Pacific Journal of Mathematics

J-APPROXIMATION OF COMPLEX PROJECTIVE SPACES BY LENS SPACES

I. DIBAG

Volume 191 No. 2 December 1999

J-APPROXIMATION OF COMPLEX PROJECTIVE SPACES BY LENS SPACES

I. Dibag

In this paper we study the group $J(L^k(n))$ of stable fibre homotopy classes of vector bundles over the lens space, $L^k(n) = S^{2k+1}/\mathbb{Z}_n$ where \mathbb{Z}_n is the cyclic group of order n. We establish the fundamental exact sequences and hence find the order of $J(L^k(n))$. We define a number N_k and prove that the inclusion-map $i: L^k(n) \to P_k(\mathbb{C})$ induces an isomorphism of $J(P_k(\mathbb{C}))$ with the subgroup of $J(L^k(n))$ generated by the powers of the realification of the Hopf-bundle iff n is divisible by N_k . This provides the discrete approximation to the continuous case.

0. Introduction.

Let p be a prime; $k, n \in \mathbb{Z}^+$ and $L^k(p^n) = S^{2k+1}/\mathbb{Z}_{p^n}$ be the lens space where \mathbb{Z}_{p^n} is the cyclic group of order p^n . $L^k(p^n)$ has the structure of a CW-complex $L^k(p^n) = \bigcup_{i=0}^{2k+1} e^j$ and its 2k-th skeleton,

$$L_0^k(p^n) = \{ [z_0, \dots, z_k] \in L^k(p^n) : z_k \text{ is real } \ge 0 \}.$$

In this paper we study the group $J(L^k(p^n))$, making use of the already established results in [10] and [12] on $K_{\mathbb{R}}(L^k(p^n))$. We first establish the exact sequences analogous to the ones proved in [4] for $J(P_k(\mathbb{C}))$. Define $\overline{L}^k(p^n) = \begin{cases} L_0^k(p^n) & \text{if } p \text{ is odd} \\ L^k(p^n) & \text{if } p = 2 \end{cases}$. The main difficulty is to prove the injectivity of the map $c^!: J(\overline{L}^{2k}(p^n)/\overline{L}^{2k-2}(p^n)) \to J(\overline{L}^{2k}(p^n))$, whereas the corresponding result, e.g. [4, Lemma 4.9], is trivial for complex projective spaces. We resolve this difficulty by using the transfer map $\tau: \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n)) \to \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^{n+1}))$ and to make the transfer map suitable for application, we prove a number of preliminary results in Section 2.2 concerning binomial expansions. This leads to Proposition 2.3.3 about the kernel of $(\psi_{\mathbb{R}}^t - 1)$ where t is an integer not divisible by p and $\psi_{\mathbb{R}}^t$ is the Adams operation and which plays a fundamental role in the proofs of Lemma 3.2.1 and Proposition 3.2.2 for the injectivity of $c^!$. Using the exact sequences we establish, we find in Proposition 3.3.4, the order of $J(\overline{L}^{2v}(p^n))$. Let G(p,k,n) be the subgroup of $J(L^k(p^n))$ generated by the powers of the realification of the Hopf-bundle over $L^k(p^n)$

which coincides with $J(L^k(p^n))$, except for p odd and $k \equiv 0 \pmod{4}$ and for p=2 and $n \geq 2$ in which case it is a subgroup of $J(L^k(p^n))$ of index 2. Let $i: L^k(p^n) \to P_k(\mathbb{C})$ be the inclusion-map. We define a number N_k in 2.2.9. The main result of the paper; e.g., Theorem 3.4.2 states that i! maps the p-summand, $J_p(P_k(\mathbb{C}))$ of $J(P_k(\mathbb{C}))$ isomorphically onto G(p, k, n) iff n is greater or equal to the p-exponent of N_k . This provides the discrete approximation to the continuous case. We then conjecture in 3.4.4 a stronger version of this which involves the degree function on the J-groups.

Finally, we observe that the transfer map passes to the quotient and defines a map on the *J*-groups of the respective lens spaces. We prove in Proposition 3.5.3 that $\tau \circ i^!(x) = px$ for $\forall x \in G(p, k, n+1)$.

The paper is self-contained as a whole. Only very elementary facts about the $\tilde{K}_{\mathbb{R}}$ -groups of lens spaces are used and everything concerning J-groups of lens spaces is developed from scratch.

1. $\tilde{K}_{\mathbb{R}}$ -groups of lens spaces.

1.1. Survey of results. Let p be a prime and $k, n \in \mathbb{Z}^+$. Let η be the complex Hopf-bundle over $L^k(p^n), \mu = \eta - 1 \in \tilde{K}_{\mathbb{C}}(L^k(p^n))$ be its reduction and $w = r(\mu) \in \tilde{K}_{\mathbb{R}}(L^k(p^n))$ be the realification of μ . It is (essentially) shown in [10] and [12] that $\tilde{K}_{\mathbb{C}}(L^k(p^n))$ is generated multiplicatively by μ subject to the relations:

I.
$$\mu^{k+1} = 0$$
, II. $\psi^{p^n}_{\mathbb{C}}(\mu) = \mu \psi^{p^n}_{\mathbb{C}}(\mu) = \dots = \mu^{k-1} \psi^{p^n}_{\mathbb{C}}(\mu) = 0$.

For p odd, $\tilde{K}_{\mathbb{R}}(L_0^k(p^n))$ is generated multiplicatively by w subject to the relations :

I'. $w^{[k/2]+1} = 0$ and II'. The realification of the relations II above.

For p=2 and $n\geq 2$, let ξ be the real line-bundle over $L^k(2^n)$ such that $c(\xi)=\eta^{2^{n-1}}$ where c is the complexification-map. Let $\lambda=\xi-1\in \tilde{K}_{\mathbb{R}}(L^k(2^n))$. Then $\tilde{K}_{\mathbb{R}}(L^k(2^n))$ is generated multiplicatively by w and λ subject to:

- I'. $w^{[k/2]+1}=0$ if $k\not\equiv 1\pmod 4$ and $2w^{[k/2]+1}=w^{[k/2]+2}=0$ if $k\equiv 1\pmod 4$
- II'. The realification of relations II above. Relations II' in $\tilde{K}_{\mathbb{R}}(L_0^k(p^n))$ for p odd and in $\tilde{K}_{\mathbb{R}}(L^k(2^n))$ for p=2 are equivalent to the periodicity-relations: $\psi_{\mathbb{R}}^{s+p^n}(w)=\psi^s(w), \forall s\in\mathbb{Z}$ or to the single relation obtained by taking s=-1; i.e., $\psi_{\mathbb{R}}^{p^n-1}(w)-w=0$ which by Proposition 1.1.6 is of the form: $p^n(p^n-2)w+\sum_{j\geq 2}\alpha_jw^j=0$ or upon multiplication by $w^{i-1}:$ $(i\geq 1), p^n(p^n-2)w^i+\sum_{j\geq 2}\alpha_jw^{i+j}=0 (i\geq 1)$ which are equivalent to:

$$\begin{split} p^n w^i + \sum_{j \geq 2} \beta_j w^{i+j} &= 0 \text{ for } p \text{ odd and } 2^{n+1} w^i + \sum_{j \geq 2} \beta_j w^{i+j} = 0 \text{ for } p = 2. \\ \text{III'. } 2\lambda &= \psi_{\mathbb{R}}^{2^{n-1}}(w) \text{ and IV'. } \lambda w = (\psi_{\mathbb{R}}^{2^{n-1}+1} - \psi_{\mathbb{R}}^{2^{n-1}} - 1)(w). \end{split}$$

For $k \equiv 0 \pmod{4}$, $\tilde{K}_{\mathbb{R}}(L^k(p^n)) = \mathbb{Z}_2 \oplus \tilde{K}_{\mathbb{R}}(L^k_0(p^n))$ if p is odd and $\tilde{K}_{\mathbb{R}}(L^k_0(2^n)) = \tilde{K}_{\mathbb{R}}(L^k(2^n))/\mathbb{Z}_2\langle 2^{n+k-2}w\rangle$ if p = 2 and for $k \not\equiv 0 \pmod{4}$, $\tilde{K}_{\mathbb{R}}(L^k(p^n)) = \tilde{K}_{\mathbb{R}}(L^k_0(p^n))$.

Lemma 1.1.1. Let p be a prime; $v, n \in \mathbb{Z}^+$, $n \geq 2$ if p = 2. Then

$$\tilde{K}_{\mathbb{R}}(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)) = \begin{cases} \mathbb{Z}_{p^n} & \text{if } p \text{ is odd} \\ \mathbb{Z}_{2^{n+1}} & \text{if } p = 2 \end{cases}.$$

Lemma 1.1.2. Let $v, n \in \mathbb{Z}^+$. Then

$$\tilde{K}_{\mathbb{R}}(L^{4v+1}(p^n)/L^{4v}(p^n)) = \begin{cases} 0 & \text{if } p \text{ is odd} \\ \mathbb{Z}_2 & \text{if } p = 2 \end{cases}.$$

Lemma 1.1.3. Let p be a prime, $v \in \mathbb{Z}^+$. Then

$$\tilde{K}_{\mathbb{R}}(L^{4v+3}(p^n)/L^{4v+2}(p^n)) = 0.$$

Lemma 1.1.4. Let p be an odd prime; $k, t \in \mathbb{Z}^+$ such that (p, t) = 1. Then $((\psi_{\mathbb{R}}^t)^{\frac{p-1}{2}} - 1) = 0$ on $\tilde{K}_{\mathbb{R}}(L_0^k(p))$.

