50

15 X17 36 X24 57 −X60

16 X4 37 X37 58 X59

17 X15 38 −X48 59 X58

18 X30 39 X27 60 −X57

19 X6 40 X41 61 X61

20 X21 41 X40 62 X62

21 X20 42 −X51 63 X63
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Table 3.
EVII = E7(−25) : Action of σ on the Xi’s.

i σ(Xi) i σ(Xi) i σ(Xi)
1 X37 22 X−22 43 −X42

2 X−2 23 X24 44 X51

3 X−3 24 X23 45 −X13

4 X−4 25 −X36 46 X38

5 X−5 26 −X14 47 −X48

6 X40 27 X53 48 −X47

7 X7 28 X−28 49 X49

8 X32 29 −X18 50 −X33

9 X−9 30 X31 51 X44

10 X−10 31 X30 52 −X62

11 X−11 32 X8 53 X27

12 X35 33 −X50 54 −X39

13 −X45 34 X56 55 X61

14 −X26 35 X12 56 X34

15 X−15 36 −X25 57 −X60

16 X−16 37 X1 58 X59

17 X−17 38 X46 59 X58

18 −X29 39 −X54 60 −X57

19 X41 40 X6 61 X55

20 X21 41 X19 62 −X52

21 X20 42 −X43 63 X63

5. The Kostant-Sekiguchi bijection.

We refer the reader to our previous paper [7] for definition of G, K,Gc,Kc,
standard triples, normal triples, real and complex Cayley triples, etc.

In the following diagram we exhibit several important sets on which some
of the above groups act and some natural maps between these sets

Set Group

Nonzero nilpotent elements in g G
↑ α

Standard triples in g G
↑ β

Real Cayley triples in g K
↓ γ

Complex Cayley triples in gc K
↓ δ

Normal triples in gc Kc

↓ ε
Nonzero nilpotent elements in pc Kc
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The map α (resp. ε) sends the standard (resp. normal) triple (E,H, F ) to
its nilpositive part E. The maps β and δ are the inclusion maps. The map γ
is the Cayley transformation. Clearly γ is bijective and K-equivariant. The
maps β and δ are also K-equivariant. The map α is G-equivariant while ε
is Kc-equivariant. We shall prove below that, on the level of orbits, each of
these maps induces a bijection.

Since α is G-equivariant, it induces a map α∗ from the set of G-orbits of
standard triples in g to the set of G-orbits of nonzero nilpotent elements of
g. One defines similarly the maps β∗, γ∗, δ∗, and ε∗.

Proposition 1. Each of the maps α∗, . . . , ε∗ is a bijection.

Proof. All the references in this proof are to the book [2]. Since γ is bijective,
so is γ∗. The map α∗ is surjective by Theorem 9.2.1, and injective by
Theorem 9.2.3. The map ε∗ is surjective by Theorem 9.4.2, and injective by
Theorem 9.4.3. The map β∗ is surjective by Theorem 9.4.1. The fact that
δ∗ is surjective is shown in the proof of Theorem 9.5.1.

We shall prove now that β∗ is injective. Thus, if (E,H, F ) and (E′,H ′, F ′)
are real Cayley triples which are G-conjugate, we have to show that they
are also K-conjugate. As H,H ′ ∈ p, Lemma 9.4.5 shows that H and H ′

are K-conjugate. Hence without any loss of generality we may assume that
H ′ = H. By our hypothesis, there exists g ∈ G such that g · (E,H, F ) =
(E′,H, F ′). In particular, g ∈ ZG(H) and g · (E + F ) = E′ + F ′. Since
H is semisimple, the centralizer ZG(H) is reductive. By applying the proof
of Lemma 9.4.5 and observing that E + F,E′ + F ′ ∈ k, we conclude that
there exists k ∈ ZK(H) such that k · (E + F ) = E′ + F ′. The formula
[H,E + F ] = 2(E − F ) now implies that k · (E − F ) = E′ − F ′. It follows
that k · E = E′ and k · F = F ′, i.e., the real Cayley triples (E,H, F ) and
(E′,H, F ′) are K-conjugate.

By Theorem 9.5.1 the composite map ε∗ ◦ δ∗ ◦ γ∗ ◦ (β∗)−1 ◦ (α∗)−1 is a
bijection. It follows that δ∗ must be also injective. �

The composite map α∗ ◦ β∗ ◦ (γ∗)−1 ◦ (δ∗)−1 ◦ (ε∗)−1 is the Kostant–
Sekiguchi bijection from the set of nonzero nilpotent Kc-orbits in pc to the
set of nonzero nilpotent G-orbits in g. Explicitly, if (E,H, F ) is a real Cayley
triple and (E′,H ′, F ′) its Cayley transform, then the orbit G ·E corresponds
to the orbit Kc · E′.

Define a partial order in the set of nilpotent Kc-orbits in pc by setting
O1 ≥ O2 ifO2 is contained in the closure of the orbitO1. Define similarly the
partial order in the set of nilpotent G-orbits in g. It was shown very recently
[1] that the Kostant–Sekiguchi bijection preserves these partial orders.

6. Two invariants.
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Let (E,H, F ) be a real Cayley triple and (E′,H ′, F ′) its Cayley transform.
In order to distinguish between various G-orbits in g which are contained in
the same nonzero nilpotent Gc-orbit in gc, we use two invariants:

tr := trace
(
ad(H ′)2|kc

)
and

inv := dim Zkc(H ′).

The second one was used in our previous paper [7], while the first one is
easier to compute. It is evident from our tables that in some instances tr
fails to distinguish two orbits and we have to use inv. In a few instances inv
fails, while tr succeeds to distinguish two orbits. Our method for computing
the representative real Cayley triples (E,H, F ) in g is described in detail in
[7]. In a relatively few cases the method fails and we had to do extensive
computations to find the desired representatives. We shall describe the
difficulties that arise on one such example in Section 9 (the most difficult
case).

