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The converse of Fatou’s theorem is true for positive mea-
sures but not for arbitrary measures. We prove that the con-
verse holds for Zygmund (smooth) measures, being this result
sharp in some sense. We also give an application to differen-
tiation of positive singular measures in the little Zygmund
class.

1. Introduction and statement of results.

Throughout this paper µ always will denote a complex Borel measure on R
or a positive Borel measure such that

∫
R

dµ(t)
1+t2

< ∞. For each µ, let

u(x, y) = P [µ](x, y) =
1
π

∫
R

y

y2 + (x− t)2
dµ(t)

denote its Poisson integral defined on the upper halfplane Π+ = {(x, y) :
y > 0}. Observe that P [µ](x, y) = Py ∗ µ(x), where Py(x) = 1

π
y

y2+x2 .
Analogously, if f is a bounded function we can also write P [f ](x, y) =
Py ∗ f(x).

A classical Fatou theorem [10, p. 257] relates some differentiability prop-
erties of µ at x ∈ R to the asymptotic behaviour of u(z) when z tends to x.
In order to state it, we recall that the symmetric derivative of µ at x and
the derivative of µ at x, are defined as

Dsymµ(x) = lim
h→0+

µ((x− h, x + h))
2h

,

Dµ(x) = lim
t−s→0
s<x<t

µ((s, t))
t− s

,

provided that both limits exist.
The usual Stolz angle {(t, y) : |t − x| < αy} will be denoted by ∆α(x),

where 0 < α < ∞.

Theorem (Fatou). Let u be the Poisson integral of a measure µ and let
L ∈ C.
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(a) If Dµ(x0) = L, then

(1) lim
z→x0,z∈∆α(x0)

u(z) = L , for all α > 0.

(b) If Dsymµ(x0) = L, then lim
y→0+

u(x0, y) = L .

When (1) holds we say that u has non-tangential limit L at x0. The
converses of the previous results are not true in general (see [5], and our
Proposition 2 for an example). However, the positivity of µ is a tauberian
condition which makes true the converses of (a) and (b), as it was proved
by Loomis [5].

Theorem (Loomis). Suppose that µ is positive, 0 ≤ L < ∞, and let u =
P [µ].

(i) If u has non-tangential limit L at x0, then Dµ(x0) = L.
(ii) If lim

y→0+
u(x0, y) = L, then Dsymµ(x0) = L.

Loomis obtained several proofs of these results. The most direct one uses
an integral representation of positive harmonic functions on Π+. Rudin [9],
applying a version of Wiener’s Tauberian theorem, generalized to higher di-
mensions the statement (ii), obtaining in this way another different proof.
Moreover he gave an example of a positive measure ν such that lim

y→0+
P [ν](0, y)

= ∞ but Dsymν(0) does not exist; therefore the hypothesis L < ∞ is really
needed in (ii).

In this paper we obtain another condition for which the converses of (a)
and (b) hold. For simplicity we will denote by |I| the Lebesgue measure of
an interval I and by C certain absolute constants, not necessarily the same
in each occurrence.

We need the following definition.

Definition. We say that a complex measure µ on R is a Zygmund measure
if there exists a positive constant C such that

|µ(I)− µ(I ′)| ≤ C|I|,
for any two adjacent intervals I, I ′ of the same length.

Observe that if µ is a Zygmund measure then its distribution function,
i.e. fµ(x) = µ((−∞, x)) when x ∈ R, belongs to the Zygmund class Λ∗, that
is, fµ is bounded and

(2) |fµ(x + h) + fµ(x− h)− 2fµ(x)| ≤ C|h|,
for all x, h ∈ R. We recall that the Zygmund norm of f ∈ Λ∗(R) is ‖f‖∗ =
‖f‖∞ + A, where A is the infimum of the constants C for which (2) holds.

Let us see as an important example that the measures f dx, f ∈ BMO(R),
are Zygmund measures. Let I, I ′ be two adjacent intervals of the same length
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and write Ĩ = I ∪ I ′. Denoting by fJ the average 1
|J |
∫
J f dx, we already see

that ∣∣∣∣∫
I
f dx−

∫
I′

f dx

∣∣∣∣ ≤ ∫
I
|f − fĨ | dx +

∫
I′
|f − fĨ | dx

≤ 2
∫

Ĩ
|f − fĨ | dx ≤ C|Ĩ|,

as required by the definition.
Our main results are the following. Let L be a complex number.