Proof. By Fermat's Theorem, $t^{p-1} \equiv 1 \pmod{p}$ and thus $t^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. Let η, μ, w be defined as in 1.1. Then $((\psi_{\mathbb{R}}^t)^{\frac{p-1}{2}} - 1)\mu = \eta^{t^{\frac{p-1}{2}}} - \eta = \eta^{\pm 1} - \eta$. If we take realification of both sides and note that $r(\eta^{-1}) = r(\eta)$, we obtain $((\psi_{\mathbb{R}}^t)^{\frac{p-1}{2}} - 1)w = 0$.

Definition 1.1.5. For $m, k \in \mathbb{Z}^+$, define the even binomial coefficient $u_m(k) = \frac{k^2(k^2-1)...(k^2-(m-1)^2)}{\frac{1}{2}(2m)!}$. Note that $u_k(k) = 1$ and $u_m(k) = 0$ for m > k.

Proposition 1.1.6. In $\tilde{K}_{\mathbb{R}}(P_{\infty}(\mathbb{C}))$, $\psi_{\mathbb{R}}^k(w) = \sum_{m=1}^k u_m(k)w^m$.

Proof. This is [7, Theorem 5.2.4].

2. The transfer-map.

2.1. Properties of the transfer-map. Let H be a subgroup of the compact Lie group G of finite index. Then there exists an induction-homomorphism $i_!: R_F(H) \to R_F(G)$ $(F = \mathbb{R}, \mathbb{C})$ on the representation rings as defined in [6, Section 7]. Let P be the top space of a principal G-bundle. Using the induction-homomorphism, one defines a transfer-map, $\tau_F: K_F(P/H) \to K_F(P/G)$ for the fibration $f: P/H \xrightarrow{G/H} P/G$ which in turn induces $\tau_F:$

 $\tilde{K}_F(P/H) \to \tilde{K}_F(P/G)$. In the special case, $H = \mathbb{Z}_{p^n}$, $G = \mathbb{Z}_{p^{n+1}}$ where p

is a prime and $P = S^{2k+1}$, we obtain a transfer-map, $\tau_F : \tilde{K}_F(L^k(p^n)) \to \tilde{K}_F(L^k(p^{n+1}))$ and its restriction, $\tau_F : \tilde{K}_F(L^k_0(p^n)) \to \tilde{K}_F(L^k_0(p^{n+1}))$. We now list some fundamental properties of the transfer.

Proposition 2.1.1.

(i) The transfer-map commutes with the complexification and realification maps, i.e., the following diagrams commute:

- (ii) If $t \in \mathbb{Z}^+$ and (p,t) = 1 then $\psi_F^t \circ \tau_F = \tau_F \circ \psi_F^t$.
- (iii) $\tau_F \circ f^!(x) = \tau_F(1)x, \forall x \in \tilde{K}_F(L^k(p^{n+1})).$
- (iv) $f! \circ \tau_F(x) = px, \forall x \in \tilde{K}_F(L^k(p^n)).$
- (v) Let $F = \mathbb{C}$ and η_n and η_{n+1} be the Hopf-bundles over $L^k(p^n)$ and $L^k(p^{n+1})$ respectively. Then $\tau_{\mathbb{C}}(\eta_n^i) = \sum_{i=i \pmod{p^n}} \eta_{n+1}^j$.

Proof. (i) and (iv) follow immediately from the definition of the transfermap as in [6, Section 7]. For (ii) and (iii) we refer the reader to [14, Lemma 2.2]. (v) is [3, Lemma 6.5.8].

Lemma 2.1.2. Let $\mu \in \tilde{K}_{\mathbb{C}}(P_{\infty}(\mathbb{C}))$ and $w \in \tilde{K}_{\mathbb{R}}(P_{\infty}(\mathbb{C}))$ be the multiplicative generators and $r: \tilde{K}_{\mathbb{C}}(P_{\infty}(\mathbb{C})) \to \tilde{K}_{\mathbb{R}}(P_{\infty}(\mathbb{C}))$ be the realification-map. Then $r(\mu^k) = \sum_{i=\lceil \frac{k+1}{2} \rceil}^k a_i w^i \ (a_i \in \mathbb{Z}).$

Proof. This can be proved by induction on k using the relation $r(\psi_{\mathbb{C}}^k(\mu)) =$ $\psi^k_{\mathbb{R}}(w)$.

We shall now drop the subscript and write down τ for $\tau_{\mathbb{R}}$.

Proposition 2.1.3. Let $k \in \mathbb{Z}^+$ and assume that $n \geq 2$ if p = 2. Then $\tau(w^{k}) = \sum_{i>1} a_i w^{k+i-1} \text{ in } \tilde{K}_{\mathbb{R}}(L_0^k(p^{n+1})) \text{ where } a_1 = p \text{ and } p/a_i \text{ for } 2 \leq p$ $i \leq p$.

Proof. It suffices to prove it for k=1 since by (iii) of Proposition 2.1.1 $\tau(w^k) = \tau(w)w^{k-1}.$

That $a_1 = p$ follows from (iv) of Proposition 2.1.1. For p = 2, $\tau_{\mathbb{C}}(1) = 1 + (1 + \mu)^{2^n} = 2 + \sum_{i=1}^{2^n-1} {2^n \choose i} \mu^i + \mu^{2^n}$, by (v) of Proposition 2.1.1, where $2/{2^n \choose i}$ for $1 \le i \le 2^n - 1$. $\tau_{\mathbb{C}}(\mu) = (\tau_{\mathbb{C}}(1))\mu = 2\mu + \sum_{i=1}^{2^{n-1}} {2^n \choose i} \mu^{i+1} + \mu^{2^{n+1}}$ by (iii) of Proposition 2.1.1.

We take realification of both sides and using Lemma 2.1.2 and commutativity of the second diagram in (i) of Proposition 2.1.1, we obtain $\tau(w) = \sum_{i \geq 1} a_i w^i$ where 2/i for $2 \leq i \leq 2^{n-1}$ and since $n \geq 2$ this yields the result for p = 2.

For p odd, $\tau_{\mathbb{C}}(1) = 1 + (1 + \mu)^{p^n} + (1 + \mu)^{2p^n} + \dots + (1 + \mu)^{(p-1)p^n} = p + \sum_{i \ge 1} b_i \mu^i$.

For $1 \le i \le p^n - 1$, $b_i = \binom{p^n}{i} + \binom{2p^n}{i} + \dots + \binom{(p-1)p^n}{i}$ and hence p/b_i . For $i = p^n$, $b_{p^n} = 1 + \binom{2p^n}{p^n} + \dots + \binom{(p-1)p^n}{p^n}$.

For $1 \le s \le p-1$, $\binom{sp^n}{p^n} = s \prod_{m=1}^{p^n-1} \frac{sp^n - p^n + m}{m} \equiv s \pmod{p}$. Thus $b_{p^n} \equiv (1+2+\cdots+(p-1)) \pmod{p} \equiv \frac{p(p-1)}{2} \equiv 0 \pmod{p}$, i.e., $p \mid b_{p^n}$.

For $p^{n} + 1 \leq i \leq 2p^{n} - 1$, $a_{i} = {2p^{n} \choose i} + \cdots + {(p-1)p^{n} \choose i}$ and hence p/a_{i} . Thus p/b_{i} for $0 \leq i \leq 2p^{n} - 1$. $\tau_{\mathbb{C}}(\mu) = (\tau_{\mathbb{C}}(1))\mu = p\mu + \sum_{j\geq 1} b_{j}\mu^{j+1} = p\mu + \sum_{j\geq 2} b_{j-1}\mu^{j} \ \tau(w) = \tau(r(\mu)) = r(\tau_{\mathbb{C}}(\mu)) = pw + \sum_{j\geq 2} b_{j-1}r(\mu^{j})$ by the commutativity of the 2^{nd} -diagram in (i) of Proposition 2.1.1 $r(\mu^{j}) = \sum_{i=\lceil \frac{j+1}{2} \rceil}^{j} c_{i}^{j} w^{i} \ (c_{i}^{j} \in \mathbb{Z})$ by Lemma 2.1.2.

Thus $\tau(w) = pw + \sum_{j\geq 2} \sum_{i=\lfloor \frac{j+1}{2} \rfloor}^j b_{j-1} c_i^j w^i = pw + \sum_{i\geq 1} a_i w^i$ where $a_i = \sum_{\lfloor \frac{j+1}{2} \rfloor \leq i \leq j} b_{j-1} c_i^j = \sum_{j=i}^{2i} b_{j-1} c_i^j$. Let $i \leq p^n$. Then in the second sum above, $j \leq 2i \leq 2p^n$ and $p|b_{j-1}$ by the first part of the proof. Hence $p|a_i$ for $2 \leq i \leq p^n$ and hence for $2 \leq i \leq p$.

2.2. Preliminaries on binomial expansions. Section 2.2 is a technical section aimed at proving Proposition 2.2.2.

If p is a prime and $n \in \mathbb{Z}^+$, $v_p(n)$ will denote the exponent of p in the prime factorization of n.

