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We explicitly describe cohomology of complete intersec-
tions in compact simplicial toric varieties.

In this paper we will study intersections of hypersurfaces in compact sim-
plicial toric varieties PΣ. The main purpose is to relate naturally the Hodge
structure of a complete intersection Xf1 ∩ . . . ∩Xfs in PΣ to a graded ring.
Originally this idea appears in [Gr], [St], [Dol], [PS]. The case of a hyper-
surface in a toric variety has been treated in [BC]. Also the Hodge structure
of complete intersections in a projective space was described in [Te], [Ko],
[L], [Di], [Na]. The common approach was to reduce studying of the Hodge
structure on a complete intersection to studying of the Hodge structure on
a hypersurface in a higher dimensional projective variety. This is the idea
of a “Cayley trick”. About a Cayley trick in the toric context see [GKZ],
[DK], [BB]. A special case of a complete intersection (when it is empty)
in a complete simplicial toric variety was elaborated in [CCD]. The basic
references on toric varieties are [F1], [O], [Da], [C].

The paper is organized as follows:
Section 1 establishes notation and studies cohomology of subvarieties in

a complete simplicial toric variety. In Section 2 we describe a Cayley trick
for toric varieties. In Section 3 we prove the main result where we relate
the Hodge components Hd−s−p,p(Xf1 ∩ · · · ∩Xfs) in the middle cohomology
group to homogeneous components of a graded ring. Section 4 treats a
special case of complete intersections: a nondegenerate intersection.

Acknowledgment. I would like to thank D. Cox for his advice and useful
comments.

1. Quasi-smooth intersections.

We first fix some notation. Let M be a lattice of rank d, N = Hom(M,Z)
the dual lattice; MR (resp. NR) denotes the R-scalar extension of M (resp.
of N). Let Σ be a rational simplicial complete d-dimensional fan in NR

[BC], PΣ a complete simplicial toric variety associated with this fan.
Such a toric variety can be described as a geometric quotient [C]. Let

S(Σ) = C[x1, . . . , xn] be the polynomial ring over C with variables x1, . . . , xn
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corresponding to the integral generators e1, . . . , en of the 1-dimensional cones
of Σ. For σ ∈ Σ let x̂σ =

∏
ei /∈σ xi, and let B(Σ) = 〈x̂σ : σ ∈ Σ〉 ⊂ S

be the ideal generated by the x̂σ’s. This ideal gives the variety Z(Σ) =
V(B(Σ)) ⊂ An. The toric variety P = PΣ will be a geometric quotient of
U(Σ) := An \Z(Σ) by the group D := HomZ(Ad−1(P),C∗), where Ad−1(P)
is the Chow group of Weil divisors modulo rational equivalence.

Each variable xi in the coordinate ring S(Σ) corresponds to a torus-
invariant irreducible divisor Di of P. As in [C], we grade S = S(Σ) by
assigning to a monomial

∏n
i=1 xai

i its degree [
∑n

i=1 aiDi] ∈ Ad−1(P). A
polynomial f in the graded piece Sα corresponding to α ∈ Ad−1(P) is said
to be D-homogeneous of degree α.

Let f1, . . . , fs be D-homogeneous polynomials. They define a zero set
V(f1, . . . , fs) ⊂ An, moreover V(f1, . . . , fs) ∩ U(Σ) is stable under the
action of D and hence descends to a closed subset X ⊂ P, because P is a
geometric quotient.

Definition 1.1. We say that X is a quasi-smooth intersection if V(f1, . . . ,
fs)∩U(Σ) is either empty or a smooth subvariety of codimension s in U(Σ).

Remark 1.2. This notion generalizes a nonsingular complete intersection
in a projective space. Notice that since the (n − d)-dimensional group D
has only zero dimensional stabilizers [BC], X is of pure dimension d− s or
empty.

We can now relate this notion to a V-submanifold (see Definition 3.2 in
[BC]).

Proposition 1.3. If X ⊂ P is a closed subset of codimension s defined by
D-homogeneous polynomials f1, . . . , fs, then X is a quasi-smooth intersec-
tion if and only if X is a V-submanifold of P.