Theorem 1. Let µ be a Zygmund measure on R. If u has non-tangential
limit L at x0 then Dµ(x0) = L.

Theorem 2. Let µ be as above. If lim
y→0+

u(x0, y) = L, then Dsymµ(x0) = L.

The most general previous results of this kind were obtained by Brossard
and Chevalier [1]. Before stating their results we need two definitions:

(a) The Poisson integral of µ, u = P [µ], verifies the hypothesis (H) if and
only if the function P [|µ|]− |P (µ)| is bounded in V ∩Π+, where V is
a neighborhood of (0, 0).

(b) If µ is a measure the radial part of µ is defined by µra(A) = (µ(A) +
µ(−A))/2, for each measurable set A.

The results are the following.

Theorem A (Brossard-Chevalier). Let µ be a measure. If u = P [µ] has
non-tangential limit at the point (0, 0) and u satisfies the hypothesis (H),
then µ is derivable at 0.

Theorem B (Brossard-Chevalier). Let µ be a measure and u = P [µ]. If
the radial part µra of µ satisfies the hypothesis (H) and if the function u has
radial limit at the point (0, 0), then the measure µ has symmetric derivative
at the point 0.

For example, if µ is positive or µ = fdx, where f ∈ BMO(R) then µ
and µra satisfy (H). Previously Ramey and Ullrich [7] had proved that
the above theorems in the case that µ is absolutely continuous with density
in BMO (R). However there are radial Zygmund measures that do not
satisfy the hypothesis (H), as the Example at the end of Section 3 will
show. Therefore it seems that our results are not consequence of Theorems
A or B. We must say that the starting point of this research was Ullrich’s
paper [12], where a similar result was obtained for Bloch functions in the
open unit disk D. However, our theorems do not follow from his work. We
will prove Theorem 2 following some of the arguments of Rudin [9].

Several natural questions arise from our stated results. One of them is
whether Theorem 2 remains true when L = ∞. In contrast to the afore-
mentioned example of Rudin of the measure ν, we have the next result.
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Proposition 1. Let µ be a real Zygmund measure. Then the following are
equivalent.

(i) Dsymµ(x0) = +∞.
(ii) Dµ(x0) = +∞.
(iii) lim

y→0+
u(x0, y) = +∞.

(iv) The function u has non-tangential limit +∞ at x0.

As before, the case f dx with f ∈ BMO (R) was considered in [7].
Another question is to what extent can be weakened the hypothesis of µ

being a Zygmund measure. Since the modulus of continuity of a Zygmund
function is O(δ log 1

δ ) as δ → 0 [13, p. 44], then |µ(I)| ≤ C|I| log(1/|I|), if
|I| ≤ 1/2. According with this, the following proposition shows a certain
sharpness of our main results.

Proposition 2. Let ϕ(x) = x log 1
x if 0 < x < 1/2. Then there exists a real

measure µ such that

(i) |µ(I)| ≤ ϕ(|I|), for any interval I with |I| ≤ 1/2,
(ii) P [µ] has non-tangential limit 0 at the origin,
(iii) Dsymµ(0) does not exist.

The measure in the above proposition will be obtained by a modification
of the Loomis’ example given in [5].

We say that µ is a little Zygmund measure (µ ∈ λ∗) if fµ ∈ λ∗, i.e. fµ ∈ Λ∗
and

sup
x

|fµ(x + h) + fµ(x− h)− 2fµ(x)|
|h|

→ 0, as h → 0.

Assuming this strong hypothesis we have the following result.

Proposition 3. Let µ be a little Zygmund measure. If lim
y→0+

u(x0, y) = L,

then Dµ(x0) = L.

We finally apply the above results to prove:

Proposition 4. Let µ ∈ λ∗ be a positive measure, µ 6= 0. Assume that µ is
singular. Then for each 0 ≤ α ≤ ∞ the set Eα = {x ∈ R : Dµ(x) = α} has
Hausdorff dimension 1.

Examples of such kind of measures were given in [4].

