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By using the twist theory, we reduce the problem of con-
structing elliptic curves of rank n (n ≥ 1) with generators to
the problem of finding rational points on a certain variety Vn.
By parametrizing all rational points on Vn (1 ≤ n ≤ 7), we
get all elliptic curves of at least rank n (n ≤ 7).

1. Introduction.

The purpose of this paper is to describe a unified method of construction
of elliptic curves with given Mordell-Weil rank, and to show it is powerful
enough to produce every known example in principle. In view of the fact
that there is no general algorithm to give an elliptic curve with high rank,
our method might shed a light on this area of active research.

The main ingredient in this paper is the twist theory as is developed in
[3]. One of our main theorems says that the twists give us every elliptic
curve with high Mordell-Weil rank. Once this is established, we naturally
come to consider a variety Vn parametrizing a family of elliptic curves with
a given rank n, and we show that almost every rational point on this variety
gives an elliptic curve with rank ≥ n. Thus our method should provide us
with every known example as a rational point on it. We will show that this
is indeed the case.

In this paper, we parametrize the rational points on Vn in each case of
n = 1 to 7. As is mentioned above parametrizing the rational points on
Vn is equivalent to getting every elliptic curve of rank at least n (n ≤ 7).
Moreover, the variety Vn is expected to be useful for solving other problems.
For example, in [5] it is used to construct a family of elliptic curves of rank 2
with given j-invariant. Moreover in [6], it is used to give a family of elliptic
curves of rank 6 with a nontrivial rational two-torsion point. The point
which is worthy of special mention is that we get very easily the equation of
any elliptic curve which corresponds to a rational point on Vn.
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The present paper is organized as follows. In Section 2, we show every
elliptic curve with generators comes from a twist. Then for each rank n
we define the variety Vn mentioned above, which plays a very important
role throughout the paper, and construct a generic elliptic curve with its
generators as a generic fiber of a certain family of elliptic curves parametrized
by Vn. Furthermore we show that we can get a given elliptic curve by
specializing this family at a certain rational point on Vn. In Section 3, we
focus our attention on the structure of Vn. In each case of rank 1 to 7, we
show Vn is rational and obtain a parametric representation of all rational
points of Vn. For the case of rank ≥ 5, we define another variety which is
birational to Vn, and parametrize rational points on Vn in these cases using
this variety. The concrete proof is given only for the case of rank 6, because
it is the most typical and richest and the other cases are treated more easily.
In Section 4, for a given elliptic curve with generators whose rank ≤ 7, we
specify the values of the parameters which are used in Section 3 to express
the rational points of Vn. As an application, we reconstruct the example of
rank 7 due to Grunewald and Zimmert [2] in Section 5.

I would like to express my gratitude to Professor Fumio Hazama for his
useful advice. And I also thank Professor Kenneth A. Ribet and Professor
Robert Coleman for their stimulating conversation.

2. Generic case and its specialization.

In this section, we construct an elliptic curve with rank n defined over the
function field of an algebraic variety. Let E be an elliptic curve over a field
k of characteristic 6= 2 defined by the following equation

E : y2 = ax3 + bx2 + cx + d,(1)

and let f(x) be the right hand side of the equation of E. Then we can
express En by the simultaneous equation:

y2
i = f(xi) (i = 1, . . . , n).

Let ιi the involution on En defined by ι((xi, yi)) = (xi − yi) (i = 1, . . . , n)
and put Vn = En/〈(ι1, . . . , ιn)〉, then the function field of Vn is the set
of the invariant elements of the function field of En under the action of
〈(ι1, . . . , ιn)〉. Consequently,

k(Vn) = k(En)〈(ι1,... ,ιn)〉 = k(y1y2, . . . , y1yn, x1, . . . , xn).

Since (y1yi+1)2 = f(x1)f(xi+1) holds for i = 1, . . . , n− 1, we find that Vn is
defined by

y2
i = f(x1)f(xi+1) (i = 1, . . . , n− 1).(2)
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(Here we rename y1yi+1 as yi.) Let Eb be the twist of E by the quadratic
extension k(En)/k(Vn). It is defined by the equation

f(x1)y2 = f(x)

(see [3, §4]). Let Eb(k(Vn)) be the group of k(Vn)-rational points on Eb.