Definition 2.2.1. For
$$p^{n-1} \le k \le p^n - 1$$
, define $\Phi(k) = n + [\frac{p^n - k - 1}{p}]$.

If we arrange the integers in decreasing fashion from $k = p^n - 1$ to $k = p^{n-1}$ in blocks B_j of p consecutive integers then Φ is the step function which is constant on each block, increases by 1 with each increasing block and takes the value p on p on

Proposition 2.2.2. Let $S_{n,p} = \sum_{j \geq p^{n-1}} c_j [\psi_{\mathbb{R}}^p(w)]^j$ in $\tilde{K}_{\mathbb{R}}(P_{\infty}(\mathbb{C}))$. If we expand $S_{n,p} = \sum_{k \geq p^{n-1}} a_k w^k$ then $v_p(a_k) \geq \Phi(k)$ $(p^{n-1} \leq k \leq p^n - 1)$.

Proposition 2.2.2 is essential for the inductive proof of Proposition 2.3.1 which in turn is essential for the proof of Lemma 3.2.1 for the injectivity of the homomorphism $c^!$. Proposition 2.3.1 asserts for p odd and t prime to p, the existence of a series in w^k that starts at w^j (for any j) and which belongs to $\operatorname{Ker}\left[(\psi_{\mathbb{R}}^t)^{\frac{p-1}{2}}-1\right]\subseteq \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^n))$, the exponents of whose coefficients have a lower-bound given by a certain function $\psi(j,k)$ which is attained for k=j. For $v_p(j) \leq n-2$, the result follows by applying the transfer-map to the series we have in $\operatorname{Ker}\left[(\psi_{\mathbb{R}}^t)^{\frac{p-1}{2}}-1\right]\subseteq \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^{n-1}))$ by the induction-hypothesis

and by applying Proposition 2.1.3 to the coefficients. The difficult case is the one for $j = p^{n-1}$ (the more general case, $v_n(j) \ge n-1$ easily follows from this) and this is where Proposition 2.2.2 comes into play. For $j = p^{n-2}$, we have two series to compare; one that we have by the case $v_p(j) \leq n-2$ and another one that we obtain by applying the homomorphism f! induced by the p-th power map, $f: L_0^{2v}(p^n) \to L_0^{2v}(p^{n-1})$ to the series that we have by the induction-hypothesis for $j = p^{n-2}$. By noting that $f^!(w) = \psi_{\mathbb{R}}^p(w)$, the second-series is of the form $\sum_{k\geq p^{n-2}} b_k [\psi_{\mathbb{R}}^p(w)]^k$ which by Proposition 2.2.2 can be written as $\sum_{k>n^{n-2}} a_k w^k$ where $v_p(a_k) \geq \Phi(k)$. A lower-bound for the exponents of the coefficients of the first series is given by $\psi(p^{n-2},k)$ which is attained for $k = p^{n-2}$. $\Phi(j) \geq \psi(j,j)$, in general and using the special case of this for $j = p^{n-2}$, we can subtract a scalar-multiple of the first series from the second to eliminate the term $w^{p^{n-2}}$ and the resulting series starts with the term $w^{p^{n-2}+1}$. If m is the exponent of the multiplying factor then $m + \psi(j,k) > \Phi(k)$ and an immediate consequence of the special-case of this inequality for $j=p^{n-2}$ is that the p^{n-1} -th coefficient of the resulting series is prime to p. We continue this process inductively until we knock off the terms $w^{p^{n-2}+1}, w^{p^{n-2}+2}, \ldots, w^{p^{n-1}-1}$ and in the end, obtain a series in $\operatorname{Ker}[(\psi_{\mathbb{R}}^t)^{\frac{p-1}{2}}-1]\subseteq \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^n))$ that starts with the term $w^{p^{n-1}}$ and whose p^{n-1} -th coefficient is prime to p.

Lemma 2.2.3. Let p be an odd prime, $m \in \mathbb{Z}^+$ and $u_m(p)$ the even binomial coefficient defined in 1.1.5. Then

$$v_p(u_m(p)) = \begin{cases} 2 & \text{if } 1 \le m \le \frac{p-1}{2} \\ 1 & \text{if } \frac{p+1}{2} \le m \le p-1. \end{cases}$$

Observation 2.2.4. Let p be an odd prime, $n \in \mathbb{Z}^+$ and let $[\psi_{\mathbb{R}}^p(w)]^{p^{n-1}} = \sum_{k=p^{n-1}}^{p^n} a_k w^k$ in $\tilde{K}_{\mathbb{R}}(P_{\infty}(\mathbb{C}))$. Then

$$a_k = \sum_{\substack{s_1 + \dots + s_p = p^{n-1} \\ s_1 + 2s_2 + \dots + ps_p = k}} \frac{(p^{n-1})!}{s_1! s_2! \dots s_p!} \prod_{m=1}^{p-1} [u_m(p)]^{s_m}.$$

Proof. It is an immediate consequence of Proposition 1.1.6.

Definition 2.2.5. Let p be an odd prime, $n \in \mathbb{Z}^+$ and $p^{n-1} \le k \le p^n - 1$. We let S_k denote the set of all sequences $s = (s_1, ..., s_p)$ of non-negative integers such that $s_1 + ... + s_p = p^{n-1}$ and $s_1 + 2s_2 + ... + ps_p = k$. For $s \in S_k$, define $T(s) = \frac{(p^{n-1})!}{s_1!s_2!...s_p!}$ and $\theta(s) = T(s) \prod_{m=1}^{p-1} [u_m(p)]^{s_m}$. Observation 2.2.4 can be stated in an equivalent form, i.e.,

Observation 2.2.6. Under the hypothesis of Observation 2.2.4, $a_k = \sum_{s \in S_k} \theta(s)$.

Definition 2.2.7. Let p be an odd prime and $s \in S_k$. Define $e_p(s) = 2s_1 + \cdots + 2s_{\frac{p-1}{2}} + s_{\frac{p+1}{2}} + \cdots + s_{p-1}$.

We state the following Corollary to Lemma 2.2.3.

Corollary 2.2.8. $v_p(\theta(s)) = v_p(T(s)) + e_p(s)$.

Definition 2.2.9. For $k \in \mathbb{Z}^+$, define a number N_k by $v_p(N_k) = \sup_{1 \le r \le \left[\frac{k}{p-1}\right]} (1+v_p(r))$. Let $N_{k,p}$ denote its p-component.

We now observe that [5, Lemma 6.1] can be proved under more general hypothesis; i.e.,

Lemma 2.2.10. Let *p* be a prime, $n, k \in \mathbb{Z}^+$. If $v_p(n) \ge v_p(N_{k-1})$ then $v_p(\binom{n}{k}) = v_p(n) - v_p(k)$.

Proof. Identical with that of [5, Lemma 6.1].

In the following, p is an odd prime and $n \in \mathbb{Z}^+$.

Definition 2.2.11. Let I_i be the closed interval, $I_i = [p^n - p^i + 1, p^n - p^{i-1}]$ in \mathbb{Z}^+ $(1 \le i \le n-1)$ and let $I_n = [p^{n-1}, p^n - p^{n-1}]$. Then $[p^{n-1}, p^n - 1] = \bigcup_{i=1}^n I_i$.

Lemma 2.2.12. Let $s \in S_k$. Then $s_p \ge k - (p-1)p^{n-1}$. If $k \in I_i$ then $s_p \ge p^{n-1} - p^i + 1$.

Proof. $s_1 + s_2 + \dots + s_p = p^{n-1}$ and $s_1 + 2s_2 + \dots + ps_p = k$ and substracting the first equation from the second yields 1. $s_2 + 2s_3 + \dots + (p-2)s_{p-1} + (p-1)s_p = k - p^{n-1}$, or equivalently $s_2 + 2s_3 + \dots + (p-2)s_{p-1} + (p-2)s_p + p^{n-1} = k - s_p$. LHS = $(s_2 + \dots + s_p) + (s_3 + \dots + s_p) + \dots + (s_{p-1} + s_p) + p^{n-1} \le (p-2)p^{n-1} + p^{n-1} = (p-1)p^{n-1}$. Thus, $k - s_p \le (p-1)p^{n-1}$ or, equivalently, $s_p \ge k - (p-1)p^n$. If $k \in I_i$ then $k \ge p^n - p^i + 1$ and hence $s_p \ge k - (p-1)p^{n-1} \ge p^n - p^i + 1 - (p-1)p^{n-1} = p^{n-1} - p^i + 1$. □

Corollary 2.2.13. Let $s \in S_k$ and $k \in I_i$. Then $v_p(T(s)) \ge n - i$.

Proof. It follows from the second part of Lemma 2.2.12 that $v_p(s_p) \leq i-1$. $T(s) = \binom{p^{n-1}}{s_p} \frac{(s_1 + \dots + s_{p-1})!}{s_1! \dots s_{p-1}!}$ and it follows from Lemma 2.2.10 that $v_p(\binom{p^{n-1}}{s_p}) = n-1-v_p(s_p) \geq n-1-(i-1) = n-i$.

