
Pacific
Journal of
Mathematics

DEHORNOY’S ORDERING OF THE BRAID GROUPS
EXTENDS THE SUBWORD ORDERING

Bert Wiest

Volume 191 No. 1 November 1999





PACIFIC JOURNAL OF MATHEMATICS
Vol. 191, No. 1, 1999

DEHORNOY’S ORDERING OF THE BRAID GROUPS
EXTENDS THE SUBWORD ORDERING

Bert Wiest

We give a simple proof of the result of Laver and Burckel
that inserting a conjugate of a positive standard generator
of the braid group anywhere in a given braid yields a braid
which is larger in the sense of Dehornoy.

P. Dehornoy has defined a right invariant total ordering of the braid group
Bn for all n ∈ N (see [3], [4]), and this was reinterpreted in [6] in more
geometrical terms. Here we are using this interpretation to give a quick
proof of the following:

Theorem 1. For any braids α, β1, β2 ∈ Bn and any i ∈ {1, . . . , n− 1} we
have β1(ασiα

−1)β2 > β1β2.

Since the ordering is right-invariant this is equivalent to the following,
with γ = β1α:

Theorem 1′. For any braid γ ∈ Bn and any i ∈ {1, . . . , n − 1} we have
γσi > γ.

It follows that Dehornoy’s ordering extends the (partial) subword ordering
defined in [5]. Theorem 1 was first proved by Laver [8] and Burckel [2]
using very different methods. As explained in [8], it can be combined with
a theorem of Higman [7] to prove that the restriction of the ordering to the
positive braid monoid B+

n is a well-ordering.
We briefly recall the definition of the ordering of Bn given in [6]. Let

D2 be the unit disk in C, and let Dn be equal to D2 with n holes in the
real line, labelled 1 to n. The holes divide the real interval [−1, 1] into
n + 1 line segments which we label 1 to n + 1. Now any braid γ determines
a way of sliding the holes about in D2. Extending this movement to an
isotopy of D2 which is fixed on ∂D2, we obtain, at the end of the isotopy,
a self homeomorphism of Dn; this self homeomorphism maps the n + 1 line
segments to n+1 disjoint simple curves, again numbered 1 to n+1, and the
image of the whole interval [−1, 1] under the self homeomorphism is called
a curve diagram.

If Γ is a curve-diagram in Dn of some braid γ, and ∆ is another curve
diagram of some braid δ, then we can reduce Γ and ∆ with respect to each
other, i.e. we can ‘pull the diagrams tight’. Then the braid γ is called
j-larger than δ if the curves number 1,. . . ,j − 1 of Γ and ∆ coincide and
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an initial segment of the jth curve of Γ lies in the upper component of
Dn −∆. It is proved in [6] that this is equivalent to the braid γδ−1 being
representable by a word w1σjw2 . . . wl−1σjwl, where w1, . . . , wl are words in
the letters σ±1

j+1, . . . , σ±1
n−1. If γ is j-larger than δ for some j, then we say γ

is larger than δ. If the curves number 1,. . . ,j − 1 of Γ and ∆ coincide (with
no further restrictions on the subsequent curves), then we say γ and δ are
j − 1-parallel (j ∈ {1, . . . , n}); equivalently, γδ−1 can be represented by a
word not containing the letters σ±1

1 ,. . . ,σ±1
j−1.

The proof of Theorem 1′ is in two steps. We shall deduce Theorem 1′

from the following, seemingly weaker, result:

Proposition 2. For any braid γ ∈ Bn and any i ∈ {1, . . . n − 1} the braid
γσi is not 1-smaller than the braid γ; equivalently, γσi is either 1-larger
than, or 1-parallel to γ.

Proof of Proposition 2. We consider the intersections of a curve diagram Γ
with the vertical lines indicated in Figure 1, which divide Dn into n + 1
regions, labelled 1 to n + 1. We say Γ is v-reduced if there are no disks in
Dn bounded by precisely one segment of some curve of Γ and one segment
of vertical line. By a sequence of isotopies across such disks we can turn Γ
into a v-reduced diagram.

1 2 3 4

1
2

3
4

5

1

·σ3

Figure 1. Vertical lines dividing Dn into a number of regions.