Theorem 2.1 (Hazama). If Endk(E) ∼= Z, then the rank of Eb(k(Vn)) is
n, and its generators are the following:

(x1, 1)
(

xi+1,
yi

f(x1)

)
(i = 1, . . . , n− 1).

Now, we can obtain a given elliptic curve with its generators by specializ-
ing the above twisted generic elliptic curve at a certain k-rational point on
Vn as follows:

Proposition 2.2. Let E be a given elliptic curve defined by the following
equation

E : y2 = ax3 + bx2 + cx + d,

and let (αi, βi) (i = 1, . . . , n) be its independent generators. Let Eb be the
twist of E by k(En)/k(Vn). Then E with these generators is obtained by spe-
cialization at the point (x1, . . . , xn, y1, . . . , yn−1) = (α1, . . . , αn, β1β2, . . . ,
β1βn) on Vn.

Proof. Put xi = αi (i = 1, . . . , n). Then Eb : f(x1)y2 = f(x) is isomorphic
to y2 = f(x) by the map (x, y) 7→ (x, β1y). Here the generators of twisted
elliptic curve become (α1, 1),

(
αi+1,

βi+1

β1

)
(i = 1, . . . , n−1). Therefore they

are mapped to (αi, βi) (i = 1, . . . , n− 1). �

3. The structure of the base space.

In this section, we investigate the structure of the variety Vn defined in
Section 1 in each case.

The case of rank 1 is slightly different from the other cases, and can be
treated easily. More precisely, the twisted elliptic curve

Eb : f(x1)y2 = ax3 + bx2 + cx + d,(3)

has a rational point (x1, 1) ∈ Eb(k(x1)), and it follows from Theorem 2.1
that it is of rank one as an elliptic curve over k(x1). But a generalization
opposed to a specialization decreases the rank of an elliptic curve, hence Eb

regarded as an elliptic curve over k(x1, a, b, c, d) is of rank 1.
As is seen from this argument for the case of rank 1, it is natural to

regard Vn defined by (2) (n ≥ 2) as an algebraic variety defined over K =
k(x1, . . . , xn). Therefore Vn is a 3-dimensional subvariety in the projective
n+2 space Pn+2 with coordinates (a, b, c, d, y1, . . . , yn−1), and Eb is regarded
as a generic fiber of the elliptic fiber space defined by Equation (3) over Vn.
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Case of rank 2. Our V2 is defined by one quadratic equation with a rational
point P1 (a, b, c, d, y1) = (0, 0, 0, 1, 1), hence V2 is K-rational and we can
parametrize K-rational points on V2 as follows:

Theorem 3.1. V2 is rational, in fact, each K-rational point on V2 is ex-
pressed as

((S + T )p1, (S + T )p2, (S + T )p3, (S + T )p4 − ST, −ST ),

where (p1, p2, p3, p4) ∈ P3 and

S = p1x
3
1 + p2x

2
1 + p3x1 + p4, T = p1x

3
2 + p2x

2
2 + p3x2 + p4.

Case of rank 3. We recall two results which will be frequently used later.
The first of them is classical and well-known (see [1], for example), but in
view of the fundamental role played by it, we recall its proof.

Lemma 3.2. Let V be a complete intersection of l quadrics in Pl−1 defined
over k. Suppose that it contains a linear subvariety W k-isomorphic to Pl−1.
Then V is k-rational.

Proof. There is a k-linear subvariety L k-isomorphic to Pn such that the
intersection of W and L is empty. For any point P on L(k), let M be the
variety spanned by {P} and W , which is k-isomorphic to Pl. Then we can
express the intersection of the variety defined by i-th equation of V and M as
the union of W and a k-linear subvariety Wi

∼= Pl−1. Since Wi (i = 1, . . . , l)
are in M , we get a k-rational point Q as intersection of Wi (i = 1, . . . , l).
The map ϕ : L → V defined by ϕ(P ) = Q gives a birational map from
L(∼= Pn−l) to V . �

The next result is from an elementary linear algebra:

Lemma 3.3. Let N be a given n× (n+1) matrix and we denote the matrix
removed i-th column by Ni. The homogeneous equation

N


λ1
...

λn

λn+1

 = 0

in Pn has a unique solution if N is of full rank. And then the solution is
λ1
...
λi
...