The proof of this is very similar to the proof of the Proposition 3.5 in
[BC].

The next result is a Lefschetz-type theorem.

Proposition 1.4. Let X ⊂ P be a closed subset, defined by D-homogeneous
polynomials f1, . . . , fs, in a complete simplicial toric variety P. If f1, . . . ,
fs ∈ B(Σ), then the natural map i∗ : H i(P) → H i(X) is an isomorphism
for i < d− s and an injection for i = d− s. In particular, this is valid if X
is an intersection of ample hypersurfaces.

Proof. We can present X = Xf1∩ . . .∩Xfs , where Xfi
⊂ P is a hypersurface

defined by fi. As it was shown in the proof of the Proposition 10.8 [BC], if
f ∈ B(Σ) then P \Xf = (An \V(f))/D(Σ) is affine, hence H i(P \Xf ) = 0
for i > d. We will prove by induction on s that H i(P\ (Xf1 ∩ . . .∩Xfs)) = 0
for i > d + s− 1. Consider the Mayer-Vietoris sequence

· · · → H i(U∩V )→H i+1(U∪V )→H i+1(U)⊕H i+1(V )→H i+1(U∩V ) → · · ·
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with U = P\(Xf1∩. . .∩Xfs−1), V = P\Xfs . Notice that U∪V = P\(Xf1∩
. . .∩Xfs) and U ∩V = ∪s−1

i=1P\(Xfi
∪Xfs) = P\(Xf1·fs∩ . . .∩Xfs−1·fs). So,

using the induction and the above sequence, we obtain that H i(P\X) = 0 for
i > d+ s−1. As a consequence of this, X is nonempty unless s > d because
the dimension h2d(P) = 1. Since P \ X is a V-manifold, Poincaré duality
implies that H i

c(P \ X) = 0 for i ≤ d − s. Now the desired result follows
from the long exact sequence of the cohomology with compact supports (X
and P are compact):

· · · → H i
c(P \X) → H i

c(P) → H i
c(X) → H i+1

c (P \X) → H i+1
c (P) → · · · .

If X is an intersection of ample hypersurfaces defined by f1, . . . , fs, then
Lemma 9.15 [BC] gives us that f1, . . . , fs belong to B(Σ). �

Corollary 1.5. A quasi-smooth intersection X = Xf1 ∩ . . . ∩ Xfs, defined
by f1, . . . , fs ∈ B(Σ), has pure dimension d− s.

Since the dimension of H0(X,C) is the number of connected components
of X, we obtain another important result.

Corollary 1.6. An intersection Xf1 ∩ . . . ∩ Xfs, defined by f1, . . . , fs ∈
B(Σ), in a complete simplicial toric variety PΣ is connected provided s <
dimPΣ.

Remark 1.7. If the polynomials f1, . . . , fs have ample degrees, then this
corollary follows from a more general statement in [FL1] (see also [FL2]
and [FH] for connectedness theorems).

2. “Cayley trick”.

We will explore a Cayley trick to reduce studying of the cohomology of
quasi-smooth intersections to results already known for hypersurfaces.

Let L1, . . . , Ls be line bundles on a complete d-dimensional toric variety
P = PΣ, and let π : P(E) → P be the projective space bundle associated
to the vector bundle E = L1 ⊕ · · · ⊕ Ls. Then the Ps−1-bundle P(E) is a
toric variety. The fan corresponding to it can be described as follows [O,
p. 58]. Suppose that support functions h1, . . . , hs give rise to the isomor-
phism classes of line bundles [L1], . . . , [Ls] ∈ Pic(P), respectively. Intro-
duce a Z-module N ′ with a Z-basis {n2, . . . , ns} and let Ñ := N ⊕N ′ and
n1 := −n2 − · · · − ns. Denote by σ̃ the image of each σ ∈ Σ under the
R-linear map NR → ÑR which sends y ∈ NR to y −