Definition 2.2.14. For each $p^{n-1} \leq k \leq p^n - 1$, we define a unique special sequence $s^0(k)$ by $(s^0(k))_p = \left[\frac{k-p^{n-1}}{p-1}\right]$. Let $r = k - p^{n-1} - (p-1)(s^0(k))_p$. Then $0 \leq r \leq p-2$. The remaining (possibly) non-zero indices of $s^0(k)$ are $(s^0(k))_{r+1} = 1$ if $r \geq 1$ and $(s^0(k))_1 = p^{n-1} - (s^0(k))_p - 1 + \delta_{r0}$ where δ_{r0} is the Kronecker-delta. If we arrange the integers in decreasing fashion from

 $k = p^n - 1$ to $k = p^{n-1}$ in p^{n-1} blocks B_i of (p-1) consecutive integers, then $(s^0(k))_p = p^{n-1} - j$ is constant on each block. If $B_j = (k_1, \dots, k_{p-1})$, $k_i = k_{i-1} + 1, k_i = p^n - j(p-1) + i - 1$ then the non-zero indices of $s^0(k_i)$ apart from $(s^0(k_i))_p$ are : $(s^0(k_i))_i = 1$ and

$$(s^0(k_i))_1 = \begin{cases} j & \text{if } i = 1\\ j - 1 & \text{if } 2 \le i \le p - 1 \end{cases}.$$

Observation 2.2.15. If we arrange the integers in decreasing fashion from $k=p^n-1$ to $k=p^{n-1}$ in $2p^{n-1}$ blocks of $\frac{p-1}{2}$ consecutive integers then $e_p(s^0(k))$ is constant on each block and increases by 1 with each increasing block and takes the value 1 on the first block.

Proof. Let $B_j^1 = (k_{\frac{p+1}{2}}, \dots, k_{p-1})$ and $B_j^2 = (k_1, \dots, k_{\frac{p-1}{2}})$. Then it is clear from the above and the definition of $e_p(s^0(k))$ that $e_p(s^{\bar{0}}(k))$ is constant on B_i^j (i=1,2) and increases by 1 in passing from B_j^1 to B_j^2 and from B_j^2 to B_{i+1}^1 and takes the value 1 on B_1^1 .

Lemma 2.2.16. If $p^{n-1} \le k \le p^n - 1$ and $s \in S_k$ then $e_p(s) \ge e_p(s^0(k))$.

Proof. Define $u(s) = \sum_{i=1}^{\frac{p-1}{2}} s_i$ and $v(s) = \sum_{i=\frac{p+1}{2}}^{p-1} s_i$. Then by definition, $e_p(s) = 2u + v = 2(u + v + s_p) - v - 2s_p = 2p^{n-1} - v - 2s_p$. Hence:

1. $e_p(s) - e_p(s^0(k)) = [v(s^0(k)) - v(s)] + 2((s^0(k))_p - s_p) \ s_2 + 2s_3 + \cdots + (p-1)s_p = k - p^{n-1} = r + (p-1)(s^0(k))_p$ where $0 \le r \le p - 2$ and thus;

- 2. $s_2 + 2s_3 + \cdots + (\frac{p-1}{2})s_{\frac{p+1}{2}} + \cdots + (p-2)s_{p-1} = (p-1)((s^0(k))_p \cdots + (p-1)s_{p-1})$ $s_p) + r \ LHS \ge \sum_{i=\frac{p+1}{2}}^{p-1} (i+1)s_i \ge (\frac{p-1}{2}) \sum_{i=\frac{p+1}{2}}^{p-1} s_i = (\frac{p-1}{2})v(s)$ gives $v(s) \le 1$ $2((s^0(k))_p - s_p) + \frac{2r^2}{n-1}$ and hence $v(s) \le 2((s^0(k))_p - s_p) + [\frac{2r}{n-1}]$.
- (i) If $r \ge \frac{p-1}{2}$, $(s^0(k))_{r+1} = 1$ and $v(s^0(k)) = 1$ and thus $v(s) \le 1$ $2((s^0(k))_p - s_p) + 1.$
- (ii) If $r \leq \frac{p-1}{2}$, $v(s^0(k)) = 0$ and thus $v(s) \leq 2((s^0(k))_p s_p)$ and in either case, $v(s) \leq 2((s^0(k))_p - s_p) + v(s^0(k))$ and the result follows from 1 above.

Lemma 2.2.17. For $k \in I_i$, $n - i + e_p(s^0(k)) \ge \Phi(k)$.

Proof. It follows from Definition 2.2.1 in a straightforward way.

Corollary 2.2.18. Let $p^{n-1} \leq k \leq p^n - 1$ and $s \in S_k$. Then $v_p(\theta(s)) \geq$ $\Phi(k)$.

Proof. It is an immediate consequence of Corollaries 2.2.8, 2.2.13 and Lemma 2.2.17.

Proof of Proposition 2.2.2. It suffices to prove that if $[\psi_{\mathbb{R}}^p(w)]^{p^{n-1}+j}$ $\sum_{k > p^{n-1}+j} a_k^j w^k \text{ then } v_p(a_k^j) \ge \Phi(k). \ [\psi_{\mathbb{R}}^p(w)]^{p^{n-1}+j} = [\psi_{\mathbb{R}}^p(w)]^{p^{n-1}} [\psi_{\mathbb{R}}^p(w)]^j$ $= \left[\sum_{i \geq p^{n-1}} a_i w^i\right] \left[\sum_{l \geq j} b_l w^l\right] = \sum_{k \geq p^{n-1}+j} a_k^j w^k. \quad a_j^k = \sum_{i+l=k} a_i b_l. \text{ By Observation 2.2.4 and Corollary 2.2.17, } v_p(a_i) \geq \Phi(i) \geq \Phi(k) \text{ for } i \leq k \text{ and thus } v_p(a_i b_l) \geq \Phi(k). \quad \Box$

2.3. Kernel of $(\psi_{\mathbb{R}}^t - 1)$. In what follows t will be an integer not divisible by the prime p.

Proposition 2.3.1. Let p be an odd prime and $j, n, t, v \in \mathbb{Z}^+$ such that (p,t)=1. For $k \geq j$, define

$$\psi(j,k) = \begin{cases} n - 1 - v_p(j) - \left[\frac{k-j}{p}\right] & \text{if } j \le k \le j + p(n-1 - v_p(j)) - 1\\ 0 & \text{if } k \ge j + p(n-1 - v_p(j)). \end{cases}$$

Then there exist $a_{j,k} \in \mathbb{Z}$ such that:

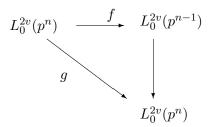
- (i) $v_p(a_{j,j}) = \psi(j,j) = n 1 v_p(j)$.
- (ii) $v_p(a_{j,k}) \ge \psi(j,k)$.
- (iii) $\sum_{k\geq j} a_{j,k} w^k \in \operatorname{Ker}\left[(\Psi_{\mathbb{R}}^t)^{\frac{p-1}{2}} 1\right] \subseteq \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^n)).$

Proof. By induction on n.

For n = 1 it follows from Lemma 1.1.4.

Let n > 1 and assume it to be true for n-1. Let $K_i = \operatorname{Ker}\left[\left(\Psi_{\mathbb{R}}^t\right)^{\frac{p-1}{2}} - 1\right] \subseteq \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^i))$.

For $0 \le v_p(j) \le n-2$, the result can be obtained by applying the transfer map $\tau_{n-1}: \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^{n-1})) \to \tilde{K}_{\mathbb{R}}(L_0^{2v}(p^n))$ and by using the induction-hypothesis and Proposition 2.1.3 and by noting that τ_{n-1} maps K_{n-1} to K_n which is a consequence of (ii) of Proposition 2.1.1. For $j=p^{n-1}$, the p-th power map, $g: L_0^{2v}(p^n) \to L_0^{2v}(p^{n-1})$ factors through $L_0^{2v}(p^{n-1})$, i.e., there exists a map $f: L_0^{2v}(p^n) \to L_0^{2v}(p^{n-1})$ such that the following diagram commutes:



Thus, $f^!(w) = \psi^p_{\mathbb{R}}(w)$. By the induction-hypothesis, there exist $\sum_{s \geq p^{n-2}} b_{p^{n-2},s} w^s \in K_{n-1}$. Applying $f^!$ and by noting that $f^!$ maps K_{n-1} to K_n , we obtain $\sum_{s \geq p^{n-2}} b_{p^{n-2},s} [\psi^p_{\mathbb{R}}(w)]^s \in K_n$. By Proposition 2.2.2, there exist $c_k \in \mathbb{Z}$ $(k \geq p^{n-2})$ with $v_p(c_k) \geq \Phi(k)$ such that:

 $1. \sum_{k>p^{n-2}} c_k w^k \in K_n.$

We now claim the following statement. For $p^{n-2} \leq j \leq p^{n-1}$, there exist $c_{j,k} \in \mathbb{Z}(k \geq 1)$ with $(p, c_{j,p^{n-1}}) = 1$, $v_p(c_{j,k}) \geq \Phi(k)$ such that $\sum_{k \geq j} c_{j,k} w^k \in K_n$.

Proof. By induction on j. For $j = p^{n-2}$ this follows from 1 above.

Let $p^{n-2} < j \le p^{n-1}$ and assume it to be true for (j-1). Since $0 \le v_p(j-1) \le n-2$, by the first part of the proof, there exist coefficients $a_{j-1,k} \in \mathbb{Z}$ $(k \ge j-1)$ with $v_p(a_{j-1,j-1}) = \psi(j-1,j-1) = n-1-v_p(j-1)$ and $v_p(a_{j-1,k}) \ge \psi(j-1,k)$ such that:

2. $\sum_{k>j-1} a_{j-1,k} w^k \in K_n$.