λn+1

 =


det(N1)

...
(−1)i+1 det(Ni)

...
(−1)n+2 det(Nn+1)

 .
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Now we show that V3 is birational to P3. As V3 is a (2, 2)-intersection
in P5 with coordinates (a, b, c, d, y1, y2) and contains a line W defined by
the equations x2

1a + x1b + c = 0, d = y1 = y2 = 0, therefore we can apply
Lemma 3.2 and 3.3. Note that W is spanned by S1 = (1, 0,−x2

1, 0, 0, 0),
S2 = (0, 1,−x1, 0, 0, 0). By a direct computation based on the map ϕ in the
proof of Lemma 3.2, we obtain the following:

Theorem 3.4. V3 is rational. Every K-rational point on V3 is given by

(λ + νp1, µ, −λx2
1 − µx1, νp2, νp3, νp4),

where (p1, p2, p3, p4) ∈ P3 and

(λ, µ, ν)

=
(
x3

1x2x3(x3 − x2)(x1x3 − x2x3 + x1x2)p2
1

− (x3 − x2)(x4
1 − (x2 + x3)x3

1 − x1x2x3(x2 + x3) + x2
2x

2
3)p1p2

+ (x3 − x2)(x2 − x1 + x3)p2
2 − x3(x3 − x1)p2

3 + x2(x2 − x1)p2
4,

− x5
1x2x3(x2

3 − x2
2)p

2
1

− x2
1(x1 + x2)(x1 + x3)(x3 − x2)(x2 + x3 − x1)p1p2

− (x3(x2
3 − x2

1)− x2(x2
2 − x2

1))p
2
2 + x3(x2

3 − x2
1)p

3
3 − x2(x2

2 − x2
1)p

2
4,

x2x3(p1x
3
1 + p2)(x3 − x1)(x2 − x1)(x3 − x2)

)
∈ P2.

Case of rank 4. In this case, V4 contains the plane W defined by the
equations x3

1a + x2
1b + x1c + d = 0, y1 = y2 = y3 = 0. Hence by a similar

argument to the one employed in the case of rank 3, we obtain the following:

Theorem 3.5. V4 is rational. Every K-rational point on V4 is expressed as

(λ + ρp1, µ, ν, −(λx3
1 + µx2

1 + νx1), ρp2, ρp3, ρp4),

where (p1, p2, p3, p4) ∈ P3 and

(λ, µ, ν, ρ)

=
(
− x3

1p
2
1(x3 − x2)(x4 − x2)(x4 − x3)

· (x2
1(x2 + x3 + x4)− x1(x2x3 + x3x4 + x2x4) + x2x3x4)

+ p2
2(x3 − x2)(x4 − x1)(x4 − x3)

− (x2 − x1)((x4 − x1)(x4 − x2)p2
3 − (x3 − x1)(x3 − x2)p2

4

)
,

x6
1p

2
1(x3 − x2)(x4 − x2)(x4 − x3)(x2 + x3 + x4)

− p2
2(x3 − x1)(x4 − x1)(x4 − x3)(x1 + x3 + x4)

+ p2
3(x2 − x1)(x4 − x1)(x4 − x2)(x1 + x2 + x4)
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− p2
4(x2 − x1)(x3 − x1)(x3 − x2)(x1 + x2 + x3),

− x6
1p

2
1(x3 − x2)(x4 − x2)(x4 − x3)(x2x3 + x3x4 + x2x4)

+ p2
2(x3 − x1)(x4 − x1)(x4 − x3)(x1x3 + x3x4 + x1x4)

− p2
3(x2 − x1)(x4 − x1)(x4 − x2)(x1x2 + x2x4 + x1x4)

+ p2
4(x2 − x1)(x3 − x1)(x3 − x2)(x1x2 + x2x3 + x1x3),

p1x
3
1(x2 − x1)(x3 − x1)(x3 − x2)(x4 − x1)(x4 − x2)(x4 − x3)

)
.

Before proceeding to the case of rank ≥ 5, we state the following theorem.
It can be proved by a similar argument to the one for [4, Theorem 2.1].