7. Pairs of orbits G · E and −G · E.

If E 6= 0 is a nilpotent element in g, then there exists an automorphism of g
which maps E to −E (see [3]). In general, this automorphism is not inner
and so E and −E may belong to different G-orbits. One can decide whether
or not G · E = −G · E by means of the following proposition.

Proposition 2. Let (E,H, F ) be a real Cayley triple and (E′,H ′, F ′) its
Cayley transform. Then G · E = −G · E if and only if Kc ·H ′ = −Kc ·H ′.

Proof. The triple (−E,H,−F ) is another real Cayley triple, and its Cay-
ley transform is (−F ′,−H ′,−E′). We have G · E = −G · E if and only if
the real Cayley triples (E,H, F ) and (−E,H,−F ) are G-conjugate. By the
properties of the Sekiguchi bijection, this is the case if and only if the corre-
sponding complex Cayley triples, namely (E′,H ′, F ′) and (−F ′,−H ′,−E′)
are Kc-conjugate. The latter condition is equivalent to the Kc-conjugacy of
H ′ and −H ′. �

The characteristics H ′ of the nonzero nilpotent Kc-orbits in pc are known
[4]. Since H ′ ∈ hc, H ′ and −H ′ are Kc-conjugate if and only if they belong
to the same orbit of the Weyl group W (kc, gc). Hence it is easy to check
whether or not G · E = −G · E.

When g is of Cartan type EVI, then Aut (g) = G, and so G ·E = −G ·E
for all nonzero nilpotent elements E ∈ g. In the other two cases, when g is
of Cartan type EV or EVII, there exist nonzero nilpotent elements E ∈ g
such that G · E 6= −G · E. Such pairs of orbits are easily recognizable from
Tables 4 and 6 because we give their representatives jointly as ±E.
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8. Tables of real Cayley triples.

We give here lists of representatives (E,H, F ) for K-orbits of real Cayley
triples in g, a noncompact real form of the simple complex Lie algebra gc of
type E7.

We record only the elements E and H because F can be easily computed
by using

F = θ(E) = θσ(E) = σu(E)
and σu(Xi) = X−i (for all i).

For the neutral element H, we list both the labels αi(H) for 1 ≤ i ≤ 7
and the coefficients ki in the linear combination H = k1H1 + · · ·+ k7H7 .

The nilpositive element E is written explicitly as a linear combination of
the root vectors Xi ,i > 0.

Note that the element H is always the characteristic of the nilpotent
orbit Gc ·E. On the other hand there is no natural choice for the nilpositive
element E. Our preference was to choose E so that its support (i.e. the
number of nonzero coefficients) is minimal even though this may have a
drawback of introducing irrational coefficients.
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Table 4.
Cayley triples in EV = E7(7).

αi(H) ki E tr inv
1 1000000 2, 2, 3, 4, 3, 2, 1 X63 32 31
2 0000010 2, 3, 4, 6, 5, 4, 2 X49 + X63 64 23

3, 4 0000002 2, 3, 4, 6, 5, 4, 3 ±(X7 + X49 + X63) 96 39
5 0010000 3, 4, 6, 8, 6, 4, 2 X37 + X55 + X61 96 19
6 2000000 4, 4, 6, 8, 6, 4, 2 X1 + X37 + X55 + X61 128 37
7 2000000 4, 4, 6, 8, 6, 4, 2

√
2(X1 + X62) 128 31

8, 9 0100001 3, 5, 6, 9, 7, 5, 3 ±(X30 + X47 + X53 + X59) 128 19
10, 11 1000010 4, 5, 7, 10, 8, 6, 3 ±(X27 + X39 + X49 160 21

+X53 −X54)
12 1000010 4, 5, 7, 10, 8, 6, 3 X27 + X39 + X49 160 15

+X53 + X54

13, 14 0001000 4, 6, 8, 12, 9, 6, 3 ±(X28 + X38 + X47 192 25
−X48 + X49)

15 0001000 4, 6, 8, 12, 9, 6, 3 X28 + X38 + X46 192 13
+X47 + X48 + X49

16, 17 0200000 4, 7, 8, 12, 9, 6, 3 ±(X2 + X28 −X38 + X46 224 49
+X47 + X48 + X49)

18, 19 0200000 4, 7, 8, 12, 9, 6, 3 ±(X2 + X28 + X38 + X46 224 25
+X47 + X48 + X49)

20 2000010 6, 7, 10, 14, 11, 8, 4
√

3(X1 + X37) + 2X49 320 15
21 0000020 4, 6, 8, 12, 10, 8, 4

√
2(X6 + X19 + X50 + X56) 256 23

22, 23 2000002 6, 7, 10, 14, 11, 8, 5 ±[X7 + 2X49 352 23
+
√

3(X1 + X37)]
24 0010010 5, 7, 10, 14, 11, 8, 4 X37 +

√
2(X24 + X33 288 11

+X41 + X48)
25 1001000 6, 8, 11, 16, 12, 8, 4 X28 + 2X49 +

√
3(X14 + X26) 352 11

26 0020000 6, 8, 12, 16, 12, 8, 4 X3 −X28 + 2X49 384 19
+
√

3(X14 + X26)
27 0020000 6, 8, 12, 16, 12, 8, 4 X3 + X28 + 2X49 384 21

+
√

3(X14 + X26)
28, 29 1000101 6, 8, 11, 16, 13, 9, 5 ±[X19 + X40 + 2X41 384 11

+
√

3(X21 + X33)]
30 2020000 10, 12, 18, 24, 18,

√
10X1 +

√
6(X3 896 19

12, 6 +X28 + X49)
31, 32 0110001 6, 9, 12, 17, 13, 9, 5 ±[X15 + X30 + 2X31 −X40 416 11

+
√

3(X26 + X38)]
33, 34 0110001 6, 9, 12, 17, 13, 9, 5 ±[X15 + X30 + 2X31 + X40 416 13

+
√

3(X26 + X38)]
35, 36 0001010 6, 9, 12, 18, 14, ±[−X18 + X30 + 2X32 + X33 448 17

10, 5 +X34 +
√

3(X29 −X31)]
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Table 4.
(continued)