By the induction-hypothesis, there exist coefficients $c_{j-1,k} \in \mathbb{Z}$ $(k \geq j-1)$ with $(p, c_{j-1,p^{n-1}}) = 1$, $v_p(c_{j-1,k}) \geq \Phi(k)$ such that

3. $\sum_{k>j-1} c_{j-1,k} w^k \in K_n$.

Define $m = v_p(c_{j-1,j-1}) - v_p(a_{j-1,j-1}) \ge \Phi(j-1) - \psi(j-1,j-1) \ge 0$ $a_{j-1,j-1} = p^{v_p(a_{j-1,j-1})}\alpha_{j-1}$ and $c_{j-1,j-1} = p^{v_p(c_{j-1,j-1})}\gamma_{j-1}$ where (p,α_{j-1}) $= (p,\gamma_{j-1}) = 1$. Multiply Equation 2 by $p^m\gamma_{j-1}$ and 3 by $-\alpha_{j-1}$ and add up the resulting equations to obtain:

5. $\sum_{k>j} c_{j,k} w^k \in K_n$.

Let $\Delta \overline{\psi}(j-1,k)$ and $\Delta \Phi(k)$ be the respective increases in $\psi(j-1,k)$ and $\Phi(k)$ from j-1 to k. $\psi(j-1,k)$ and $\Phi(k)$ are constant on each p-block of consecutive (increasing) integers starting with j-1 and p^{n-2} respectively and decrease by 1 with each increasing block. Thus $\Delta \psi(j-1,k) \geq \Delta \Phi(k)$ $m+\psi(j-1,j-1) \geq \Phi(j-1)$ and $m+\psi(j-1,k) = m+\psi(j-1,j-1) + \Delta \psi(j-1,k) \geq \Phi(j-1) + \Delta \Phi(k) = \Phi(k)$. Hence $v_p(p^m \gamma_{j-1} a_{j-1,k}) \geq m+\psi(j-1,k) \geq \Phi(k)$ and also $v_p(-\alpha_{j-1} c_{j-1,k}) = v_p(c_{j-1,k}) \geq \Phi(k)$ and thus $v_p(c_{j,k}) \geq \Phi(k)$.

- (i) By the induction-hypothesis, $(p, \alpha_{j-1}c_{j-1,p^{n-1}}) = 1$ and if:
 - a) $j-1 > p^{n-1} p$ then $\Phi(j-1) \ge n+1$ and $\psi(j-1, j-1) \le n$ and thus $m \ge \Phi(j-1) \psi(j-1, j-1) \ge 1$;
 - b) $j-1=p^{n-1}-p$, then $\Phi(j-1)=n$ and $\psi(j-1,j-1)=n-1$ and thus $m \geq \Phi(j-1)-\psi(j-1,j-1)=n-(n-1)=1$;
 - c) $j-1 \le p^{n-1}-p-1$ then $v_p(a_{j-1,p^{n-1}}) \ge \psi(j-1,p^{n-1}) \ge 1$. In all three cases,
- (ii) $p/p^m \gamma_{j-1} a_{j-1,p^{n-1}}$.

We deduce from (i) and (ii) above that $(p, a_{j,p^n}) = 1$ and this proves the statement.

We deduce from the special case of the statement for $j=p^{n-1}$ that there exist coefficients $a_{p^{n-1},k}$ $(k \geq p^{n-1})$ with $(p,a_{p^{n-1},p^{n-1}})=1$ such that $\sum_{k>p^{n-1}}a_{p^{n-1},k}w^k \in K_n$.

More generally, for $v_p(j) \ge n-1$, let $j = p^{n-1}j'$. Then by what we have already proved and since K_n is an ideal in $\tilde{K}_{\mathbb{R}}(L_0^{2v}(p^n))$,

$$\left(\sum_{k\geq p^{n-1}} a_{p^{n-1},k} w^k\right) \left(\sum_{l\geq j'} a_{j',l} w^l\right) \in K_n$$

and hence the result.

We now extend this to p=2. We replace $L_0^k(p^n)$ for odd p by $L^k(2^n)$ for p=2. Let t be an odd integer. Here $L^k(4)$ plays the role of $L_0^k(p)$, p odd, and the analogous result to Lemma 1.1.4 is that $\psi_{\mathbb{R}}^t - 1 = 0$ in $\tilde{K}_{\mathbb{R}}(L^k(4))$. We, necessarily, assume $n \geq 2$ and consider the sequence of transfer-maps, $\tilde{K}_{\mathbb{R}}(L^k(4)) \to \cdots \to \tilde{K}_{\mathbb{R}}(L^k(2^n))$. The analogue of Proposition 2.3.1 is:

Proposition 2.3.2. Let $t, j, v, n \in \mathbb{Z}^+$, t odd, $n \geq 2$ and define

$$\psi(j,k) = \begin{cases} n - 2 - v_2(j) - \left[\frac{k-j}{2}\right] & \text{if } j \le k \le j + 2(n - 2 - v_2(j)) - 1\\ 0 & \text{if } k \ge j + 2(n - 2 - v_2(j)). \end{cases}$$

Then there exist $a_{i,k} \in \mathbb{Z}$ such that:

- (i) $v_2(a_{j,j}) = \psi(j,j) = n 2 v_2(j);$
- (ii) $v_2(a_{j,k}) \ge \psi(j,k)$ for $k \ge j$;
- (iii) $\sum_{k\geq j} a_{j,k} w^k \in \operatorname{Ker}(\psi_{\mathbb{R}}^t 1) \subseteq \tilde{K}_{\mathbb{R}}(L^{2v}(2^n)).$

Proof. Almost identical with that of Proposition 2.3.1.

Let p be a prime, $n \in \mathbb{Z}^+$ and let G_{p^n} be the multiplicative group of units in \mathbb{Z}_{p^n} .

$$G_{p^n} = \begin{cases} \mathbb{Z}_{p^{n-1}(p-1)} & \text{if } p \text{ is odd} \\ \mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}} & \text{if } p = 2, \text{ where the first summand is generated by } -1. \end{cases}$$

Proposition 2.3.3. Let p be a prime, $t \in \mathbb{Z}^+$ such that (t,p) = 1 and that t is a generator of G_{p^2} if p is odd and a generator of $G_8/\{\mp 1\}$ if p = 2. Define

$$n_p = \begin{cases} 1 & \text{if } p = 2\\ \frac{p-1}{2} & \text{if } p \text{ is odd} \end{cases} \quad and \quad \epsilon_p = \frac{3 + (-1)^p}{2}.$$

Let $n, v, j \in \mathbb{Z}^+$ and assume that $j \equiv 0 \pmod{n_p}$. For $k \geq j$, define

$$\psi_p(j,k) = \begin{cases} n - \epsilon_p - v_p(j) - \left[\frac{k-j}{p}\right] & \text{if } j \le k \le j + p(n - \epsilon_p - v_p(j)) - 1\\ 0 & \text{if } k \ge j + p(n - \epsilon_p - v_p(j)). \end{cases}$$

Then there exist $a_{j,k} \in \mathbb{Z}$ such that:

- (i) $v_p(a_{j,j}) = \psi_p(j,j) = n \epsilon_p v_p(j);$
- (ii) $v_p(a_{j,k}) \ge \psi_p(j,k)$;
- (iii) $\sum_{k>j} a_{j,k} w^k \in \text{Ker}(\psi_{\mathbb{R}}^t 1) \subseteq \tilde{K}_{\mathbb{R}}(\overline{L}^{2v}(p^n)).$

Proof. For p=2 it reduces to the statement of Proposition 2.3.2. For p odd, it follows from Proposition 2.3.1 that there exist $b_{j,k} \in \mathbb{Z}$ such that:

(i)
$$v_p(b_{j,j}) = \psi_p(j,j) = n - 1 - v_p(j)$$
.

(ii) $v_p(b_{j,k}) \ge \psi_p(j,k)$.

(iii)

$$0 = \left[\left(\psi_{\mathbb{R}}^{t} \right)^{\frac{p-1}{2}} - 1 \right] \left(\sum_{k \geq j} b_{j,k} w^{k} \right)$$

$$= \left(\psi_{\mathbb{R}}^{t} - 1 \right) \left(1 + \psi_{\mathbb{R}}^{t} + \dots + \left(\psi_{\mathbb{R}}^{t} \right)^{\frac{p-5}{2}} + \left(\psi_{\mathbb{R}}^{t} \right)^{\frac{p-3}{2}} \right) \left(\sum_{k \geq j} b_{j,k} w^{k} \right)$$

$$= \left(\psi_{\mathbb{R}}^{t} - 1 \right) \left(\sum_{k \geq j} a_{j,k} w^{k} \right) \quad \text{i.e.,}$$

$$\sum_{k \geq j} a_{j,k} w^{k} = \left[1 + \psi_{\mathbb{R}}^{t} + \dots + \left(\psi_{\mathbb{R}}^{t} \right)^{\frac{p-5}{2}} + \left(\psi_{\mathbb{R}}^{t} \right)^{\frac{p-3}{2}} \right] \left(\sum_{k \geq j} b_{j,k} w^{k} \right)$$

$$a_{j,j} = \left[1 + (t^{2j} - 1) + (t^{4j} - 1) + \dots + (t^{(p-3)j} - 1) \right] b_{j,j}.$$

Since $2j \equiv 0 \pmod{(p-1)}$, it follows from [1, Lemma 2.12] that

$$v_p(t^{2mj}-1) = 1 + v_p(2mj) \ge 1 \quad \left(1 \le m \le \frac{p-3}{2}\right)$$

i.e., p divides all the terms inside the bracket except the first one and thus the bracket is not divisible by p. Hence

$$v_p(a_{j,j}) = v_p(b_{j,j}) = \psi_p(j,j) = n - 1 - v_p(j).$$

If $[\psi_{\mathbb{R}}^{t^m}(w^s)]_k$ denotes the coefficient of w^k in the expansion of $\psi_{\mathbb{R}}^{t^m}(w^s)$ then

$$a_{j,k} = b_{j,k} + \sum_{1 \le m \le \frac{p-3}{2}} \sum_{s \ge j} b_{j,s} \left[\psi_{\mathbb{R}}^{t^m}(w^s) \right]_k.$$

$$v_p(b_{j,s}) \ge \psi_p(j,s) \ge \psi_p(j,k)$$
 and hence $v_p(a_{j,k}) \ge \psi_p(j,k)$.