2. Proof of Theorem 1.

First we recall an important result of Zygmund that will be used later, see
[11, p. 146] and also [13, p. 263].
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Theorem (Zygmund). Let u be a harmonic function on Π+. Then u =

P [f ] with f ∈ Λ∗(R) if and only if sup
x

∣∣∣∣∂2u

∂y2
(x, y)

∣∣∣∣ ≤ C

y
, for any y > 0.

The main ingredient in proving Theorem 1 will be Lemma 2 whose proof
will need the following technical result concerning Poisson integrals of Zyg-
mund functions. From now on, in the case that f is a continuous function,
we call again P [f ] the continuous extension of the Poisson integral up to the
boundary of Π+.

Lemma 1. Let f ∈ Λ∗ and u = P [f ]. Then

(3) |u(x + t, y + s) + u(x− t, y − s)− 2u(x, y)| ≤ C|h|,
for any h = (t, s) and (x, y) with y ≥ |s| ≥ 0.

Although this result is known among specialists in analytic function the-
ory in D, we have not found any reference. For the reader’s convenience we
have included a sketch of a direct proof, which does not involve any explicit
properties of the harmonic conjugate of u. We will follow some ideas used
in [11, pp. 143-147].

Proof of Lemma 1. By Zygmund’s Theorem and Lemma 5 in [11, p. 145]
we have

(4)
∣∣∣∣∂2u

∂y2
(x, y)

∣∣∣∣ ≤ C

y
,

∣∣∣∣∂3u

∂y3
(x, y)

∣∣∣∣ ≤ C

y2
for all x ∈ R, y > 0.

Also the following estimates hold:∣∣∣∣∂2u

∂x2
(x, y)

∣∣∣∣ ≤ C

y
,

∣∣∣∣ ∂3u

∂y∂x2
(x, y)

∣∣∣∣ ≤ C

y2
,(5) ∣∣∣∣ ∂3u

∂y2∂x
(x, y)

∣∣∣∣ ≤ C

y2
,

∣∣∣∣ ∂2u

∂y∂x
(x, y)

∣∣∣∣ ≤ C

y
,

for all x ∈ R, y > 0.
The first and the second ones are consequence of (4) and the harmonicity

of u. The fourth one is an integration of the third part of (5) and this one
follows from the formula

∂3u

∂y2∂x
(x, y) =

(
∂

∂x
Py1 ∗

∂

∂y2
u(·, y − y1)

)
(x), where y1 = y/2.

Fix z = (x, y) and h = (t, s). Write ∆2
hF (z) = F (z+h)+F (z−h)−2F (z).

If F has two continuous derivatives, then

(6)
∣∣∆2

hF (z)
∣∣ ≤ |h|2 max

α+β=2

∥∥∥∥ ∂2F

∂xα∂yβ

∥∥∥∥
L

,

where ‖ ‖L denotes the supremum norm on the segment L joining z−h with
z + h.
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Now consider the identity

u(x, y) = u(x, y + ρ)− ρ
∂u

∂y
(x, y + ρ)(7)

+
∫ ρ

0
τ

∂2

∂y2
u(x, y + τ) dτ, where ρ ≥ 0,

which can be proved by noticing that the derivative with respect to ρ of the
right-hand side of (7) vanishes. After this apply the identity (7) with ρ = |h|
to each term appearing in the definition of ∆2

hu(z) and get∣∣∆2
hu(z)

∣∣ ≤ ∣∣∆2
hu(x, y + ρ)

∣∣+ ρ

∣∣∣∣∆2
h

∂u

∂y
(x, y + ρ)

∣∣∣∣(8)

+
∫ ρ

0
τ

∣∣∣∣∆2
h

∂2u

∂y2
(x, y + τ)

∣∣∣∣ dτ.

The three terms of (8) can be bounded using (6), (5) and (4). This gives
(3). �

Lemma 2. Let µ be a Zygmund measure. There exists a positive constant
C so that

(9)
∣∣∣∣∫ t

s
P [µ](x, y) dx− µ((s, t))

∣∣∣∣ ≤ Cy log
t− s

y
,

for any s < t and 0 < y ≤ (t− s)/2.