αi(H) ki E tr inv
37 0001010 6, 9, 12, 18, 2X37 +

√
2(X29 + X34) 448 9

14, 10, 5 +
√

3(X18 + X30)
38 2000020 8, 10, 14, 20, 2(X1 + X37) 640 19

16, 12, 6 +
√

3(X6 + X19 + X40 + X41)
39, 40 0000200 6, 9, 12, 18, ±[X5 + 2X18 + X28 + X29 480 33

15, 10, 5 −X30 −X31 +
√

3(X26 + X47)]
41, 42 0000200 6, 9, 12, 18, ±[X30 + 2X47 480 17

15, 10, 5 +
√

2(X28 + X33) +
√

3(X5 + X18)]
43 2000020 8, 10, 14, 20, 2(X1 + X37) 640 15

16, 12, 6 +
√

3(−X6 + X19 + X40 + X41)
44, 45 2000022 10, 13, 18, ±[3X7 + 2

√
2(X6 + X40) 1120 15

26, 21, 16, 9 +
√

5(X1 + X37)]
46, 47 2110001 10, 13, 18, ±[X30 +

√
10X1 928 11

25, 19, 13, 7 +
√

6(X15 + X31 + X40)]
48, 49 1001010 8, 11, 15, 22, ±[X28 + 2(X14 + X26) 672 11

17, 12, 6 +
√

3(X18 + X29 + X30 −X31)]
50 1001010 8, 11, 15, 22, X28 + 2(X14 + X26) 672 7

17, 12, 6 +
√

6(X18 + X36)
51, 52 2001010 10, 13, 18, ±[X18 −X30 +

√
10X1 960 13

26, 20, 14, 7 +
√

6(X28 + X29 + X31)]
53 2001010 10, 13, 18, X18 −X30 +

√
10X1 960 7

26, 20, 14, 7 +
√

6(X28 + X29 + X31)
54 0002000 8, 12, 16, 24, 2(X4 + X16) +

√
2(X15 + X21) 768 13

18, 12, 6 +
√

6(X24 + X39)
55, 56 2000200 10, 13, 18, ±[X5 −X18 + X30 +

√
10X1 992 25

26, 21, 14, 7
√

6(X28 + X29 + X31)]
57, 58 2000200 10, 13, 18, ±[X5 + X18 + X30 +

√
10X1 992 13

26, 21, 14, 7
√

6(X28 + X29 + X31)]
59 1001020 10, 14, 19, 3X28 + 2

√
2(X6 + X19) 1120 7

28, 22, 16, 8 +
√

5(X14 + X26)
60, 61 1001012 10, 14, 19, ±[3X7 + X28 + 2

√
2(X18 + X29) 1152 7

28, 22, 16, 9 +
√

2(X18 + X29)
+
√

5(X14 + X26)]
62 0020020 10, 14, 20, X3 − 3X28 + 2

√
2(X6 + X19) 1152 11

28, 22, 16, 8 +
√

5(X14 + X26)
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Table 4.
(continued)

αi(H) ki E tr inv
63 0020020 10, 14, 20, 28, X3 + 3X28 + 2

√
2(X6 + X19) 1152 13

22, 16, 8 +
√

5(X14 + X26)
64, 65 0110102 10, 15, 20, ±[X13 −X15 − 3X23 + X24 1216 11

29, 23, 16, 9 +2
√

2(X17 −X7)
+
√

5(X20 + X27)]
66 2020020 14, 18, 26, 36,

√
2(2X3 + 3X28) 1920 11

28, 20, 10 +
√

14X1 +
√

10(X6 + X19)
67, 68 0002002 10, 15, 20, 30, ±[3X7 +

√
5(X4 + X16) 1248 11

23, 16, 9 +
√

2(X15 + X21

+2X24 + 2X33)]
69, 70 0002002 10, 15, 20, 30, ±[2X4 + X27 −

√
10X17 1248 21

23, 16, 9 +
√

6(X13 + X20 −X23)
+
√

3(X26 −X19)]
71 0002020 12, 18, 24, 36, 2

√
3(X15 + X21) 1792 9

28, 20, 10 +
√

6(X4 + X16)
+
√

10(X6 + X19)
72, 73 2110102 14, 19, 26, 37, ±[X13 + X23 +

√
2(2X15 + 3X24) 1984 9

29, 20, 11 +
√

10(X16 −X7) +
√

14X1]
74, 75 2110110 14, 19, 26, 37, ±[X16 +

√
2(3X15 + 2X17) 1952 7

29, 20, 10 +
√

10(X12 + X25) +
√

14X1]
76, 77 2002002 14, 19, 26, 38, ±[X10 + X13 + X29 +

√
14X8 2016 9

29, 20, 11 +
√

2(3X9 + 2X18)
+
√

10(X17 −X19)]
78, 79 2002002 14, 19, 26, 38, ±[X4 + X13 +

√
14X1 + X23 2016 17

29, 20, 11 +
√

2(2X15 + 3X24)
+
√

10(X7 −X16)]
80 2002020 16, 22, 30, 44, 4X1 + 2

√
3(X6 + X19) 2688 9

34, 24, 12 +
√

7(X4 + X16)
+
√

15(X15 + X17)
81 2002020 16, 22, 30, 44, 4X1 + 2

√
3(X12 + X13) 2688 7

34, 24, 12 +
√

7(X4 + X16)
+
√

15(X10 + X22)
82, 83 2110122 18, 25, 34, 49, ±[3

√
2X1 + 2

√
6X17 + 2

√
7X6 3520 7

39, 28, 15 +
√

10X15 +
√

15(X7 + X16)]
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Table 4.
(continued)