Theorem 3.6. Let Vn be the algebraic variety over K defined by (2) where
we regard a, b, c, d and yi (i = 1, . . . , n− 1, n ≥ 5) as variables. Then Vn is
K-birational to the variety V̄n defined by the equations∣∣∣∣ 0 1 2 3 i

Y 2
0 Y 2

1 Y 2
2 Y 2

3 Y 2
i

∣∣∣∣ = 0 (i = 4, . . . , n− 1)

in Pn−1 with coordinate (Y0, . . . , Yn−1), where we write
∣∣∣∣ 0 1 2 3 i
Y 2

0 Y 2
1 Y 2

2 Y 2
3 Y 2

i

∣∣∣∣
for the determinant

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
α0 α1 α2 α3 αi

α2
0 α2

1 α2
2 α2

3 α2
i

α3
0 α3

1 α3
2 α3

3 α3
i

Y 2
0 Y 2

1 Y 2
2 Y 2

3 Y 2
i

∣∣∣∣∣∣∣∣∣∣
(i = 4, . . . , n − 1), and αi =

xi+1 (i = 0, . . . , n− 1).

Case of rank 5. In this case, V̄5 in Theorem 3.6 is defined by one quadric
equation with a rational point P1 = (1, 1, 1, 1, 1). Hence we have the following
theorem which is similar to Theorem 3.1:

Theorem 3.7. V̄5 is rational. Every K-rational point on V̄5 is expressed as

(2p1S − T, 2p2S − T, 2p3S − T, 2p4S − T, −T ),

where (p1, p2, p3, p4) ∈ P3 and

S =
∣∣∣∣ 0 1 2 3 4
p1 p2 p3 p4 0

∣∣∣∣ , ∣∣∣∣ 0 1 2 3 4
p2
1 p2

2 p2
3 p2

4 0

∣∣∣∣ .
Case of rank 6. In this case, V̄6 is a (2, 2)-intersection in P5 and contains a
line W which is spanned by S1 = (1, 1, 1, 1, 1, 1), S2 = (α0, . . . , α5). There-
fore, we can apply Lemma 3.2. Let L be a linear subspace spanned by

S3 = (α4 − α5, 0, 0, 0, α5 − α0, α0 − α4),
S4 = ( 0, α4 − α5, 0, 0, α5 − α1, α1 − α4),
S5 = ( 0, 0, α4 − α5, 0, α5 − α2, α2 − α4),
S6 = ( 0, 0, 0, α4 − α5, α5 − α3, α3 − α4).
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For any point P = p1S3 + p2S4 + p3S5 + p4S6 on L, the point on M is
represented by the form λS1 + µS2 + νP. We denote the i-th coordinate of
P by P (i− 1). Then the equation of W1 ∩W2 is easily seen to be

N

λ
µ
ν

 = 0,

where N is a 2× 3-matrix (Nij) defined by

N11 = 2
∣∣∣∣ 0 1 2 3 4
P (0) P (1) P (2) P (3) P (4)

∣∣∣∣ ,
N12 = 2

∣∣∣∣ 0 1 2 3 4
α0P (0) α1P (1) α2P (2) α3P (3) α4P (4)

∣∣∣∣ ,
N13 =

∣∣∣∣ 0 1 2 3 4
P (0)2 P (1)2 P (2)2 P (3)2 P (4)2

∣∣∣∣ ,
N21 = 2

∣∣∣∣ 0 1 2 3 5
P (0) P (1) P (2) P (3) P (5)

∣∣∣∣ ,
N22 = 2

∣∣∣∣ 0 1 2 3 5
α0P (0) α1P (1) α2P (2) α3P (3) α5P (5)

∣∣∣∣ ,
N23 =

∣∣∣∣ 0 1 2 3 5
P (0)2 P (1)2 P (2)2 P (3)2 P (5)2

∣∣∣∣ .
Then by Lemma 3.3, λ

µ
ν

 =

 det(N1)
−det(N2)

det(N3)

 ,

where Ni is the 2× 2-matrix with the i-th column removed from N . Hence
the point on V̄6 which corresponds to P is λS1 +µS2 +νP , where (λ, µ, ν) =
(det(N1),−det(N2),det(N3)). Hence we have the following:

Theorem 3.8. V̄6 is rational. Every K-rational point on V̄6 is expressed as(
λ + µα0 + νp1(α4 − α5), λ + µα1 + νp2(α4 − α5),