∑s
j=1 hj(y)nj . On the

other hand, let σ′i be the cone in N ′
R generated by n1, . . . , ni, ni+1, . . . , ns

and let Σ′ be the fan in N ′
R consisting of the faces of σ′1, . . . , σ

′
s. Then P(E)

corresponds to the fan Σ̃ := {σ̃ +σ′ : σ ∈ Σ, σ′ ∈ Σ′}. From this description
it is easy to see that if Σ is a complete simplicial fan then P(L1 ⊕ · · · ⊕ Ls)
is a complete simplicial toric variety. We see that the integral generators of
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the 1-dimensional cones in Σ̃ are given by

ẽi = ei −
∑

1≤j≤s

hj(ei)nj , i = 1, . . . n,

ñ1 = −n2 − · · · − ns,

ñj = nj , j = 2, . . . , s,

where e1, . . . , en are the integral generators of the 1-dimensional cones in Σ.
The homogeneous coordinate ring of P(E) is the polynomial ring

R = C[x1, . . . , xn, y1, . . . , ys],

where xi corresponds to ẽi and yj corresponds to ñj . This ring has a grading
by the Chow group Ad+s−2(P(E)). Since P is a normal variety, there is an
embedding of the Picard group Pic(P) ↪→ Ad−1(P). We want to show that
if some polynomials fj ∈ S(Σ) = C[x1, . . . , xn] have the property deg(fj) =
[Lj ] ∈ Pic(P), then the polynomials yjfj all have the same degree in R.
This will allow us to consider a hypersurface defined by the homogeneous
polynomial F =

∑s
j=1 yjfj .

Lemma 2.1. Let f1, . . . , fs ∈ S(Σ) be D-homogeneous polynomials, such
that deg(fj) = [Lj ] for some line bundles L1, . . . , Ls. Then F =

∑s
j=1 yjfj

is homogeneous in R and its degree is the isomorphism class [OP(E)(1)] of
the canonical line bundle on P(E) = P(L1 ⊕ · · · ⊕ Ls).

Proof. To prove that F is a homogeneous polynomial we will repeat the
arguments in the proof of Lemma 3.5 in [CCD]. Let D1, . . . , Dn be the
torus-invariant divisors on P = PΣ corresponding to the 1-dimensional cones
of the fan Σ. Then the pullback π∗Di is the torus-invariant divisor of P(E)
corresponding to the cone generated by ẽi. Also denote by D′

j the torus-
invariant divisor corresponding to ñj . Let M̃ = M ⊕M ′ be the lattice dual
to Ñ = N ⊕N ′ with M ′ = Hom(N ′,Z) having {n∗2, . . . , n∗s} as a basis dual
to {n2, . . . , ns}. The divisor corresponding to the character χn∗j is

div(χn∗j ) =
n∑

i=1

〈n∗j , ẽi〉π∗Di +
s∑

k=1

〈n∗j , ñk〉D′
k

=
n∑

i=1

(h1(ei)− hj(ei))π∗Di −D′
1 + D′

j .

Therefore, [D′
j ] + [π∗Lj ] all have the same degree in the Chow group

Ad+s−2(P(E)), and, consequently, F is a homogeneous polynomial.
Now consider the following exact sequence [M]:

0 → OP(E) → π∗E∗ ⊗OP(E)(1) → TP(E) → π∗TP → 0,
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where TX denotes the tangent bundle, E∗ is the dual bundle. From here we
can compute the Chern class

c1(TP(E)) = c1(π∗TP) + c1(π∗E∗ ⊗OP(E)(1))

= π∗c1(TP)− π∗c1(E) + s · c1(OP(E)(1)).

Hence, s · c1(OP(E)(1)) = π∗c1(L1)+ · · ·+π∗c1(Ls)+ c1(TP(E))−π∗c1(TP).
On the other hand, from the generalized Euler exact sequence [BC, §12] we
get

0 → On−d
P → ⊕n

i=1OP(Di) → TP → 0.