3. J-Groups of Lens spaces.

3.1. *J*-triviality.

Lemma 3.1.1. Let $k, n \in \mathbb{Z}^+$, p and q be distinct primes such that q is a generator of G_{p^n} if p is odd and of the summand $\mathbb{Z}_{2^{n-2}}$ if p=2 and $u \in \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n))$. Then J(u)=0 in $J(\overline{L}^k(p^n))$ iff there exists $x \in \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n))$ such that $u=(\psi_{\mathbb{R}}^q-1)x$.

Proof. It follows from the Adams conjecture (for an elementary proof see [9]), [2, Theorem 1.1] and the fact that $\tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n))$ is a p-group that J-trivial bundles over $\overline{L}^k(p^n)$ are finite linear combinations of the form:

1. $\sum_{(k,p)=1} (\psi_{\mathbb{R}}^k - 1) y$.

If $k = p_1 \cdots p_r$ for prime, p_i $(1 \le i \le r)$ then:

2. $(\psi_{\mathbb{R}}^{k}-1)x=(\psi_{\mathbb{R}}^{p_{1}}-1)\psi^{p_{2}\cdots p_{r}}(x)+(\psi_{\mathbb{R}}^{p_{2}}-1)\psi^{p_{3}\cdots p_{r}}(x)+\cdots+(\psi_{\mathbb{R}}^{p_{r-1}}-1)\psi_{\mathbb{R}}^{p_{r}}(x)$ and hence we may, without loss of generality, assume that in 1, k runs over the set of complementary primes to p. Let k=q' be such a prime. Thus $q'\equiv \pm q^{m}\pmod{p^{n}}$ for some $m\in\mathbb{Z}^{+}$. Hence if η is the Hopf-bundle over $\overline{L}^{k}(p^{n}),\ \eta^{q'}=\eta^{\pm q^{m}}$ i.e., $\psi_{\mathbb{C}}^{q'}(\mu)=\psi_{\mathbb{C}}^{\pm q^{m}}(\mu)$ and taking realifications yields $\psi_{\mathbb{R}}^{q'}(w)=\psi_{\mathbb{R}}^{q^{m}}(w)$ and thus, $(\psi_{\mathbb{R}}^{q'}-1)w^{i}=(\psi_{\mathbb{R}}^{q}-1)w^{i}=(\psi_{\mathbb{R}}^{q}-1)x$ by 2 above.

Also for $p=2,\,n\geq 2$ and if λ is the reduction of the canonical line-bundle over $\overline{L}^k(p^n)$ as defined in Section 1.1, then $(\psi^q_{\mathbb{R}}-1)\lambda=0$ for q odd. \square

In his solution of the vector-field problem, Adams has (essentialy) proved that $J(P^n) = \tilde{K}_{\mathbb{R}}((P^n))$. We now extend his result.

Corollary 3.1.2. $J(L^{k}(4)) = \tilde{K}_{\mathbb{R}}(L^{k}(4))$.

Proof. Assume that n=2k is even. (i) If q=4m+1, $\eta^q=\eta$ and hence $(\psi^q_{\mathbb{C}}-1)\mu=0$. (ii) If q=4m-1, $\eta^q=\eta^{-1}$ and hence $(\psi^q_{\mathbb{C}}-\psi^{-1}_{\mathbb{C}})\mu=0$. $r[(\psi^q_{\mathbb{C}}-1)\mu]=r[(\psi^q_{\mathbb{C}}-\psi^{-1}_{\mathbb{C}})\mu]=(\psi^q_{\mathbb{R}}-1)w$ and hence $(\psi^q_{\mathbb{R}}-1)w=0$ in either case. Also $(\psi^q_{\mathbb{R}}-1)\lambda=0$. Thus $(\psi^q_{\mathbb{R}}-1)=0$ for q odd and the result follows from Lemma 3.1.1.

 $\textbf{3.2. Injectivity of the map, } c^!: J(\overline{L}^{2v}(p^n))/\overline{L}^{2v-2}(p^n) \to J(\overline{L}^{2v}(p^n)).$

Lemma 3.2.1. Let p be a prime; $i, n, s, t, v \in \mathbb{Z}^+$ such that (p, t) = 1 and $sw^v = (\psi_{\mathbb{R}}^t - 1)(\sum_{j=i}^v m_j w^j)$ in $\tilde{K}_{\mathbb{R}}(\overline{L}^{2v}(p^n))$ for $1 \leq i \leq v$ and $m_j \in \mathbb{Z}$ $(i \leq j \leq v)$. Then there exist $n_j \in \mathbb{Z}$ $(i + 1 \leq j \leq v)$ such that $sw^v = (\psi_{\mathbb{R}}^t - 1)(\sum_{j=i+1}^v n_j w^j)$.

Proof. $sw^v = m_i(t^{2i} - 1)w^i + \sum_{j=i+1}^v m'_j w^j$.

- (i) Let p be odd and $2i \not\equiv 0 \pmod{(p-1)}$. It follows from Section 1.1 that $p^n / m_i(t^{2i} 1)$ and from [1, Lemma 2.12] that p does not divide $(t^{2i} 1)$. Hence p^n / m_i . We deduce from Section 1.1 that $m_i w^i = \sum_{j=i+1}^v \alpha_j w^j$ and we put $n_j = m_j + \alpha_j$ $(i+1 \le j \le v)$.
- (ii) Let p be odd and $2i \equiv 0 \pmod{(p-1)}$. It follows from Section 1.1 that $v_p(m_i(t^{2i}-1)) \geq n$ and from [1, Lemma 2.12] that $v_p(t^{2i}-1) = 1 + v_p(2i)$. Thus, $v_p(m_i) \geq n 1 v_p(2i) = n 1 v_p(i) = \psi_p(i,i)$ where $\psi_p(i,j)$ is as defined in Proposition 2.3.3.
- (iii) Let p = 2. It follows from Section 1.1 that $v_2(m_i(t^{2i} 1)) \ge n + 1$ and from [1, Lemma 2.12] that $v_2(t^{2i} 1) = 2 + v_2(2i)$. Thus $v_2(m_i) \ge n + 1 1$

 $2-v_2(2i)=n-2-v_2(i)=\psi_2(i,i)$. It follows from Proposition 2.3.3 that in both cases (ii) and (iii), there exist $\beta_j \in \mathbb{Z}$ $(i \leq j \leq v)$ with $\beta_i = m_i$ such that $\sum_{j=i}^v \beta_j w^j \in \text{Ker } (\psi_{\mathbb{R}}^t - 1)$. Hence $(\psi_{\mathbb{R}}^t - 1)m_i w^i = -(\psi_{\mathbb{R}}^t - 1)(\sum_{j=i+1}^v \beta_j w^j)$ and we put $n_j = m_j - \beta_j$.

Proposition 3.2.2. Let p be a prime and $n, v \in \mathbb{Z}^+$ and $c : \overline{L}^{2v}(p^n) \to \overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)$. Then the induced homomorphism

$$c^!:J\left(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)\right)\to J\left(\overline{L}^{2v}(p^n)\right)$$

is injective.

Proof. Let $c!J(sw^v) = 0$ in $J(\overline{L}^{2v}(p^n))$. Let q be a prime which is a generator of G_{p^n} . We claim the following:

Statement. For each $1 \leq i \leq v$, there exist $m_j \in \mathbb{Z}$ $(i \leq j \leq v)$ such that $sw^v = (\psi_{\mathbb{R}}^q - 1)(\sum_{i=1}^v m_i w^j)$.

Proof. By induction on i.

For i=1, it follows from Lemma 3.1.1, Section 1.1 and the fact that for p=2, $(\psi_{\mathbb{R}}^q-1)\lambda=0$. Let i>1 and assume it to be true for i-1. Then it is true for i by Lemma 3.2.1. This proves the Statement and the Proposition follows from the special case of the statement for i=v.

Corollary 3.2.3. We have an exact sequence,

$$0 \to J(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)) \overset{c'}{\to} J(\overline{L}^{2v}(p^n)) \overset{i'}{\to} J(\overline{L}^{2v-2}(p^n)) \to 0.$$

Proof. The exactness of the four terms on the right follows from [1, Theorem 3.12], [2, Theorem 1.1] and the Adams conjecture. The injectivity of $c^!$ follows from Proposition 3.2.2.