Proof. For simplicity we denote by f the distribution function fµ of µ. Let
s < t and y > 0 be fixed. By definition and Fubini’s theorem one has

(10)
∫ t

s
P [µ](x, y) dx =

∫ ∞

−∞
ω(ρ) dµ(ρ),

where

ω(ρ) =
1
π

(
arctan

ρ− s

y
− arctan

ρ− t

y

)
is the harmonic measure ω((ρ, y), [s, t],Π+). Integration by parts yields

(11)
∫ t

s
P [µ](x, y) dx = −

∫ ∞

−∞
ω′(ρ)f(ρ) dρ = P [f ](t, y)− P [f ](s, y).

Therefore, denoting u = P [f ], we get

(12)
∫ t

s
P [µ](x, y) dx− µ((s, t)) = u(t, y)− u(s, y)− u(t, 0) + u(s, 0).

Now we claim that

(13) |u((1− α)z + αw)− (1− α)u(z)− αu(w)| ≤ Cϕ(α)|z − w|,

0 ≤ α ≤ 1, and z, w ∈ Π+,
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where ϕ(α) = α log2
1
α , if 0 ≤ α ≤ 1/2, and ϕ(α) = ϕ(1−α), if 1/2 ≤ α ≤ 1.

Inequality (13) is true for general functions in the Zygmund class on R2. To
prove (13) it is enough, by continuity and symmetry, to show that∣∣∣u((1− m

2n

)
z +

m

2n
w
)
−
(
1− m

2n

)
u(z)− m

2n
u(w)

∣∣∣
≤ C

2
m

2n
(n− log2 m)|z − w|,

if m
2n ≤ 1

2 and z, w ∈ Π+. The previous inequality holds for n = m = 1 by
Lemma 1. For general m and n it can be checked by an induction argument.

In order to estimate (12), keeping in mind the inequality (13), we add and
subtract the terms y

t−su(s, t − s) and y
t−su(t, t − s) to the right-hand side.

Then, the triangle inequality yields∣∣∣∣∫ t

s
P [µ](x, y) dx− µ((s, t))

∣∣∣∣
≤
∣∣∣∣ y

t− s
u(s, t− s) +

(
1− y

t− s

)
u(s, 0)− u(s, y)

∣∣∣∣
+
∣∣∣∣ y

t− s
u(t, t− s) +

(
1− y

t− s

)
u(t, 0)− u(t, y)

∣∣∣∣
+

y

t− s
|u(t, t− s)− u(t, 0)− u(s, t− s) + u(s, 0)| .

The first two terms of the last inequality are controlled by (13). For the third
one we argue as before, adding and subtracting the number 2u( t+s

2 , t−s
2 ) and

afterwards applying again Lemma 1. Thus∣∣∣∣∫ t

s
P [µ](x, y) dx− µ((s, t))

∣∣∣∣ ≤ 2Cy log
t− s

y
+ Cy ≤ Cy log

t− s

y
.

�

Proof of Theorem 1. Let x0 be fixed and take ε > 0. Consider 0 < α < 1/2
small enough so that Cα log(1/α) < ε, where C is the constant in (9). By
the hypothesis let δ > 0 such that |u(x, y) − L| < ε if (x, y) ∈ ∆ 1

α
(x0) and

0 < y < δ. If s < x0 < t, (t− s)α < δ put y = (t− s)α. Then∣∣∣∣ 1
t− s

∫ t

s
P [µ](x, y) dx− L

∣∣∣∣ < ε.

Moreover, by Lemma 2, one has∣∣∣∣ 1
t− s

∫ t

s
P [µ](x, y) dx− µ((s, t))

t− s

∣∣∣∣ < Cα log
1
α

< ε.

Hence ∣∣∣∣µ((s, t))
t− s

− L

∣∣∣∣ < 2ε, if t− s < δ/α and s < x0 < t.
�
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Remark 1. Theorem 1 can be improved in the sense that it is possible to
change the assumption that u has non-tangential limit at x0 by the existence
of the limit of u along two half-lines starting at x0. This is the same im-
provement that Loomis made in his Theorem 1 in [5], for positive harmonic
functions. The proof in our case, which will be omitted, is not difficult if we
use his result and some of his arguments.

3. Proof of Theorem 2.

Following Rudin’s scheme [9], we will prove Theorem 2 using Wiener’s
Tauberian theorem. However, since we are not dealing with a positive mea-
sure, we must introduce significant changes to his proof.