This implies that c1(TP) = [D1]+ · · ·+[Dn]. Similarly we have c1(TP(E)) =
[π∗D1]+· · ·+[π∗Dn]+[D′

1]+· · ·+[D′
s]. Under the identification Pic(P(E)) ↪→

Ad+s−2(P(E)) the first Chern class of a line bundle on P(E) is exactly its
isomorphism class in the Picard group Pic(P(E)). Therefore

s · [OP(E)(1)] = [π∗L1] + · · ·+ [π∗Ls] + [D′
1] + · · ·+ [D′

s] = s · ([π∗L2] + [D′
2]).

It can be easily checked that D′
2 is a Cartier divisor on P(E). Hence all

classes [OP(E)(1)], [π∗L2] and [D′
2] lie in the Picard group Pic(P(E)). But

this group is free abelian, because P(E) is complete. So the above equality
is divisible by s: [OP(E)(1)] = [π∗L2] + [D′

2] = deg(F ). �

From now on we assume that P = PΣ is a complete simplicial toric variety
and that deg(fj) ∈ Pic(P), j = 1, . . . , s. Denote by Y the hypersurface in
P(E) defined by F =

∑s
j=1 yjfj .

Lemma 2.2. X = Xf1 ∩ . . . ∩ Xfs is a quasi-smooth intersection iff the
hypersurface Y is quasi-smooth.

Proof. X = Xf1 ∩ . . .∩Xfs is a quasi-smooth intersection means that when-
ever x ∈ V(f1, . . . , fs) \ Z(Σ), the rank

(∂fj

∂xi
(x)

)
i,j

= s. And Y is quasi-

smooth iff z = (x, y) ∈ V(F ) \ Z(Σ̃) implies that one of the partial deriva-
tives ∂F

∂yj
(z) = fj(x), j = 1, . . . , s, ∂F

∂xi
(z) =

∑s
j=1 yj

∂fj

∂xi
(x), i = 1, . . . , n, is

nonzero.
So let (x, y) ∈ V(F ) \ Z(Σ̃), then there is a cone σ̃ + σ′ ∈ Σ̃ with σ ∈ Σ,

σ′ ∈ Σ′, such that
∏

ẽi /∈σ̃ xi
∏

ñj /∈σ′ yj 6= 0 where xi, yj are the coordinates
of (x, y). If f1(x) = · · · = fs(x) = 0, then x ∈ V(f1, . . . , fs) \ Z(Σ) because∏

ei∈σ xi 6= 0. And if X = Xf1 ∩ . . .∩Xfs is a quasi-smooth intersection, one

of the partial derivatives ∂F
∂xi

(z) =
∑s

j=1 yj
∂fj

∂xi
(x), i = 1, . . . , n, is nonzero.

Conversely, suppose Y is quasi-smooth. Pick any x ∈ V(f1, . . . , fs) \
Z(Σ), then (x, y) ∈ V(F ) \ Z(Σ̃) for each y = (y1, . . . , ys) 6= 0. Therefore∑s

j=1 yj
∂fj

∂xi
(x) 6= 0 for some i, which means the rank

(∂fj

∂xi
(x)

)
i,j

is maximal.
�
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3. Cohomology of quasi-smooth intersections.

Since a quasi-smooth intersection is a compact V-manifold (Proposition 1.3),
the cohomology on it has a pure Hodge structure. Using Proposition 1.4 and
the Poincaré duality, we can compute the cohomology of a quasi-smooth
intersection except for the cohomology in the middle dimension d − s. So
we introduce the following definition.

Definition 3.1. The variable cohomology group Hd−s
var (X) is coker(Hd−s(P)

i∗→ Hd−s(X)).

The variable cohomology group also has a pure Hodge structure.

Proposition 3.2. Let X = Xf1 ∩ . . . ∩Xfs be a quasi-smooth intersection
of ample hypersurfaces. Then there is an exact sequence of mixed Hodge
structures

0 → Hd−s−1(P)
∪[X]→ Hd+s−1(P) → Hd+s−1(P \X) → Hd−s

var (X)→0,

where [X] ∈ H2s(P) is the cohomology class of X.

Proof. Consider the Gysin exact sequence:
(1)

· · · → H i−2s(X) i!→ H i(P) → H i(P \X) → H i−2s+1(X) i!→ H i+1(P) → · · · .