Lemma 3.2.4. $c!: J(L^{4v+1}(p^n)/L^{4v}(p^n)) \to J(L^{4v+1}(p^n))$ is injective.

Proof. By Lemma 1.1.2, $\tilde{K}_{\mathbb{R}}(L^{4v+1}(2^n)/L^{4v}(2^n)) = \mathbb{Z}_2$ and generator maps to w^{2v+1} . The proof is identical with that of Proposition 3.2.2.

Corollary 3.2.5. The following sequence is exact,

$$0 \to J(L^{4v+1}(p^n)/L^{4v}(p^n)) \xrightarrow{c'} J(L^{4v+1}(p^n)) \xrightarrow{i'} J(L^{4v}(p^n)) \to 0.$$

Proof. Identical with that of Corollary 3.2.3.

3.3. Order of $J(\overline{L}^k(p^n))$.

Definition 3.3.1. We define as in [1, Section 2] numbers m(t) by: For p odd,

$$v_p(m(t)) = \begin{cases} 0 & \text{if } t \not\equiv 0 \pmod{(p-1)} \\ 1 + v_p(t) & \text{if } t \equiv 0 \pmod{(p-1)}. \end{cases}$$

For p=2,

$$v_2(m(t)) = \begin{cases} 1 & \text{if } t \not\equiv 0 \pmod{2} \\ 2 + v_2(t) & \text{if } t \equiv 0 \pmod{2}. \end{cases}$$

Definition 3.3.2. Let p be a prime and $v, n \in \mathbb{Z}^+$. Define

$$e(p, v, n) = \begin{cases} p^{\min (n, v_p(m(2v)))} & \text{if } p \text{ is odd} \\ 2^{\min (n+1, v_2(m(2v)))} & \text{if } p = 2. \end{cases}$$

Note that e(p, v, n) = 1 if $v \not\equiv 0 \pmod{(p-1)}$.

For $v \equiv 0 \pmod{(p-1)}$, $e(p, v, n) = p^{\epsilon_p + (\min{(n, 1 + v_p(2v))})}$ where

$$\epsilon_p = \begin{cases} 0 & \text{if } p \text{ is odd} \\ 1 & \text{if } p = 2. \end{cases}$$

Lemma 3.3.3. Let p be a prime; $v, n \in \mathbb{Z}^+, n \geq 2$ if p = 2. Then $J(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)) = \mathbb{Z}_{e(p,v,n)}$.

Proof. By Lemma 1.1.1,

$$\tilde{K}_{\mathbb{R}}(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)) = \begin{cases} \mathbb{Z}_{p^n} & \text{if } p \text{ is odd} \\ \mathbb{Z}_{2^{n+1}} & \text{if } p = 2 \end{cases}$$

and is generated by w^v . By [2, Theorem 1.1] and the Adams conjecture, $J(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)) = \tilde{K}_{\mathbb{R}}(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n))/W$ where $W = \cap_f W_f$ where W_f is the subgroup generated by

$$\sum_{k \in \mathbb{Z}^+} a_k k^{f(k)} (\psi_{\mathbb{R}}^k - 1) w^v = \sum_{k \in \mathbb{Z}^+} a_k k^{f(k)} (k^{2v} - 1) w^v.$$

Let K_p be the principal ideal in \mathbb{Z} generated by p^n if p is odd and by 2^{n+1} if p=2. Let $\phi_p: \mathbb{Z} \to \mathbb{Z}/K_p = \tilde{K}_{\mathbb{R}}(B_{4v}(\mathbb{Z}_{p^n})/B_{4v-4}(\mathbb{Z}_{p^n}))$ be the surjection. Define $W_f' = \phi_p^{-1}(W_f)$ and $W' = \cap_f W_f' = \phi_p^{-1}(W)$. Let h(f,2v) be the highest common divisor of the integers $k^{f(k)}(k^{2v}-1)$. Then W_f' is the principal ideal generated by h(f,2v) and by [1, Theorem 2.7], W_f is the principal ideal generated by m(2v).

$$J(\overline{L}^{2v}(p^n)/\overline{L}^{2v-2}(p^n)) = (\mathbb{Z}/K_p)/W = (\mathbb{Z}/K_p)/(W'/W' \cap K_p)$$
$$= (\mathbb{Z}/K_p)/((W' + K_p)/K_p) = \mathbb{Z}/(W' + K_p)$$

and $W' + K_p$ is the principal ideal generated by e(p, v, n).

Proposition 3.3.4. Let p be a prime and $v, n \in \mathbb{Z}^+$ and $n \geq 2$ if p = 2. Then

$$\left|J\left(\overline{L}^{2v}(p^n)\right)\right| = \begin{cases} \prod_{v'=1}^v e(p, v', n) & \text{if } p \text{ is odd} \\ 2\prod_{v'=1}^v e(2, v', n) & \text{if } p = 2. \end{cases}$$

Proof. It follows by induction from Corollary 3.2.3.

Definition 3.3.5. Let p be a prime and $k, n \in \mathbb{Z}$. Define G(p, k, n) and $G_0(p, k, n)$ to be subgroups of $J(L^k(p^n))$ and $J(L_0^k(p^n))$ generated by the powers of w respectively.

Lemma 3.3.6. *For p odd*,

$$J(L^k(p^n)) = \begin{cases} \mathbb{Z}_2 \oplus J(L_0^k(p^n)) & \text{if } k \equiv 0 \pmod{4} \\ J(L_0^k(p^n)) & \text{otherwise.} \end{cases}$$

Proof. This is [13, Proposition 1.3].

Corollary 3.3.7. For p odd, $G(p, k, n) = G_0(p, k, n)$.

Corollary 3.3.8. $G(p, k, n) = J(L^k(p^n))$ for p odd and $k \not\equiv 0 \pmod{4}$ and is a subgroup of index 2 if either p is odd and $k \equiv 0 \pmod{4}$ or p = 2.

We now state the following Corollary to Proposition 3.3.4.

Corollary 3.3.9. $|G(p, 2v, n)| = \prod_{v'=1}^{v} e(p, v', n)$.

Proposition 3.3.10. Let p be a prime; $v, n \in \mathbb{Z}^+$. Then

$$\left|J\left(L^{4v+1}(p^n)\right)\right| = \begin{cases} \left|J(L^{4v}(p^n))\right| & \text{if } p \text{ is odd} \\ 2\left|J(L^{4v}(2^n))\right| & \text{if } p = 2. \end{cases}$$

Proof. It follows from Lemma 1.1.2 and the fact that

$$J(L^{4v+1}(\mathbb{Z}_2)/L^{4v}(\mathbb{Z}_2)) = J(P^{8v+2}/P^{8v}) = \mathbb{Z}_2$$
 that

$$J\left(L^{4v+1}(p^n)/L^{4v}(p^n)\right) = \begin{cases} 0 & \text{if } p \text{ is odd} \\ \mathbb{Z}_2 & \text{if } p = 2. \end{cases}$$

The result follows from this and Corollary 3.2.5.

Proposition 3.3.11. $J(L^{4v+3}(p^n)) = J(L^{4v+2}(p^n)).$

Proof. It follows from [1, Theorem 3.12] that there is an exact sequence,

$$J(L^{4v+3}(p^n)/L^{4v+2}(p^n)) \xrightarrow{c!} J(L^{4v+3}(p^n)) \xrightarrow{i!} J(L^{4v+2}(p^n)) \to 0.$$

By Lemma 1.1.3, $\tilde{K}_{\mathbb{R}}(L^{4v+3}(p^n)/L^{4v+2}(p^n)) = 0$ and hence

$$J\left(L^{4v+3}(p^n)/L^{4v+2}(p^n)\right) = 0.$$

3.4. Approximation to complex projective spaces by lens spaces.

Let $i: L^k(p^n) \to P_k(\mathbb{C})$ be the inclusion. Let $J_p(P_k(\mathbb{C}))$ denote the p-summand of $J(P_k(\mathbb{C}))$.

Observation 3.4.1. $i^!$ maps $J_p(P_k(\mathbb{C}))$ onto G(p,k,n).

Theorem 3.4.2. $i^!$ maps $J_p(P_k(\mathbb{C}))$ isomorphically onto G(p,k,n) iff $n \ge v_p(N_k)$.

Proof. (i) Let k = 2v be even. By Corollary 3.3.9,

$$|G(p, k, n)| = \prod_{v'=1}^{v} e(p, v', n).$$

It follows from the proof of [4, Lemma 6.1] that there is a short exact sequence,

$$0 \to J\left(P_{2v}(\mathbb{C})/P_{2v-2}(\mathbb{C})\right) \to J\left(P_{2v}(\mathbb{C})\right) \to J\left(P_{2v-2}(\mathbb{C})\right) \to 0,$$

and from [4, Lemma 5.3] that $J(P_{2v}(\mathbb{C})/P_{2v-2}(\mathbb{C})) = \mathbb{Z}_{m(2v)}$ and hence by induction that $|J_p(P_{2v}(\mathbb{C}))| = \prod_{v'=1}^v m_p(2v')$ where $m_p(2v')$ is the p-component of m(2v'). Thus $|G(p,k,n)| = |J_p(P_k(\mathbb{C}))|$ iff e(p,v',n) = m(2v') for all $1 \leq v' \leq v$ iff $e(p,v',n) = m_p(2v')$ for all $1 \leq v' \leq v$ and $2v' \equiv 0 \pmod{(p-1)}$ iff $n \geq 1 + v_p(2v')$ for all $1 \leq v' \leq v$ and $2v' \equiv 0 \pmod{(p-1)}$, and putting 2v' = r(p-1), iff $n \geq 1 + v_p(r)$ for all $1 \leq r \leq \lfloor \frac{2v}{p-1} \rfloor$, i.e., iff $n \geq v_p(N_k)$.