We say an isotopy of Γ is a v-equivalence, if it leaves Γ transverse to the
vertical lines at all times. In particular, a v-equivalence does not change the
number of intersections of Γ with the vertical lines.

We now give a recipe how to obtain a v-reduced curve diagram for the
braid γσi from a v-reduced curve diagram Γ for the braid γ. The crucial
observation is that under right multiplication by σi a v-reduced curve dia-
gram changes only in the regions labelled i, i + 1, and i + 2, according to a
simple set of rules. We call the union of these three regions the augmented
i + 1-region.

We equip all curves of Γ consistently with an orientation such that, when
stuck together, they form an oriented curve in D2 starting at −1, through all
holes of Dn, ending at 1. For every curve of Γ we consider the segments in
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which it intersects the augmented i-region. If the whole curve is contained
in the i+1st region itself, connecting the ith and the i+1st hole, then right
multiplication by σi has simply the effect of reversing the orientation of the
curve (see Figure 2(a)). If a segment of curve can, by a v-equivalence, be
made disjoint from the straight line from the ith to the i + 1st hole, then it
is unaffected by the right multiplication by σi (Figure 2(b)).

i
.

.
i

·σi

·σi

i i+1

(a) (b)

Figure 2. Unaffected by performing σi.

If a segment of curve cannot be made disjoint from the straight line from
the ith to the i + 1st hole, then it is affected by the right multiplication by
σi. We shall find that there are ten Z-families of possibilities for what such
a segment of curve can look like.

If both ends of the segment of curve lie in the i−1st vertical line (i.e. the
left boundary of the augmented i+1-region), then it is easy to check that in
a neighbourhood of the i+1st region it looks like one of the curves in Figure
3, and under right multiplication by σi the diagram changes as indicated.

σi σi σi σiσiσi . σi . σi . σi . σi .σi .

σi
. . . . . .

Figure 3. Two Z-families of possibilities ((1) and (2)).

Note that all curves in Figure 3 can have two different orientations so
Figure 3 represents two different Z-families of curve segments. Also note
that we can assume that the right multiplication by σi leaves the curve
diagram fixed in a neighbourhood of the boundary of the augmented i + 1-
region, and Figure 3 shows its effect only ‘well inside’ this region.

If both ends of the segment of curve lie in the i+2nd vertical line (i.e. the
right boundary of the augmented i + 1-region), then we have another two
Z-families of possibilities ((3) and (4)). Figure 3, turned by 180◦, illustrates
these two families.

In the case that the two ends of the segment of curve lie on opposite sides
of the augmented i + 1-region (i.e. one in the i− 1st and one in the i + 2nd
vertical line), we obtain two more Z-families of possibilities ((5) and (6)),
which differ only in the orientation of the curve segment (Figure 4). Again,
it is easy to see that in this case these are the only possibilities.
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i
. . . . .

i i i i·σi ·σi ·σi ·σi ·σi

Figure 4. Two Z-families of possibilities ((5) and (6)).

Finally, for the case that one of the ends of a curve segment lies in the
boundary of the augmented i-region and the other end is in a hole of Dn,
we have four more Z-families: The one in Figure 5 (Family (7)), the one
represented by Figure 5 turned by 180◦ (Family (8)), and the same two
families with the orientation of the curve segments reversed (Families (9)
and (10)).

i
. . . . .

i i i i i·σi ·σi ·σi ·σi ·σi ·σi

Figure 5. One more Z-family of possibilities (7).

This completes our construction of a v-reduced curve diagram for γσi

from the diagram Γ.
Our next aim is to compare the v-reduced curve diagrams of γ and γσi,

in order to decide which one is larger. The proof of the following lemma is
similar to the proof in [6] that three curve diagrams can be reduced with
respect to each other.

Lemma 3. If Γ and ∆ are two v-reduced curve diagrams, then ∆ can be
reduced with respect to Γ by an isotopy which is a v-equivalence.

Given a v-reduced curve diagram Γ, we use the above recipe to determine
a v-reduced curve diagram ∆ of γσi. Then we reduce ∆ with respect to Γ
to obtain a curve diagram ∆′, and Lemma 3 tells us that this can be done
by an isotopy of ∆ which is a v-equivalence; that means, the intersections of
∆ with the vertical lines can slide up and down without crossing the holes
of Dn, and no intersections are created or cancelled in the course of this
isotopy.