Since i∗ is Poincaré dual to the Gysin map i!, it follows that Hd−s
var (X) is

isomorphic to the kernel of i! : Hd−s(X) → Hd+s(P ). So we get an exact
sequence

Hd−s−1(X) i!→ Hd+s−1(P) → Hd+s−1(P \X) → Hd−s
var (X)→0.

Now we use a commutative diagram

Hd−s−1(X) i!→ Hd+s−1(P)
i∗ ↑ ↗∪[X]

Hd−s−1(P).

By Proposition 1.4 i∗ is an isomorphism in this diagram, so it suffices to
prove that the Gysin map i! is injective in the above diagram.

Lemma 3.3. If X = Xf1∩ . . .∩Xfs is a quasi-smooth intersection of ample

hypersurfaces, then the Gysin map Hd−s−1(X) i!→ Hd+s−1(P) is injective.

Proof. Since the odd dimensional cohomology of a complete simplicial toric
variety vanishes [F1, pp. 92-94] and i∗ : Hd−s−1(P) → Hd−s−1(X) is an
isomorphism by Proposition 1.4, it follows that Hd−s−1(X) = Hd−s−1(P) =
Hd+s−1(P) = 0 when d+s−1 is odd. So by the Gysin exact sequence (1) it
is enough to show that Hd+s−2(P \X) = 0 when d + s− 2 is odd. To prove
this we use the Cayley trick again. Let Y be the hypersurface defined by
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F =
∑s

j=1 yjfj . Then the natural map P(E) \ Y → P \X, induced by the
projection π : P(E) → P, is a Cs−1 bundle in the Zariski topology. Notice
that P \X is simply connected, because P is simply connected [F1, p. 56]
and X has codimension at least 2 in P. Hence, the Leray-Serre spectral
sequence implies that H i(P(E) \ Y ) = H i(P \X) for i ≥ 0. We have that
Hd+s−2(P(E)) = 0 for d + s− 2 odd and Y is quasi-smooth by Lemma 2.2.
So from the Gysin exact sequence

Hd+s−2(P(E)) → Hd+s−2(P(E) \ Y ) → Hd+s−3(Y )
j!→ Hd+s−1(P(E))

(here the Gysin map j! is induced by the inclusion j : Y ↪→ P(E)) it
follows that we need to show injectivity of j! : Hd+s−3(Y ) → Hd+s−1(P(E)).
Consider the commutative diagram

Hd+s−3(Y )
j!→ Hd+s−1(P(E))

j∗ ↑ ↗∪[Y ]

Hd+s−3(P(E))

where [Y ] ∈ H2(P(E)) is the cohomology class of Y . The canonical line
bundle OP(E)(1) is ample [H, III, §1], whence by Lemma 2.1, Y is ample.
So by Proposition 10.8 [BC] j∗ : Hd+s−3(P(E)) → Hd+s−3(Y ) is an iso-
morphism and by Hard Lefschetz ∪[Y ] : Hd+s−3(P(E)) → Hd+s−1(P(E))
is injective. Thus, from the above diagram the lemma follows. �

Definition 3.4. For a nonzero polynomial F ∈R = C[x1, . . . , xn, y1, . . . , ys]
the Jacobian ring R(F ) denotes the quotient of R by the ideal generated by
the partial derivatives ∂F

∂yj
, j = 1, . . . , s, ∂F

∂xi
, i = 1, . . . , n.

Remark 3.5. If F = y1f1+· · ·+ysfs is as in Lemma 2.1 with fj ∈ Sαj , then
R(F ) carries a natural grading by the Chow group Ad+s−2(P(E)). Moreover,
there are canonical isomorphisms Ad+s−2(P(E)) ∼= Ad−1(P) ⊕ Ad(P) ∼=
Ad−1(P) ⊕ Z ([F2]). With respect to this bigrading of the Chow group
Ad+s−2(P(E)) we have that deg(F ) = (0, 1), deg(fj) = (αj , 0), deg(yj) =
(−αj , 1), which is very similar to the case when P is a projective space.

We now can state the main result.