For the reader’s convenience we recall some definitions and the statement
of Wiener’s theorem. We will work in the multiplicative group R+ of the
positive real numbers with the Haar measure dτ = s−1ds. The convolution
on R+ is defined as

f ∗ g(r) =
∫ ∞

0
f(r/s)g(s)

ds

s
,

and the Fourier transform f̂ of f ∈ L1(dτ) as

f̂(y) =
∫ ∞

0
f(r)r−iy dr

r
, y ∈ R.

Wiener’s theorem [3, p. 509] is the following.

Theorem 3 (Wiener). Let k ∈ L1(dτ) such that k̂(y) 6= 0 for all y ∈ R.
Assume that there exists M ∈ L∞(dτ) such that

lim
r→0

(M ∗ k)(r) = Lk̂(0),

then lim
r→0

(M ∗ f)(r) = Lf̂(0) for all f ∈ L1(dτ).

As in Rudin’s paper, we define

(14) M(t) =
µ((x0 − t, x0 + t))

2t
, k(t) =

2t

π(1 + t2)
.

A straightforward computation gives

k̂(y) =
2
π

∫ ∞

0

t−iy

1 + t2
dt =

1
π

Γ
(

1
2

+ i
y

2

)
Γ
(

1
2
− i

y

2

)
=

1
cosh πy

2

6= 0,

for all y ∈ R, and k̂(0) = 1.
Now, by Fubini’s theorem, one gets

M ∗ k(r) =
1
πr

∫ ∞

−∞

(∫ r/|x0−t|

0

s

1 + s2
ds

)
dµ(t).
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The change of variables y = s|x0 − t| and again Fubini’s theorem show that

(15) M ∗ k(r) =
1
r

∫ r

0
u(x0, y) dy.

Now we need to show that M ∈ L∞, this is given by the following lemma.

Lemma 3. Let µ be a Zygmund measure. Then P [µ](x0, ·) is bounded if
and only if M ∈ L∞.

Proof. Let t > 0 be fixed, then∣∣∣∣ 1
2t

∫ x0+t

x0−t
P [µ](x, t) dx− P [µ](x0, t)

∣∣∣∣ ≤ sup
x

∣∣∣∣∂P [µ]
∂x

(x, t)
∣∣∣∣ t(16)

= sup
x

∣∣∣∣∂2P [fµ]
∂x2

(x, t)
∣∣∣∣ t ≤ C.

To obtain (16) we have first applied the mean-value theorem, secondly the
identity P [µ] = ∂P [fµ]

∂x , which is equivalent to (11), and finally the estimate

of ∂2P [fµ]
∂x2 given in (5).

On the other hand, the inequality (9), with y = t, and (16) allows us to
show that

(17) sup
t>0

|M(t)− P [µ](x0, t)| ≤ C,

which gives the lemma. �

Next lemma will be crucial in the proof of Theorem 2.

Lemma 4. Let µ be as usual and consider the function M defined in (14).
For any c > 0 there exists a positive function fc defined on R+ and depending
only on c, such that:

(i) f̂c(0) =
∫∞
0 fc(x)dx

x = 1.
(ii) (M ∗ fc)(r) = 1

2r

∫ x0+r
x0−r u(x, cr) dx, r > 0.

Proof. Let us solve first the equation (ii). For this purpose we assume that
fc ∈ L1(dτ). As in the proof of (15)

(18) M ∗ fc(r) =
1
2r

∫ ∞

−∞

(∫ r/|t−x0|

0
fc(s) ds

)
dµ(t).

On the other hand, by (10)

(19)
1
2r

∫ x0+r

x0−r
P [µ](x, cr) dx =

1
2r

∫ ∞

−∞
ω((t, cr), [x0− r, x0 + r],Π+) dµ(t).

Thus, by (18) and (19), it is enough to check if there exists a function fc

such that∫ r/|t−x0|

0
fc(s) ds = ω((t, cr), [x0 − r, x0 + r],Π+), for all t ∈ R.
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By the invariance of the harmonic measure under translations, symmetries
and homotheties the previous equality can be rewritten as∫ x

0
fc(s) ds = ω

((
1
x

, c

)
, [−1, 1],Π+

)
,

so

fc(x) =
d

dx
ω

((
1
x

, c

)
, [−1, 1],Π+

)
.