λ + µα2 + νp3(α4 − α5), λ + µα3 + νp4(α4 − α5),

λ + µα4 + ν
3∑

i=0

pi+1(α5 − αi), λ + µα5 + ν

3∑
i=0

pi+1(αi − α4)
)

where (p1, p2, p3, p4) ∈ P3,

(λ, µ, ν) = (N12N23 −N13N22,−N11N23 + N13N21, N11N22 −N12N21)

with Nij as above.
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Case of rank 7. In this case, V̄7 is a (2, 2, 2)-intersection in P6. Unfortunately,
this is not rational and only unirational [1]. To remedy this situation, we
consider

E : y2 = ax4 + bx3 + cx2 + dx + e

instead of (1). Let f(x) be the right hand side of the equation of E and V7

the variety defined by the equation

y2
i = f(x1)f(xi+1) (i = 1, . . . , 6).

Repeating a similar argument to the one given above, we obtain the variety
which is birational to V7 defined by the equation,∣∣∣∣ 0 1 2 3 4 i

Y 2
0 Y 2

1 Y 2
2 Y 2

3 Y 2
4 Y 2

i

∣∣∣∣ = 0 (i = 5, 6, 7).

We call this V̄7. This is in P7 and its dimension is 4. Note that V̄7 contains a
plane W spanned by S1 = (1, . . . , 1), S2 = (α0, . . . , α7), S3 = (α2

0, . . . , α2
7).

Hence we are in the same situation as the case of rank 6. Thus we have the
following theorem which can be proved similarly:

Theorem 3.9. V̄7 is rational. Every K-rational point on V̄7 is expressed as(
λ + µα0 + να2

0, λ + µα1 + να2
1, λ + µα2 + να2

2,

λ + µα3 + να2
3 + ρp1, λ + µα4 + να2

4 + ρp2, λ + µα5 + να2
5 + ρp3,

λ + µα6 + να2
6 + ρp4, λ + µα7 + να2

7 + ρp5

)
,

where (p1, p2, p3, p4, p5) ∈ P4 and

(λ, µ, ν) = (det(N1),−det(N2),det(N3),−det(N4))

with Ni (i = 1, . . . , 4) as following:

N11 = 2
∣∣∣∣0 1 2 3 4 5
0 0 0 p1 p2 p3

∣∣∣∣ ,
N12 = 2

∣∣∣∣0 1 2 3 4 5
0 0 0 α3p1 α4p2 α5p3

∣∣∣∣ ,
N13 = 2

∣∣∣∣0 1 2 3 4 5
0 0 0 α2

3p1 α2
4p2 α2

5p3

∣∣∣∣ ,
N14 =

∣∣∣∣0 1 2 3 4 5
0 0 0 p2

1 p2
2 p2

3

∣∣∣∣ ,
N21 = 2

∣∣∣∣0 1 2 3 4 6
0 0 0 p1 p2 p4

∣∣∣∣ ,
N22 = 2

∣∣∣∣0 1 2 3 4 6
0 0 0 α3p1 α4p2 α6p4

∣∣∣∣ ,
N23 = 2

∣∣∣∣0 1 2 3 4 6
0 0 0 α2

3p1 α2
4p2 α2

6p4

∣∣∣∣ ,



ELLIPTIC CURVES 197

N24 =
∣∣∣∣0 1 2 3 4 6
0 0 0 p2

1 p2
2 p2

4

∣∣∣∣ ,
N31 = 2

∣∣∣∣0 1 2 3 4 7
0 0 0 p1 p2 p5

∣∣∣∣ ,
N32 = 2

∣∣∣∣0 1 2 3 4 7
0 0 0 α3p1 α4p2 α7p5

∣∣∣∣ ,
N33 = 2

∣∣∣∣0 1 2 3 4 7
0 0 0 α2

3p1 α2
4p2 α2

7p5

∣∣∣∣ ,
N34 =

∣∣∣∣0 1 2 3 4 7
0 0 0 p2

1 p2
2 p2

5

∣∣∣∣ .
Remark 3.10. In the case of n ≤ 4, one can write down immediately the
defining equation of elliptic curve which corresponds to a point on Vn. In
the case of n ≥ 5, let P = (ȳ0, . . . , ȳn−1) be a rational point on V̄n. Then,
the defining equation of the elliptic curve which corresponds to P is

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
α0 α1 α2 α3 x
α2

0 α2
1 α2

2 α2
3 x2

α3
0 α3

1 α3
2 α3

3 x3

ȳ2
0 ȳ2

1 ȳ2
2 ȳ2

3 y2

∣∣∣∣∣∣∣∣∣∣
= 0.