αi(H) ki E tr inv
84 2022020 22, 30, 42, 60, 4(X6 + X19) +

√
22X1 4992 7

46, 32, 16 +
√

30(X4 + X16) +
√

42X3

85, 86 2002022 18, 25, 34, 50, ±[X11 + 3
√

2X1 + 2
√

6X10 3552 7
39, 28, 15 +2

√
7X12 +

√
10X22

+
√

15(X7 + X9)]
87, 88 2002022 18, 25, 34, 50, ±[−X11 + 3

√
2X1 + 2

√
6X10 3552 13

39, 28, 15 +2
√

7X12 +
√

10X22

+
√

15(X7 + X9)]
89, 90 2220202 22, 31, 42, 60, ±[−X2 − 4X5 + 4X7 5088 11

47, 32, 17 +X12 + X13 +
√

22X1

+
√

30(X9 + X18) +
√

42X3]
91, 92 2220222 26, 37, 50, 72, ±[

√
26X1 + 5

√
2X3 7392 9

57, 40, 21 +2
√

10X6 +
√

21X7

+
1√
5
(
√

33X5 −
√

77X2

−6
√

3X9 − 6
√

7X11)]
93, 94 2222222 34, 49, 66, 96, ±[

√
34X1 + 7X2 +

√
66X3 12768 7

75, 52, 27 +4
√

6X4 +
√

3(5X5 + 3X7)
+2

√
13X6]
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Table 5.
Cayley triples in EVI = E7(−5).

αi(H) ki E tr inv
1 1000000 2, 2, 3, 4, 3, 2, 1 X63 32 37
2 0000010 2, 3, 4, 6, 5, 4, 2 X49 −X63 48 33
3 0000010 2, 3, 4, 6, 5, 4, 2 X49 + X63 80 25
4 0010000 3, 4, 6, 8, 6, 4, 2 X37 −X55 + X61 48 37
5 0010000 3, 4, 6, 8, 6, 4, 2 X37 + X55 + X61 112 21
6 2000000 4, 4, 6, 8, 6, 4, 2 X1 −X37 + X55 −X61 32 67
7 2000000 4, 4, 6, 8, 6, 4, 2 X1 + X37 + X55 −X61 128 37
8 2000000 4, 4, 6, 8, 6, 4, 2 X1 + X37 + X55 + X61 160 35
9 1000010 4, 5, 7, 10, 8, 6, 3 X27 + X39 + X49 + X53 −X54 192 19
10 0001000 4, 6, 8, 12, 9, 6, 3 X28 + X38 + X46 240 19

+X47 −X48 + X49

11 0001000 4, 6, 8, 12, 9, 6, 3 −X28 + X38 + X46 208 15
+X47 −X48 + X49

12 2000010 6, 7, 10, 14, 11, 8, 4
√

3(X1 −X37) + 2X49 272 21
13 2000010 6, 7, 10, 14, 11, 8, 4

√
3(X1 + X37) + 2X49 368 21

14 0000020 4, 6, 8, 12, 10, 8, 4
1√
2
[X6 + X12 + X13 + X19 320 49

+X35 + X40 + X41 −X45

+i(X38 + X42 + X43 −X44

−X46 + X47 + X48 + X51)]
15 0000020 4, 6, 8, 12, 10, 8, 4

√
2(X6 + X19 + X50 + X56) 320 25

16 0010010 5, 7, 10, 14, 11, 8, 4
√

2(X24 + X36 + X38 −X48) 352 13
+X37

17 1001000 6, 8, 11, 16, 12, 8, 4 X28 + 2X49 +
√

3(X14 −X26) 432 21
18 1001000 6, 8, 11, 16, 12, 8, 4 X28 − 2X49 +

√
3(X14 −X26) 368 13

19 0020000 6, 8, 12, 16, 12, 8, 4 −X3 + X28 + 2X49 480 39
+
√

3(X14 −X26)
20 0020000 6, 8, 12, 16, 12, 8, 4 X3 −X28 + 2X49 352 23

+
√

3(X14 −X26)
21 0020000 6, 8, 12, 16, 12, 8, 4 X3 + X28 + 2X49 448 21

+
√

3(X14 −X26)
22 2020000 10, 12, 18, 24,

√
10X1 +

√
6(X3 −X28 + X49) 608 37

18, 12, 6
23 2020000 10, 12, 18, 24,

√
10X1 +

√
6(X3 + X28 + X49) 992 21

18, 12, 6
24 0001010 6, 9, 12, 18, 14, 10, 5 X29 −X31 + 2X37 + iX27 528 11

−X39 +
√

3(X18 + X30)
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Table 5.
(continued)

αi(H) ki E tr inv
25 2000020 8, 10, 14, 20, 2(X1 −X37) 672 33

16, 12, 6 +
√

3(X6 + X19 + X40 + X41)
26 2000020 8, 10, 14, 20, 2(X1 + X37) 800 17

16, 12, 6 +
√

3(X6 + X19 + X40 + X41)
27 1001010 8, 11, 15, 22, X28 + 2(X14 −X26) 832 9

17, 12, 6 +
√

3(X18 + X29 + X30 −X31)
28 2001010 10, 13, 18, 26,

√
10X1 + X18 + X30 1072 11

20, 14, 7 +
√

6(X28 + X29 −X31)
29 0002000 8, 12, 16, 24, X4 + X15 + X16 + X17 960 27

18, 12, 6 +X18 + X29 + X30 −X31

+
√

2(X9 + X10 + X11 −X22)
+2i(X27 −X39)

30 1001020 10, 14, 19, 28, 3X28 + 2
√

2(X6 + X19) 1328 13
22, 16, 8 +

√
5(X14 −X26)

31 0020020 10, 14, 20, 28, X3 + 2
√

2(X6 + X19) 1408 13
22, 16, 8 +3X28 +

√
5(X14 −X26)