First observe that fc ≥ 0. So far we have not proved yet that fc ∈ L1(dτ).
This will be consequence of the fact that computations involved in proving
(18) and (19) are still true for µ = dx the Lebesgue measure. In this case
M = 1 and P [dx] = 1, so (18) and (19) give (i). Hence f ∈ L1(dτ) and
therefore (ii) holds. �

Remark 2. Some calculations show that actually

fc(x) =
4cx

π(c2x2 + (x− 1)2)(c2x2 + (x + 1)2)
, x > 0.

Proof of Theorem 2. By (15) and by the hypothesis lim
y→0+

u(x0, y) = L, one

has

lim
r→0+

(M ∗ k)(r) = lim
r→0+

1
r

∫ r

0
u(x0, y) dy = L = Lk̂(0).

Now, all the hypotheses of Wiener’s theorem are satisfied, then using also
Lemma 4, we get

(20) lim
r→0+

1
2r

∫ x0+r

x0−r
u(x, cr) dx = lim

r→0+
(M ∗ fc)(r) = Lf̂c(0) = L,

for any c > 0.
Given ε > 0, let 0 < c ≤ 1/2 be such that Cc log(2/c) < 2ε, where C

is the constant in (9). For this c, by (20), there exists δ > 0 such that
|(M ∗ fc)(r) − L| < ε if 0 < r < δ. On the other hand by (ii) in Lemma 4
and (9)

|M ∗ fc(r)−M(r)| =
∣∣∣∣ 1
2r

∫ x0+r

x0−r
u(x, cr) dx− µ((x0 − r, x0 + r))

2r

∣∣∣∣ ≤ ε.

Then by the triangle inequality |M(r)− L| < 2ε if r < δ. �

Remark 3. If µ is a Zygmund measure and J ⊂ I are two intervals, then

(21)
∣∣∣∣µ(I)
|I|

− µ(J)
|J |

∣∣∣∣ ≤ C
|I|
|J |

ϕ(|J |/|I|),

where ϕ is the function that appears in (13). Inequality (21) is a consequence
of (13).
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Example. We are going to construct a radial Zygmund measure µ for which
the function P [µ] has non-tangential limit zero at 0 but does not satisfy
hypothesis (H).

We will sketch the construction. First we consider the Kahane measure
µK [4], which is a positive singular Zygmund measure. For this measure, if
I is the 4-adic interval of length 4−n which contains the point 1/3, one has

(22) µK(I) = (n + 1)|I| .
Let ν be the following Zygmund measure supported on [0, 1],

ν = µK + log |3x− 1|1[0,1](x)/log 4 dx.

Since µK is singular, the definition of ν implies that D|ν|(1/3) = +∞ .
We claim that

(23) sup
δ>0

|ν(1
3 − δ, 1

3 + δ)|
2δ

< ∞.

In order to check (23), let J be the 4-adic interval of length 4−n containing
the point 1/3. By computations and taking into account (22), one has that
ν(J)/|J | does not depend on n. Fix δ > 0 and I = (1/3− δ, 1/3 + δ). Let J
be the largest 4-adic interval of length 4−n which contains 1/3 and J ⊂ I.
Taking into account that |J |/|I| ≥ 3/16, inequality (21) gives (23).

Let µj = ν ◦ Tj where Tj(x) = 2|j|+1(sgn (j)x − 1/2|j|+1) if j 6= 0 and
consider the radial Zygmund measure

µ =
∑
j 6=0

1
4|j|

µj .

By the definition one has

D|µ|
(

4
3 · 2j

)
= +∞ if j ≥ 2.

Using this fact and inequality (17) and (23) we conclude that

lim
y→0

P [|µ|]
(

4
3 · 2j

+ iy

)
= +∞ and

lim sup
y→0

∣∣∣∣P [µ]
(

4
3 · 2j

+ iy

)∣∣∣∣ ≤ C, j ≥ 2.

Thus, P [µ] does not satisfy (H).

4. Proof of the additional results.

We begin by proving Proposition 1, which corresponds to the case L = +∞.

Proof of Proposition 1. For simplicity put x0 = 0 and recall that fµ is the
distribution function of µ.
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(i) ⇒ (ii). This is a consequence of the following identity:

(24)
fµ(t)− fµ(0)

t
=

fµ(t)− fµ(−t)
2t

+
fµ(t) + fµ(−t)− 2fµ(0)

2t
.