There are now two possibilites:
(1) γ and γσi are 1-parallel, i.e. the first curves Γ1 and ∆′

1 of Γ and ∆′

coincide.
(2) Γ1 and ∆′

1 do not coincide.
In case (1) we are done. In case (2) we walk along the curve Γ1, starting

at −1, reading off a finite sequence of numbers according to Figure 6. The
first number lies in {1, 2, 3}, the subsequent ones in {1, . . . , 4}. The sequence
ends with a 2 or a 3. We do the same for ∆′

1, and obtain a different sequence
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of numbers (for if the sequences were the same, then the curves Γ1 and
∆′

1 would coincide). Since the reduction of ∆ with respect to Γ was a v-
equivalence, the number sequences obtained by reading along ∆1 and ∆′

1

agree.

1

2

3

1
2

3
4

1
2

3
4 1

2

3
4

1
2

3
4

(a) (b) (c) (d) (e)

Figure 6. Reading a sequence of numbers off the curves Γ1

and ∆′
1.

Now comes the key step of the whole proof. By carefully checking through
all ten Z-families described above it can be seen that the number sequence
associated with ∆1 (obtained from Γ1 by applying σi) is always lexicograph-
ically larger than the number sequence of Γ1; i.e. the first k−1 terms of the
two sequences agree (k ∈ N), but the kth number read off ∆1 is larger than
the kth number read off Γ1. For instance, from the two leftmost diagrams in
Figure 4 one reads . . . 114314 . . . and . . . 13 . . . respectively (independently of
orientation), and the second sequence is lexicographically larger. Similarly,
from the diagrams in Figure 5 one reads . . . 1142, . . . 12, . . . 2, . . . 33, and
. . . 3413, which is lexicographically increasing. The other cases are similar
and left to the reader.

Consider now the subarcs of the curves Γ1 and ∆′
1 consisting of the first

k curve segments as in Figure 6. Since Γ and ∆′
1 are reduced with respect

to each other, these arcs do not intersect. It follows that an initial segment
of ∆′

1 lies in the upper component of Dn − Γ, ie that γσi is 1-larger than γ.
This completes the proof of Proposition 2. �

Proof of Theorem 1′. To see that Proposition 2 implies Theorem 1′ we as-
sume, for a contradiction, that there exists a braid γ and an i ∈ {1, . . . , n}
such that γσiγ

−1 is j-negative with j > 1. Then γσiγ
−1 can be represented

by a word not containing the letters σ±1
1 ,. . . ,σ±1

j−1, and only negative powers
of σj .

We consider the natural epimorphism π : Bn → Sn, from the braid group
to the symmetric group. We have π(σi) = (i, i+1), π(γ−1) = (π(γ))−1, and
π(γσiγ

−1)(k) = k for k = 1, . . . , j−1. It follows that π(γ)(k) /∈ {i, i+1} for
k = 1, . . . , j−1. Therefore the braid σ̃ on n−j+1 strings which is obtained
from the braid σi by removing the strings number π(γ)(1), . . . , π(γ)(j − 1)
is again a positive standard generator of Bn−j+1.

Similarly, by removing from the braid γ the strings starting in the j − 1
leftmost positions we obtain a braid γ̃ ∈ Bn−j+1.
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Then the braid γ̃σ̃γ̃−1 ∈ Bn−j+1 is a conjugate of the positive standard
generator σ̃. On the other hand, the braid γ̃σ̃γ̃−1 is obtained from γσiγ

−1

by removing the j− 1 leftmost strings. Therefore it can be represented by a
word containing the letter σ−1

1 , but not σ1, thus contradicting Proposition
2. �

Added in proof. Consider the monoid Π = {π ∈ Bn : βπ > β ∀ β ∈
Bn} which is closed under conjugation by elements of Bn. I do not know
a complete set of generators of Π. S. Orevkov has pointed out that, in
addition to positive standard generators, Π also contains all braids of the
form ασ1σ2 . . . σn−1σn−1 . . . σ1, where α is any braid not containing σ±1

1 .
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