32 0020020 10, 14, 20, 28, −X3 + 2
√

2(X6 + X19) 1312 23
22, 16, 8 +3X28 +

√
5(X14 −X26)

33 2020020 14, 18, 26, 36,
√

14X1 +
√

2(2X3 + 3X28) 2272 13
28, 20, 10 +

√
10(X6 + X19)

34 2020020 14, 18, 26, 36,
√

14X1 +
√

2(3X28 − 2X3) 1888 21
28, 20, 10 +

√
10(X6 + X19)

35 0002020 12, 18, 24, 36,
√

6(X4 + X15 + X16 2240 19
28, 20, 10 +X17 + iX20 − iX21)

+
√

10(X6 + X19)
36 2002020 16, 22, 30, 44, 4X1 + 2

√
3(X6 + X19) 3232 15

34, 24, 12 +
√

7(X4 + X16)
+
√

15(X15 + X17)
37 2022020 22, 30, 42, 60, 4(X6 + X19) +

√
22X1 5728 13

46, 32, 16 +
√

42X3 +
√

30(X4 + X16)
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Table 6.
Cayley triples in EVII = E7(−25).

αi(H) ki E tr inv
1, 2 1000000 2, 2, 3, 4, 3, 2, 1 ±X63 32 47
3, 4 0000010 2, 3, 4, 6, 5, 4, 2 ±(X49 −X63) 32 47
5 0000010 2, 3, 4, 6, 5, 4, 2 X49 + X63 96 31

6, 7 0000002 2, 3, 4, 6, 5, 4, 3 ±(X7 −X49 −X63) 0 79
8, 9 0000002 2, 3, 4, 6, 5, 4, 3 ±(X7 + X49 + X63) 128 47
10 2000000 4, 4, 6, 8, 6, 4, 2 X1 + X37 + X55 + X61 192 37

11, 12 1000010 4, 5, 7, 10, 8, ±(X27 + X39 + X49 224 21
6, 3 +X53 −X54)

13, 14 2000010 6, 7, 10, 14, ±[2X49 +
√

3(X1 + X37)] 416 31
11, 8, 4

15 0000020 4, 6, 8, 12,
√

2(X6 + X34 + X40 + X56) 384 31
10, 8, 4

16, 19 2000002 6, 7, 10, 14, ±[−X7 + 2X49 +
√

3(X1 + X37)] 384 31
11, 8, 5

17, 18 2000020 6, 7, 10, 14, ±[X7 + 2X49 +
√

3(X1 + X37)] 512 47
11, 8, 5

20 2000020 8, 10, 14, 20, 2(X1 + X37) 960 19
16, 12, 6 +

√
3(X6 + X19 + X40 + X41)

21, 22 2000022 10, 13, 18, 26, ±[
√

5(X1 + X37) 1536 31
21, 16, 9 +2

√
2(X6 + X40) + 3X7]

9. An elaborate example.

Let g be of type E7(−5) and Oc the complex nilpotent orbit of gc with
characteristic 0000020, i.e., H = 2H6. Then Oc ∩ g is the union of two
G-orbits, namely orbits No. 14 and 15 in Table 5.

The characteristic H defines a gradation of gc (and g) such that

gc =
2⊕

k=−2

g(2k)c.

The subspace g(0)c is a reductive subalgebra with 1-dimensional center and
the derived subalgebra of type A1 + D5. The derived subgroup of G(0)c is
isomorphic to

(Spin10 × SL2)/Z2 .

The dimensions of the spaces g(2k)c are as follows:

dim g(0)c = 49 ,
dim g(−2)c = dim g(2)c = 32 ,
dim g(−4)c = dim g(4)c = 10 .
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The subspace g(2)c has a basis consisting of the root vectors Xk, k ∈ I,
where I = I1 ∪ I2 and

I1 = {6, 12, 18, 23, 24, 27, 29, 33, 35, 38, 40, 42, 43, 46, 50, 53},

I2 = {13, 19, 25, 30, 31, 34, 36, 39, 41, 44, 45, 47, 48, 51, 54, 56}.
As a G(0)c-module, g(2)c is the tensor product of a half-spin module of
Spin10 and the 2-dimensional simple module of SL2. The subspace of g(2)c

spanned by the vectors Xk with k ∈ I1 (or k ∈ I2) is a half-spin module of
Spin10.

We find several subsets J ⊂ I such that the subspace of g(2)c spanned by
Xk with k ∈ J is σ-stable, for k, j ∈ J the difference αk − αj is not a root,
and H belongs to the subspace spanned by all coroots Hk with k ∈ J . All
of them have size 4. For instance, the set J = {6, 19, 50, 56} satisfies all the
conditions mentioned above. As σ(X6) = X19 and σ(X50) = X56 (see Table
2), the vector

E = (aX6 + āX19) + (bX50 + b̄X56)
is real in the sense that σ(E) = E, i.e., E ∈ g(2).

The equation [F,E] = H, where F = θ(E) = σu(E), implies that |a|2 =
|b|2 = 2. All possible choices for a and b produce an element E belonging to
the orbit 15. This is established by computing the invariant inv which turns
out to be 25 in all cases. The other sets J also produce only representatives
for the orbit 15.