(ii) ⇒ (iii), (iv). It will be not necessary to apply a possible generalization
of Fatou’s theorem, is enough to use Lemma 2 in the following way. Fix
α ≥ 1. The same type of arguments made to obtain (16) yield now∣∣∣∣ 1

2t

∫ t

−t
P [µ](x, t/α) dx− P [µ](x′, t/α)

∣∣∣∣ ≤ C if |x′| ≤ t.

By (9)

(25)
∣∣∣∣ 1
2t

∫ t

−t
P [µ](x, t/α) dx− µ((−t, t))

2t

∣∣∣∣ ≤ C

α
log 2α.

Since lim
t→0+

µ((−t,t))
2t = +∞, the two previous inequalities show that P [µ](z)

goes to +∞ when z → 0 within ∆α(0).
(iii) ⇒ (iv). Proceeding as in (16) one has

|P [µ](x, t/α) dx− P [µ](0, t/α)| ≤ C, if |x| ≤ t.

Then (iv) holds.
Finally taking α = 1 in (25) one obtains (iv) ⇒ (i). �

Proof of Proposition 2. In [5], Loomis considered the following example. For
n ≥ 1, let In = [2−n − an, 2−n + an], where 0 ≤ an ≤ 2−n−3. Let f be the
continuous function vanishing outside

⋃∞
n=1 In, such that f(2−n) = 2−n

and is linear on each interval of the form [2−n − an, 2−n], [2−n, 2−n + an].
This function f is clearly of bounded variation, so we can consider the
corresponding measure µ such that µ([x, y]) = f(y)−f(x). Loomis was able
to show that: If

∑∞
n=1 2nan < ∞, then u = P [µ] has non-tangential limit 0

at the origin and Dsymµ(0) does not exist.
Now we modify this example in an appropriate way. Let In = [2−n2 −

an, 2−n2
+an] where an will be chosen later and take µ constructed as before.

In order to prove the statement (i), we consider first that I = [2−n2 −
an, 2−n2

], therefore (i) holds in this case by choosing an = ϕ−1(2−n2
). The

fact that ϕ is increasing reduces the validity of (i) to the case when I is
included in some [2−n2 − an, 2−n2

]. Then

µ(I)
|I|

=
ϕ(an)

an
≤ ϕ(|I|)

|I|
,

so (i) is true for all I. Since

ϕ−1(x) ≤ x

log 1
x

, 0 < x ≤ 1
e
,
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we obtain that
∑∞

n=1 2n2
an < ∞. Hence, for any α > 0, lim P [µ](z) = 0 if

z → 0 within ∆α(0).
Since µ([0, 2−n2

]) = 2−n2
and µ([0, 2−n2 − an]) = 0 we conclude that

Dsymµ(0) does not exist. �

Remark 4. Actually Proposition 2 holds in a more general setting in the
sense that ϕ of (i) can be replaced by any continuous increasing function φ

such that φ(0) = 0 and φ(t)
t ↑ ∞ as t → 0+. The proof is the same as before

taking In = [φ(an)−an, φ(an)+an] with the sequence (an) is chosen in such
a way that∑

n≥1

φ(an) < ∞,
∑
n≥1

an

φ(an)
< ∞, φ(an+1) + an+1 < φ(an)− an.

Now we are going to consider the case when µ is a little Zygmund measure.

Proof of Proposition 3. As before put x0 = 0 and assume that
lim

y→0+
P [µ](0, y) = L. By Theorem 2 we know that Dsymµ(0) = L. The

little Zygmund condition applied to (24) gives Dµ(0) = L. �

We will give a proof of Proposition 4 using complex variables techniques.
The main ingredient is the following theorem of Rohde. Recall that f ∈ B0

(little Bloch space) if f is analytic in D and

lim
δ→0

sup
|z|≥1−δ

(1− |z|2)|f ′(z)| = 0.

See [6, Chap. 4] for more information.

Theorem. Let f be an inner function in the little Bloch space which is
not a finite Blaschke product. Then for each |w| < 1 there exists a set
Ew ⊂ ∂D = T of Hausdorff dimension one such that lim

r→1
f(reiθ) = w for all

eiθ ∈ Ew.