Theorem 3.6. Let P be a d-dimensional complete simplicial toric variety,
and let X ⊂ P be a quasi-smooth intersection of ample hypersurfaces defined
by fj ∈ Sαj , j = 1, . . . , s. If F = y1f1 + · · ·+ ysfs, then for p 6= d+s−1

2 , we
have a canonical isomorphism

R(F )(d+s−p)β−β0
∼= Hp−s,d−p

var (X)

where β0 = deg(x1 · · ·xn · y1 · · · ys), β = deg(F ) = deg(fj) + deg(yj). In the
case p = d+s−1

2 there is an exact sequence

0 → Hd−s−1(P)
∪[X]→ Hd+s−1(P) → R(F ) d+s+1

2
β−β0

→ H
d−s−1

2
, d−s+1

2
var (X)→0.
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Proof. Since H i(P) vanishes for i odd and has a pure Hodge structure of
type (p, p) for i even, from Proposition 3.2 we get Grp

F Hd+s−1(P \ X) ∼=
Hp−s,d−p

var (X) if p 6= d+s−1
2 , and in case p = d+s−1

2 the following sequence

0 → Hd−s−1(P)
∪[X]→ Hd+s−1(P)

→ Gr
d+s−1

2
F Hd+s−1(P \X) → H

d−s−1
2

, d−s+1
2

var (X)→0

is exact.
Now use the isomorphism of mixed Hodge structures H i(P \ X) ∼=

H i(P(E) \Y ) and by the Theorem 10.6 [BC] the desired result follows. �

4. Cohomology of nondegenerate intersections.

In this section we consider a special case of quasi-smooth intersections.

Definition 4.1. A closed subset X = Xf1∩. . .∩Xfs , defined by D-homoge-
neous polynomials f1, . . . , fs, is called a nondegenerate intersection if Xfj1

∩
. . . ∩ Xfjk

∩ Tτ is a smooth subvariety of codimension k in Tτ for any
{j1, . . . , jk} ⊂ {1, . . . , s} and τ ∈ Σ. (Here Tτ denotes the torus in PΣ

associated with a cone τ ∈ Σ.)

We will show how to define a nondegenerate intersection in terms of the
polynomials f1, . . . , fs. For σ ∈ Σ, let Uσ = {x ∈ An : x̂σ 6= 0}. We know
that PΣ has an affine toric open cover by Aσ = Uσ/D(Σ), σ ∈ Σ [BC].
Also Tτ = (Uτ \ ∪γ≺τUγ)/D(Σ). Notice that Uτ \ ∪γ≺τUγ = {x ∈ An :
x̂τ 6= 0, xi = 0 if ρi ⊂ τ} is a torus. So each Tτ is a quotient of a torus by a
D-subgroup, because D is diagonalizable [BC].

Lemma 4.2. Let T = (C∗)n/G be the quotient of a torus by a D-subgroup
G. Suppose that X ⊂ (C∗)n is an invariant subvariety with respect to the
action of G. Then the geometric quotient X/G is smooth iff X is smooth.

Proof. By the structure theorem of a D-group [Hu, §16.2] we can assume
that (C∗)n = G◦ × (C∗)k, where G◦ ∼= (C∗)n−k is the identity component
of G, and G = G◦×H for some finite subgroup H in (C∗)k. Now it suffices
to show the Lemma if G is a torus or a finite group. If G = G◦ then
X = (C∗)n−k × p(X), where by p(X) we mean the projection of X onto
(C∗)k. Notice that p(X) ∼= X/G, hence X is smooth iff X/G is smooth.
In the case G = H is a finite group it can be easily checked that X →
X/G is an unramified cover [Sh, p. 346]. So X and X/G are smooth
simultaneously. �

From this Lemma it follows that X = Xf1 ∩ . . . ∩Xfs is a nondegenerate
intersection iff V(fj1 , . . . , fjk

) ∩ Vτ is a smooth subvariety of codimension k
in the torus Vτ = {x ∈ An : x̂τ 6= 0, xi = 0 if ρi ⊂ τ}.
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As in Section 2 we can consider the hypersurface Y ⊂ P(E) defined by
F =

∑s
j=1 yjfj . �

Lemma 4.3. X = Xf1 ∩ . . . ∩Xfs is a nondegenerate intersection iff Y is
a nondegenerate hypersurface.