This is obtained by tracing the birational map between Vn and V̄n.

4. The value of the parameter which corresponds to a given
elliptic curve.

In view of Proposition 2.2, every elliptic curve with rank n should correspond
to a point of Vn. In this section, we give the values of the parameters for this
point of Vn (2 ≤ n ≤ 7). let E be an elliptic curve defined by the following
equation

y2 = ax3 + bx2 + cx + d

with independent generators (xi, yi) (i = 1, . . . , r, 2 ≤ r ≤ 7). Then we
have the values of parameters as follows:
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r = 2
(p1, p2, p3, p4) = (a, b, c, d− y1y2),

r = 3

(p1, p2, p3, p4) =
(

ax2
1 + bx1 + c

x2
1

, d, y1y2, y1y3

)
,

r = 4

(p1, p2, p3, p4) =
(

y1

x3
1

, y2, y3, y4

)
,

r = 5
(p1, p2, p3, p4) = (y1 − y5, y2 − y5, y3 − y5, y4 − y5),

r = 6

pj

= −

(
6∑

i=1

(x6 − xi+1)

)(
6∑

i=1

xi+1(x6 − xi+1)

)(
6∑

i=1

yi+1(x5 − xi+1)

)

+

(
6∑

i=1

(x5 − xi+1)

)(
6∑

i=1

xi+1(x6 − xi+1)

)(
6∑

i=1

yi+1(x6 − xi+1)

)

−

(
6∑

i=1

(x5 − xi+1)

)(
6∑

i=1

xi+1(x6 − xi+1)

)(
6∑

i=1

yi+1(x6 − xi+1)

)

+

(
6∑

i=1

(x6 − xi+1)

)(
6∑

i=1

xi+1(x5 − xi+1)

)(
6∑

i=1

yi+1(x6 − xi+1)

)

+ xj

(
6∑

i=1

(x6 − xi+1)

)((
6∑

i=1

(x6 − xi+1)

)(
6∑

i=1

yi+1(x5 − xi+1)

)

−

(
6∑

i=1

(x5 − xi+1)

)(
6∑

i=1

yi+1(x6 − xi+1)

))

+ yj

(
6∑

i=1

(x6 − xi+1)

)((
6∑

i=1

(x5 − xi+1)

)(
6∑

i=1

xi+1(x6 − xi+1)

)

−

(
6∑

i=1

(x6 − xi+1)

)(
6∑

i=1

xi+1(x5 − xi+1)

))
,

(j = 1, . . . , 4).

In the case r = 7, let E be an elliptic curve defined by the following
equation

y2 = ax4 + bx3 + cx2 + dx + e
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with independent generators (xi, yi) (i = 1, . . . , 8). Then the values of the
parameters are given by the formula

pi = (x3 − x2)(y1(x2x3 − x3xi+3 − x2xi+3 + x2
i+3)− yi+3x2x3)

− (x3 − x1)(y2(x1x3 − x3xi+3 − x1xi+3 + x2
i+3)− yi+3x1x3)

+ (x2 − x1)(y3(x1x2 − x2xi+3 − x2xi+3 + x2
i+3)− yi+3x1x2),

(i = 1, . . . , 5).

5. Examples.

In the previous sections, we have given a parametric representation of Vn

(1 ≤ n ≤ 7). Therefore we will get as many elliptic curves with specified
rank as we like by specialization at rational points on Vn. As an example, we
give the values of parameters which enable one to obtain the elliptic curve
with rank 7 in [2, Corollary C]. The elliptic curve is

y2 = x3 − 1717730532x + 27401746395780

with generators

(24144, 56466), (23562, 97182), (23736, 50022), (24840, 245430),

(25422, 404082), (23793, 34119), (26121, 596187).

The values of the parameters are

(p1, p2, p3, p4, p5) = (47822467248393469632,

66206014691795224675, 104521834162171114920,

76522282208132178600, 101559585548776675320),

(x1, x2, x3, x4, x5, x6, x7, x8)

=
(

1
234

, − 1
348

, − 1
174

,
1

930
,

1
1512

, − 1
117

,
1

2211
, 0
)

.
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