In order to find a representative for the orbit 14 we had to undertake the
following tedious calculation. Since E ∈ g(2), i.e., E ∈ g(2)c and σ(E) = E,
the representative E must have the form

E = (aX6 + āX19) + (bX12 + b̄X13) + (cX18 + c̄X30)

+ (dX23 − d̄X25) + (eX24 + ēX36) + (fX27 + f̄X39)

+ (gX29 − ḡX31) + (hX33 − h̄X34) + (αX35 − ᾱX45)

+ (βX38 − β̄X48) + (γX40 + γ̄X41) + (δX42 − δ̄X51)

+ (εX43 + ε̄X44) + (ζX46 + ζ̄X47) + (ηX50 + η̄X56) + (θX53 − θ̄X54)

where a, b, . . . , θ are some complex numbers.
Since F = θ(E) = σu(E), we must have

F = (āX−6 + aX−19) + (b̄X−12 + bX−13) + (c̄X−18 + cX−30)

+ (d̄X−23 − dX−25) + (ēX−24 + eX−36) + (f̄X−27 + fX−39)

+ (ḡX−29 − gX−31) + (h̄X−33 − hX−34) + (ᾱX−35 − αX−45)

+ (β̄X−38 − βX−48) + (γ̄X−40 + γX−41) + (δ̄X−42 − δX−51)

+ (ε̄X−43 + εX−44) + (ζ̄X−46 + ζX−47) + (η̄X−50 + ηX−56)

+ (θ̄X−53 − θX−54).
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Next we have computed the bracket [F,E] by using the above expressions
for E and F and the list of the structure constants given in the Appendix.
As [F,E] = H where

H = 4H1 + 6H2 + 8H3 + 12H4 + 10H5 + 8H6 + 4H7 ,

we obtain the following system of equations.

Re (ef̄ + gh̄ + αβ̄ + γε̄) = 0
Re (cē + dḡ + βδ̄ + εζ̄) = 0
Re (cf̄ + dh̄− αδ̄ − γζ̄) = 0
Re (−aᾱ + bγ̄ + fη̄ + hθ̄) = 0
Re (aβ̄ − bε̄ + eη̄ + gθ̄) = 0
Re (−aδ̄ + bζ̄ + cη̄ + dθ̄) = 0

b̄c− ad̄ + ḡα + h̄β + eγ̄ + fε̄ + ζ̄η + δθ̄ = 0
ac̄ + b̄d− ēα− f̄β + gγ̄ + hε̄ + ζ̄θ − δη̄ = 0
aḡ − b̄e + cγ̄ + d̄α− f ζ̄ − h̄δ + βθ̄ + ε̄η = 0
ah̄− b̄f + cε̄ + d̄β + eζ̄ + ḡδ − αθ̄ − γ̄η = 0
aē + b̄g + c̄α− dγ̄ − f̄ δ + hζ̄ + βη̄ − ε̄θ = 0
af̄ + b̄h + c̄β − dε̄ + ēδ − gζ̄ − αη̄ + γ̄θ = 0

|f |2 + |h|2 + |β|2 + |δ|2 + |ε|2 + |ζ|2 + |θ|2 + |η|2 = 2
|a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |g|2 + |α|2 + |γ|2 = 2
|e|2 + |g|2 + |α|2 + |γ|2 + |δ|2 + |ζ|2 + |θ|2 + |η|2 = 2
|c|2 + |d|2 + |e|2 + |g|2 + |θ|2 + |η|2 + 2|α|2 + 2|γ|2 = 2 + |f |2 + |h|2.

After some judicious specializations and experimentations using the
Maple’s solve routine, we have found the following solution of the above
system:

a = b = 1/
√

2 , c = d = e = f = g = h = 0 ,

α = γ = 1/
√

2 , β = δ = ε = i/
√

2 ,

ζ = −i/
√

2 , η = θ = 0 .

This means that we have a real Cayley triple (E,H, F ) with

E =
1√
2
[X6 + X12 + X13 + X19 + X35 + X40 + X41 −X45

+i(X38 + X42 + X43 −X44 −X46 + X47 + X48 + X51)].

For this triple we find that inv = 49, and so E is a representative of the
orbit 14.

10. Appendix.

We list here the nonzero structure constants N(i, j) of E7 for i > 0 and j
arbitrary. The i-th entry in this list contains two sequences separated by a
semicolon. The first (resp., second) sequence consists of those j for which
N(i, j) is +1 (resp., −1). Note that each of these sequences has length 16.
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The nonzero structure constants of E7

1 3,10,15,17,22,24,28,29,31,35,36,40,41,45,49,62;
-8,-14,-20,-21,-26,-27,-32,-33,-34,-38,-39,-43,-44,-48,-52,-63

2 10,11,14,17,18,21,24,25,27,31,34,50,54,57,59,-9;
4,-15,-16,-20,-22,-23,-26,-29,-30,-33,-36,-39,-53,-56,-58,-60

3 9,11,16,18,23,25,30,32,38,43,44,48,52,61,-8,-10;
1,4,-15,-17,-22,-24,-29,-31,-36,-37,-42,-46,-47,-51,-55,-62

4 2,3,5,8,12,19,22,26,29,33,36,39,46,51,55,60;
-9,-10,-11,-14,-18,-25,-28,-32,-35,-38,-41,-44,-50,-54,-57,-61

5 9,10,13,14,15,20,35,38,41,42,44,47,57,58,-11,-12;
4,6,-16,-17,-19,-21,-22,-26,-40,-43,-45,-46,-48,-51,-59,-60

6 5,7,11,16,17,21,22,26,28,32,37,45,48,51,54,56;
-12,-13,-18,-23,-24,-27,-29,-33,-35,-38,-42,-49,-52,-55,-57,-58

7 12,18,23,24,27,29,33,35,38,40,42,43,46,50,53,-13;
6,-19,-25,-30,-31,-34,-36,-39,-41,-44,-45,-47,-48,-51,-54,-56

8 9,11,16,18,23,25,30,61,-1,-14,-37,-42,-46,-47,-51,-55;
4,28,35,40,41,45,49,-3,-20,-21,-26,-27,-33,-34,-39,-63

9 17,21,24,27,31,34,59,-4,-15,-16,-20,-23,-30,-53,-56,-58;
3,5,8,12,19,46,51,55,-2,-28,-32,-35,-38,-41,-44,-61

10 16,23,30,43,48,52,-4,-14,-15,-17,-24,-31,-37,-42,-47,-62;
1,2,5,12,19,26,33,39,60,-3,-28,-35,-41,-50,-54,-57