Proof. As shown above, X = Xf1 ∩ . . .∩Xfs is a nondegenerate intersection
if the rank

(∂fj

∂xi
(x)

)j∈{j1,...,jk}
i∈{i: ei /∈τ} = k for all x ∈ V(fj1 , . . . , fjk

) ∩ Vτ , τ ∈ Σ
and {j1, . . . , jk} ⊂ {1, . . . , s}. Similarly Y is nondegenerate iff z = (x, y) ∈
V(F ) ∩ Vτ̃+τ ′ , τ̃ + τ ′ ∈ Σ̃ with τ ∈ Σ, τ ′ ∈ Σ′ (recall the definition of P(E)
associated with Σ̃ in the Section 2) implies that one of the partial derivatives
∂F
∂yj

(z) = fj(x), j ∈ {j : ñj /∈ τ ′}, ∂F
∂xi

(z) =
∑s

j=1 yj
∂fj

∂xi
(x), i ∈ {i : ẽi /∈ τ̃},

is nonzero.
Let (x, y) ∈ V(F ) ∩ Vτ̃+τ ′ , where τ̃ + τ ′ ∈ Σ̃ with τ ∈ Σ, τ ′ ∈ Σ′. Then∏
ẽi /∈τ̃ xi

∏
ñj /∈τ ′ yj 6= 0 and xi = 0 if ẽi ∈ τ̃ , yj = 0 if ñj ∈ τ ′. If fj(x) = 0

for all j ∈ {j : ñj /∈ τ ′}, then x ∈ V(fj1 , . . . , fjk
) ∩ Vτ where {j1, . . . , jk} =

{j : ñj /∈ τ ′}. So if X = Xf1 ∩ . . . ∩ Xfs is a nondegenerate intersection,
one of the partial derivatives ∂F

∂xi
(z) =

∑s
j=1 yj

∂fj

∂xi
(x), i ∈ {i : ẽi /∈ τ̃}, is

nonzero.
Conversely, suppose Y is nondegenerate. Take any x ∈ V(fj1 , . . . , fjk

)∩Vτ

with τ ∈ Σ, {j1, . . . , jk} ⊂ {1, . . . , s}. Then (x, y) ∈ V(F ) ∩ Vτ̃+τ ′ for
each y ∈ Vτ ′ = {y ∈ As : yj 6= 0 if ñj /∈ τ ′, yj = 0 if ñj ∈ τ ′} where
τ ′ is the cone generated by the complement of {ñj1 , . . . , ñjk

} in the set
{ñ1, . . . , ñs}. Therefore

∑s
j=1 yj

∂fj

∂xi
(x) 6= 0 for some i, which means the

rank
(∂fj

∂xi
(x)

)j∈{j1,...,jk}
i∈{i: ei /∈τ} = k. �

Since a nondegenerate hypersurface is quasi-smooth [BC], Lemma 2.2
shows that a nondegenerate intersection is quasi-smooth.

Definition 4.4 ([BC]). Given a polynomial f ∈ S = C[x1, . . . , xn], we get
the ideal quotient J1(f) = 〈x1∂f/∂x1, . . . , xn∂f/∂xn〉 : x1 · · ·xn (see [CLO,
p. 193]) and the ring R1(f) = S/J1(f).

Remark 4.5. If F =
∑s

j=1 yjfj ∈ R is as in Lemma 2.1, then R1(F ) =
R/J1(F ) has a natural grading by the Chow group Ad+s−2(P(E)) ∼=
Ad−1(P)⊕ Z.