Proof of Proposition 4. Let µ be a little Zygmund measure on R. Let us
consider the functions

b(w) =
1
πi

∫ ∞

−∞

(
1

t− w
− t

1 + t2

)
dµ(t),

and
f(z) = exp(−b(T (z))) , z ∈ D,

where T (z) = i1+z
1−z maps conformally D onto Π+. Since µ is singular, one

has Dµ(x) = 0 for almost all x ∈ R. Then by the identity Re b(x + iy) =
P [µ](x, y) ≥ 0 and Fatou’s theorem we obtain lim

y→0
Re b(x + iy) = 0 a.e.

x ∈ R and |f(z)| ≤ 1, z ∈ D. But b ◦ T is normal [6, p. 71] and has radial
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limits almost everywhere on T. Since radial limits coincide with angular
limits for normal functions [6, p. 76], we have

lim
r→1

Re b(T (reiθ)) = 0 a.e. eiθ ∈ ∂D.

This implies lim
r→1

|f(reiθ)| = 1 a.e. eiθ ∈ T. Hence f is a nonconstant singular
inner function.

The most technical part is to show that f ∈ B0. This is the analogue of
a well-known result saying that the function

g(z) =
∫

T

eiθ + z

eiθ − z
dν(θ), z ∈ D,

belongs to B0 if ν is a little Zygmund measure on T (see [6, Sect. 7.2]). We
believe that it is enough to sketch the main steps of the proof that f ∈ B0.

First of all observe that it is enough to show that b ◦ T ∈ B0. By compu-
tations we see that

|(b ◦ T )′(z)| (1− |z|2) = |b′(T (z))| 2 Im T (z).

By the definition of B0 it suffices to show that for any sequence (wn), wn ∈
Π+ such that wn → R ∪ {∞} then

(26) |b′(wn)| Im wn → 0 as n →∞.

Some standard arguments on subsequences show that the possible (wn) can
be reduced to one of the following cases.

Case (a): 0 < C ≤ Im wn for any n and |wn| → ∞ as n →∞.
Case (b): Im wn → 0 as n →∞.
The first case is handled using the Lebesgue dominated convergence the-

orem in the integral representation

b′(w) =
1
πi

∫ ∞

−∞

1
(t− w)2

dµ(t).

For the second one, let us consider the analytic function

g(w) =
1
πi

∫ ∞

−∞

(
1

t− w
− t

1 + t2

)
φ(t) dt = u(w) + iũ(w),

where φ(t) = µ((−∞, t)) belongs to λ∗ and where ũ denotes the harmonic
conjugate of u. An integration by parts yields

b = −g′ −
∫ ∞

−∞

1− t2

(1 + t2)2
φ(t) dt,

hence

(27) |b′(wn)| Im wn = |g′′(wn)| Im wn.
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Since u = Re g = P [φ] where φ ∈ λ∗, an accurate estimate of ∂2u
∂y2 , following

[11, p. 146], gives

(28) sup
x

∣∣∣∣∂2u

∂y2
(x, y)

∣∣∣∣ y → 0 as y → 0.

On the other hand ũ = P [Hφ], where Hφ denotes the Hilbert transform of
φ (see [2, p. 109]). But it is well known that Hφ ∈ λ∗, then as before

(29) sup
x

∣∣∣∣∂2ũ

∂y2
(x, y)

∣∣∣∣ y → 0 as y → 0.

Using (28), (29), (27) and the identity

|g′′| =
∣∣∣∣∂2u

∂x2
+ i

∂2ũ

∂x2

∣∣∣∣ ,
we obtain (26). This ends the proof of f ∈ B0.

Given 0 < α ≤ ∞, let Ew the set such that lim
r→1

f(reiθ) = w = e−α, if

eiθ ∈ Ew. By Rohde’s theorem the Hausdorff dimension of Ew is one, so
T (Ew) has also dimension one, because T is locally Lipschitz. As argued
before, at each point x ∈ T (Ew) one has

lim
y→0+

Re b(x + iy) = α.

Proposition 3 yields Dµ(x) = α.
Since radial limits of b coincide with angular limits, we can conclude the

previous proof using Theorem 1 instead of Theorem 2. �
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