11 13,15,20,42,47,58,-4,-16,-17,-18,-21,-40,-43,-45,-48,-59;
2,3,6,8,29,33,36,39,55,-5,-25,-28,-32,-50,-54,-61

12 9,10,14,15,20,41,44,47,-6,-18,-19,-40,-43,-46,-59,-60;
4,7,28,32,37,54,56,-5,-23,-24,-27,-29,-33,-49,-52,-55
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13 40,43,46,50,53,-6,-19,-25,-30,-31,-34,-36,-39,-41,-44,-47;
5,11,16,17,21,22,26,28,32,37,-7,-49,-52,-55,-57,-58

14 16,22,23,29,30,36,-1,-4,-20,-21,-27,-34,-50,-54,-57,-63;
2,5,12,19,40,45,49,60,-8,-10,-32,-37,-38,-42,-44,-47

15 21,27,34,43,48,52,59,-2,-3,-20,-22,-28,-29,-35,-36,-41;
1,5,11,12,18,19,25,-9,-10,-37,-42,-47,-53,-56,-58,-62

16 13,24,27,31,34,42,47,-2,-5,-22,-23,-26,-28,-32,-60,-61;
3,6,8,10,14,55,57,-9,-11,-30,-40,-43,-45,-48,-53,-56

17 13,20,23,30,52,58,-3,-5,-21,-22,-24,-28,-46,-50,-51,-54;
1,2,6,9,33,38,39,44,-10,-11,-31,-37,-40,-45,-59,-62

18 15,20,22,26,47,51,-4,-6,-23,-24,-25,-27,-49,-50,-52,-61;
2,3,7,8,36,37,39,56,-11,-12,-35,-38,-40,-43,-57,-59

19 9,10,14,15,20,50,53,-5,-7,-25,-45,-48,-49,-51,-52,-55;
4,28,32,35,37,38,42,-12,-13,-30,-31,-34,-36,-39,-59,-60

20 59,-1,-2,-8,-26,-32,-33,-37,-38,-39,-42,-44,-47,-53,-56,-58;
5,11,12,17,18,19,24,25,31,40,45,49,-9,-14,-15,-63

21 13,23,29,30,35,36,41,58,-1,-5,-8,-26,-27,-32,-37,-59;
2,6,9,15,49,-11,-14,-17,-34,-43,-46,-48,-50,-51,-54,-63

22 13,27,34,52,-2,-3,-5,-26,-28,-29,-37,-40,-45,-53,-56,-62;
1,4,6,14,18,25,38,44,57,-15,-16,-17,-36,-46,-51,-60

23 31,34,47,51,54,-2,-6,-12,-29,-30,-33,-35,-38,-40,-43,-53;
3,7,8,10,14,17,21,37,-9,-16,-18,-49,-52,-58,-60,-61

24 20,26,30,32,-3,-6,-12,-27,-29,-31,-35,-40,-55,-57,-59,-62;
1,2,7,9,16,39,44,48,56,-10,-17,-18,-42,-46,-49,-50

25 15,20,22,26,29,33,53,-4,-7,-11,-30,-31,-34,-54,-57,-59;
2,3,8,37,42,46,-13,-18,-19,-41,-44,-45,-48,-49,-52,-61
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26 10,13,35,41,-1,-2,-5,-8,-32,-33,-43,-46,-48,-51,-60,-63;
4,6,18,24,25,31,49,57,-16,-20,-21,-22,-37,-39,-53,-56

27 30,36,41,45,-1,-6,-8,-12,-33,-34,-38,-42,-43,-46,-50,-63;
2,7,9,15,16,22,28,56,-14,-18,-21,-24,-52,-55,-57,-59

28 8,12,13,19,27,33,34,39,52,55,-4,-9,-10,-11,-32,-35;
1,6,-15,-16,-17,-22,-37,-40,-41,-45,-50,-53,-54,-56,-61,-62

29 11,32,34,54,-2,-3,-6,-12,-33,-35,-36,-42,-46,-49,-58,-60;
1,4,7,14,21,25,44,48,-15,-22,-23,-24,-40,-53,-55,-62

30 -2,-7,-16,-19,-36,-39,-41,-44,-45,-48,-49,-52,-56,-58,-60,-61;
3,8,10,14,17,21,24,27,37,42,46,50,-9,-13,-23,-25

31 20,26,32,33,38,43,53,-3,-7,-17,-19,-34,-36,-41,-45,-49;
1,2,9,16,23,-10,-13,-24,-25,-47,-51,-54,-55,-57,-59,-62

32 12,13,19,55,-1,-4,-9,-11,-14,-37,-38,-50,-53,-54,-56,-61;
3,6,24,29,31,36,49,-16,-20,-21,-26,-28,-43,-44,-48,-63

33 10,11,17,41,45,54,-1,-2,-6,-8,-12,-38,-39,-52,-53,-55;
4,7,25,28,31,-20,-23,-26,-27,-29,-42,-43,-46,-58,-60,-63

34 53,-1,-7,-8,-19,-21,-39,-44,-47,-48,-51,-52,-54,-55,-57,-59;
2,9,15,16,22,23,28,29,35,40,-13,-14,-25,-27,-31,-63

35 8,19,34,39,-4,-6,-9,-10,-18,-38,-40,-41,-50,-53,-61,-62;
1,5,7,21,26,48,51,-15,-23,-24,-28,-29,-42,-49,-57,-58

36 11,18,32,38,43,-2,-3,-7,-19,-22,-39,-41,-47,-51,-55,-62;
1,4,14,21,27,50,-13,-15,-29,-30,-31,-45,-49,-56,-58,-60

37 12,13,18,19,23,25,30,-3,-14,-15,-17,-26,-28,-42,-62,-63;
6,49,52,-8,-10,-20,-21,-22,-32,-46,-47,-50,-51,-53,-54,-56

38 17,19,22,45,-1,-4,-6,-9,-14,-18,-42,-43,-44,-57,-58,-63;
3,5,7,31,36,51,-20,-23,-27,-32,-33,-35,-50,-52,-53,-61