Theorem 4.6. Let X = Xf1 ∩ . . . ∩Xfs be a nondegenerate intersection of
ample hypersurfaces given by fj ∈ Sαj , j = 1, . . . , s. If F =

∑s
j=1 yjfj ∈ R,

then there is a canonical isomorphism

Hp−s,d−p
var (X) = R1(F )(d+s−p)β−β0

,

where β0 = deg(x1 · · ·xn · y1 · · · ys), β = deg(F ).
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Proof. First we will show that there is an isomorphism of Hodge structures
Hd−s

var (X)(1 − s) ∼= Hd+s−2
var (Y ). Let ϕ : Y → P be the composition of the

inclusion j : Y ↪→ P(E) and the projection π : P(E) → P. As in [Te],
consider the following morphism of the Leray spectral sequences

Ep,q
2 = Hp(P, Rqπ∗C) ⇒ Hp+q(P(E))

↓ ↓
′Ep,q

2 = Hp(P, Rqϕ∗C) ⇒ Hp+q(Y ).

Since

ϕ−1(X) =
{

Ps−1 if x ∈ X,
Ps−2 if x /∈ X,

we have that (see [Go, p. 202], [De])

Rqϕ∗C =

CP(− q
2) if q is even and 0 ≤ q < 2s− 2,

CX(1− s) if q = 2s− 2,
0 otherwise.

Also we have

Rqπ∗C =
{
CP(− q

2) if q is even and 0 ≤ q ≤ 2s− 2,
0 otherwise.

The first spectral sequence degenerates at E2, because for p or q odd Ep,q
r

vanishes. The second spectral sequence also degenerates at E2:

hl−2s−2(X) +
2s−4∑
q=0

hl−q(P) =
∑

p+q=l

dim ′Ep,q
2 ≥

∑
p+q=l

dim ′Ep,q
∞ = hl(Y ).

To show the degeneracy of ′Ep,q
2 it suffices to show that the above inequality

is an equality. From Proposition 10.8 [BC] and Proposition 3.2 we get

hd+s−2(Y ) = hd+s−2(P(E)) + hd+s−1(P(E) \ Y )

− hd+s−1(P(E)) + hd+s−3(P(E)),

hd−s(X) = hd−s(P) + hd+s−1(P \X)− hd+s−1(P) + hd−s−1(P).

Hence, using the spectral sequence Ep,q
2 , we can easily compute the Hodge

numbers of P(E) and check that hl−2s−2(X) +
∑2s−4

q=0 hl−q(P) = hl(Y ) for
l = d + s − 2. Using Proposition 1.4, we can similarly show the above
equality for l 6= d+ s− 2 as well. So the spectral sequence ′Ep,q

2 degenerates
at E2. Since Ed+s−2−q,q

2 = ′Ed+s−2−q,q
2 for q 6= 2s − 2 and, by Proposition

1.4, Ed−s,2s−2
2 ↪→ ′Ed−s,2s−2

2 , we get an isomorphism of Hodge structures
(for details see [Te]):

Hd+s−2
var (Y ) ∼= ′Ed−s,2s−s

2 /Ed−s,2s−2
2

∼= Hd−s
var (X)(1− s).

Now we only need to apply Theorem 11.8 [BC] to finish the proof. �
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[De] P. Deligne, Théorie de Hodge, II, III, Inst. Hautes Études Sci. Publ. Math., 40
(1971), 5-58; 44 (1975), 5-77.

[Di] A. Dimca, Residues and cohomology of complete intersections, Duke Math. J., 78
(1995), 89-100.

[Dol] I. Dolgachev, Weighted projective varieties, in ‘Lecture Notes in Math.’, 956,
Springer-Verlag, Berlin, (1982), 34-71.

[F1] W. Fulton , Introduction to Toric Varieties, Princeton Univ. Press, Princeton, NJ,
1993.

[F2] , Intersection Theory, Springer-Verlag, Berlin, 1984.

[FH] W. Fulton and J. Hansen, A connectedness theorem for projective varieties, with
applications to intersections and singularities of mappings, Annals of Math., 110
(1979), 159-166.

[FL1] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special
divisors, Acta Math., 146 (1981), 271-283.

[FL2] , Connectivity and its Applications in Algebraic Geometry, Lecture Notes
in Math., 862, Springer-Verlag, Berlin-Heidelberg, (1981), 26-92.

[GKZ] I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants, and Mul-
tidimensional Determinants, Birkhäuser Verlag, Basel-Boston, 1994.
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