39 10,11,17,18,24,-1,-2,-7,-8,-19,-26,-44,-56,-58,-60,-63;
4,28,35,40,50,-13,-20,-30,-33,-34,-36,-47,-48,-51,-52,-55
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40 8,14,20,34,39,44,47,-5,-16,-17,-18,-28,-29,-43,-45,-49;
1,7,13,-11,-12,-22,-23,-24,-35,-46,-50,-53,-59,-60,-61,-62

41 8,43,46,-4,-7,-9,-10,-25,-28,-44,-45,-49,-54,-56,-57,-58;
1,5,12,21,26,27,33,-13,-15,-30,-31,-35,-36,-47,-61,-62

42 19,25,30,45,48,-3,-6,-14,-15,-24,-33,-35,-46,-47,-50,-53;
5,7,11,16,-8,-10,-20,-27,-29,-37,-38,-55,-57,-58,-62,-63

43 47,-1,-5,-16,-18,-21,-32,-33,-46,-48,-50,-52,-53,-59,-60,-61;
3,7,10,13,15,31,36,41,-11,-12,-23,-26,-27,-38,-40,-63

44 17,22,24,29,46,-1,-4,-7,-9,-14,-25,-32,-47,-48,-52,-61;
3,5,12,40,-13,-20,-30,-34,-38,-39,-41,-54,-56,-57,-58,-63

45 8,14,20,-5,-7,-16,-17,-25,-28,-36,-48,-49,-59,-60,-61,-62;
1,6,27,33,38,42,-11,-19,-22,-30,-31,-40,-41,-51,-54,-56

46 9,25,30,-3,-5,-21,-22,-24,-33,-37,-40,-50,-51,-55,-62,-63;
4,7,13,41,44,-8,-12,-17,-26,-27,-29,-42,-43,-53,-59,-60

47 -3,-7,-14,-15,-31,-37,-39,-41,-51,-54,-55,-56,-57,-58,-62,-63;
5,11,12,16,18,23,40,43,-8,-10,-13,-20,-34,-36,-42,-44

48 24,29,35,-1,-5,-7,-16,-21,-25,-32,-39,-51,-52,-54,-56,-63;
3,6,10,15,42,-11,-19,-26,-30,-34,-43,-44,-45,-59,-60,-61

49 8,14,20,21,26,32,37,-6,-12,-13,-23,-24,-25,-35,-36,-52;
1,-18,-19,-29,-30,-31,-40,-41,-45,-55,-57,-58,-59,-60,-61,-62

50 30,36,39,-4,-10,-11,-21,-24,-28,-37,-38,-40,-53,-54,-57,-59;
2,7,13,19,-14,-17,-18,-27,-32,-35,-42,-43,-46,-61,-62,-63

51 9,35,38,-3,-5,-7,-21,-22,-31,-37,-39,-45,-54,-55,-59,-60;
4,6,18,23,-8,-17,-19,-26,-34,-36,-46,-47,-48,-56,-62,-63

52 37,-1,-6,-12,-13,-23,-25,-27,-38,-39,-55,-57,-58,-59,-60,-61;
3,10,15,17,22,28,-18,-19,-30,-33,-34,-43,-44,-48,-49,-63

53 -2,-15,-16,-26,-28,-29,-37,-38,-40,-46,-56,-58,-60,-61,-62,-63;
7,13,19,25,31,34,-9,-20,-22,-23,-32,-33,-35,-42,-43,-50
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54 12,-4,-7,-10,-11,-21,-28,-31,-37,-44,-45,-56,-57,-61,-62,-63;
2,6,23,29,33,-14,-17,-25,-32,-34,-41,-47,-48,-50,-51,-59

55 9,11,16,-3,-6,-12,-13,-27,-29,-31,-39,-42,-49,-57,-62,-63;
4,28,32,-8,-19,-24,-33,-34,-36,-46,-47,-51,-52,-58,-59,-60

56 12,18,24,27,-2,-7,-15,-16,-26,-28,-36,-37,-44,-45,-51,-58;
6,-9,-20,-22,-30,-32,-39,-41,-47,-48,-53,-54,-60,-61,-62,-63

57 16,22,26,-4,-6,-10,-13,-18,-27,-31,-35,-42,-44,-49,-58,-59;
2,5,-14,-24,-25,-34,-38,-41,-47,-50,-52,-54,-55,-61,-62,-63

58 -2,-6,-13,-15,-23,-33,-35,-36,-42,-44,-49,-55,-60,-61,-62,-63;
5,11,17,21,-9,-20,-29,-30,-38,-39,-41,-47,-52,-53,-56,-57

59 -5,-17,-18,-19,-27,-31,-40,-46,-48,-49,-54,-55,-60,-61,-62,-63;
2,9,15,20,-11,-12,-21,-24,-25,-34,-43,-45,-50,-51,-52,-57

60 10,14,-2,-5,-19,-22,-23,-33,-36,-40,-46,-48,-49,-55,-56,-61;
4,-12,-16,-26,-29,-30,-39,-43,-45,-51,-52,-53,-58,-59,-62,-63

61 -4,-9,-11,-23,-25,-28,-38,-40,-41,-48,-49,-50,-56,-57,-62,-63;
3,8,-16,-18,-30,-32,-35,-43,-44,-45,-52,-53,-54,-58,-59,-60

62 -3,-15,-17,-28,-29,-31,-40,-41,-42,-49,-50,-51,-56,-57,-60,-63;
1,-10,-22,-24,-35,-36,-37,-45,-46,-47,-53,-54,-55,-58,-59,-61

63 -1,-8,-20,-21,-32,-33,-34,-42,-43,-44,-50,-51,-52,-56,-57,-60;
-14,-26,-27,-37,-38,-39,-46,-47,-48,-53,-54,-55,-58,-59,-61,-62
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