(ii) k = 4v + 1.

$$|J_p(P_k(\mathbb{C}))| = \begin{cases} |J_p(P_{4v}(\mathbb{C}))| & \text{if } p \text{ is odd} \\ 2|J_2(P_{4v}(\mathbb{C}))| & \text{if } p = 2 \end{cases}$$

by [4, Lemma 6.2] and

$$|G(p,k,n)| = \begin{cases} |G(p,4v,n)| & \text{if } p \text{ is odd} \\ 2|G(2,4v,n)| & \text{if } p = 2 \end{cases}$$

by Proposition 3.3.10. The result follows from (i) above and the fact that $N_k = N_{4v}$.

(iii) k = 4v + 3.

$$|J_p(P_k(\mathbb{C}))| = |J_p(P_{4v+2}(\mathbb{C}))|$$

by [4, Lemma 6.2] and |G(p, k, n)| = |G(p, 4v + 2, n)| by Proposition 3.3.11 and the result follows from (i) above and the fact that $N_k = N_{4v+2}$.

Corollary 3.4.3. Let $i: L^k(m) \to P_k(\mathbb{C})$ be the inclusion. Then i! maps $J(P_k(\mathbb{C}))$ isomorphically onto the subgroup of $J(L^k(m))$ generated by w iff N_k/m .

Stable co-degrees of vector-bundles enables us as in [8, Section 4] or [9, Definition 1.1.4] to define a degree-function q on J(X); e.g., a function $q:J(X)\to\mathbb{Z}^+$ such that u=0 in J(X) iff q(u)=1. The degree-function imposes on J(X) an additional structure other than the usual algebraic structure. We now conjecture a stronger version of Theorem 3.4.5.

Conjecture 3.4.4. Let p be a prime. $n \in \mathbb{Z}^+$ and $n \geq 2$ if p = 2. Then the map $i^!: J_p(P_k(\mathbb{C})) \to J(L^k(p^n))$ is a q-isometry iff $n \geq v_p(N_k)$.

3.5. The transfer map on the J-groups.

Let $\tau: \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n)) \to \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n))$ be the transfer-map defined on the $\tilde{K}_{\mathbb{R}}$ -groups.

Lemma 3.5.1. τ passes to the quotient and defines $\tau: J(\overline{L}^k(p^n)) \to J(\overline{L}^k(p^{n+1}))$.

Proof. Let q be a prime which is a generator of both G_{p^n} and $G_{p^{n+1}}$ if p is odd and of the summands $\mathbb{Z}_{2^{n-2}}$ and $\mathbb{Z}_{2^{n-1}}$ if p=2. By Lemma 3.1.1, J-trivial bundles on $\overline{L}^k(p^n)$ are of the form $(\psi^q_{\mathbb{R}}-1)x, x\in \tilde{K}(\overline{L}^k(p^n))$. By (ii) of Proposition 2.1.1, $\tau\circ(\psi^q_{\mathbb{R}}-1)x=(\psi^q_{\mathbb{R}}-1)\circ\tau(x)$ is J-trivial on $\overline{L}^k(p^{n+1})$.

Corollary 3.5.2. The transfer map $\tau : \tilde{K}_{\mathbb{R}}(L^k(p^n)) \to \tilde{K}_{\mathbb{R}}(L^k(p^{n+1}))$ passes to the quotient and defines $\tau : J(L^k(p^n)) \to J(L^k(p^{n+1}))$.

Proof. The case p=2 is already proved in Lemma 3.5.1. For p odd and $k\not\equiv 0\ (\text{mod}\ 4),\ \tilde{K}_{\mathbb{R}}(L^k(p^n))=\tilde{K}_{\mathbb{R}}(L_0^k(p^n))$ and it also follows from Lemma 3.5.1. For p odd and $k\equiv 0\ (\text{mod}\ 4),\ \tilde{K}_{\mathbb{R}}(L^k(p^n))=\mathbb{Z}_2\oplus \tilde{K}_{\mathbb{R}}(L_0^k(p^n))$ where the first summand is generated by u and $\tau(u)=u$. By Lemma 3.3.6, $J(L^k(p^n))=\mathbb{Z}_2\oplus J(L_0^k(p^n))$ where the first summand is generated by J(u). Hence J-trivial elements on $\tilde{K}_{\mathbb{R}}(L^k(p^n))$ are of the form x where $i^!J(x)=0$ in $J(L_0^k(p^n))$. Hence $i^![\tau(J(x))]=\tau(i^!J(x))=0$ by Lemma 3.5.1. Since $i^!$ is an isomorphism on the 2^{nd} -summand, $\tau(J(x))=0$ and hence $J(\tau(x))=0$. \square

Proposition 3.5.3. Let $i: L^k(p^n) \to L^k(p^{n+1})$ be the \mathbb{Z}_p -fibration and $\tau: J(L^k(p^n)) \to J(L^k(p^{n+1}))$ be the transfer-map. Then $\tau(i^!(x)) = px$ $\forall x \in G(p, k, n+1)$.

Proof. By Corollary 3.3.7, $G(p, k, n) = G_0(p, k, n)$ for p odd and hence we shall assume without loss of generality that $\tau : \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^n)) \to \tilde{K}_{\mathbb{R}}(\overline{L}^k(p^{n+1}))$. We let

$$\overline{G}(p,k,n) = \begin{cases} G_0(p,k,n), & p \text{ odd} \\ G(p,k,n), & p \text{ even.} \end{cases}$$

By (i) and (v) of Proposition 2.1.1,

$$\tau(\psi_{\mathbb{R}}^{p^{i}}(w)) = \sum_{s=0}^{p-1} \psi_{\mathbb{R}}^{p^{i}+sp^{n}}(w) \qquad (0 \le i \le n-1)$$
$$= \sum_{s=0}^{p-1} \psi_{\mathbb{R}}^{p^{i}} \circ \psi_{\mathbb{R}}^{p^{1+sp^{n-i}}}(w).$$

 $J(\overline{L}^k(p^n))$ is a p-group and $(1+sp^{n-i})$ is prime to p and it follows from (ii) of [9, Proposition 2.3.3] that $\psi_{\mathbb{R}}^{1+sp^{n-i}}(w)=w$ and hence:

1. $\tau(\psi_{\mathbb{R}}^{p^i}(w)) = p\psi_{\mathbb{R}}^{p^i}(w) \ (0 \leq \underline{i} \leq n-1).$

The group $i^!\overline{G}(p,k,n+1) = \overline{G}(p,k,n)$ is generated by $\{\psi^m_{\mathbb{R}}(w) : 0 \le m \le p^n-1\}$. Let p^i $(1 \le i \le n-1)$ be the p-primary component of m. It follows from (ii) of [9, Proposition 2.3.3] that $\psi^m_{\mathbb{R}}(w) = \psi^{p^i}_{\mathbb{R}}(w)$ in $J(\overline{L}^k(p^n))$. Hence the group $\overline{G}(p,k,n)$ is generated by $\{\psi^{p^i}_{\mathbb{R}}(w) : 1 \le i \le n-1\}$. The result follows from this and Equation 1 above.

References

- [1] J.F. Adams, On the groups J(X), II, J. Topology, **3** (1965), 137-172.
- [2] _____, On the groups J(X), III, J. Topology, 3 (1965), 193-222.
- [3] _____, Infinite Loop Spaces, Princeton Univ. Press, Princeton, NJ, 1978.
- [4] J.F. Adams and G. Walker, On complex-Stiefel manifolds, Proc. Camb. Phil. Soc., 61 (1965), 81-103.
- [5] M.F. Atiyah and J.A. Todd, On complex Stiefel manifolds, Proc. Camb. Phil. Soc., 56 (1960), 342-353.
- [6] J.C. Becker and D.H. Gottlieb, Transfer map for fibre bundles, Topology, 14 (1975), 1-12.
- [7] I. Dibag, Degree-functions q and q' on the group J_{SO}(X), Habilitationsschrift. Middle-East Technical University, Ankara, 1977.
- [8] _____, Degree theory for spherical fibrations, Tohoku Math. J., 34 (1982), 161-177.
- [9] _____, On the Adams conjecture, Proc. A.M.S., 87(2) (1983), 367-374.
- [10] K. Fujii, T. Kobayashi, K. Shimumura and M. Sugawara, KO-groups of lens spaces modulo powers of two, Hiroshima Math. J., 8 (1978), 469-489.
- [11] K. Fujii, J-groups of lens spaces modulo powers of two, Hiroshima Math. J., 10 (1980), 659-690.
- [12] T. Kambe, The structure of K_Λ-rings of the lens spaces and their applications, J. Math. Soc. Japan, 18(2) (1966), 135-146.
- [13] T. Kobayashi, S. Murakami and M. Sugawara, Note on J-groups of Lens Spaces, Hiroshima Math. J., 7 (1977), 387-409.

[14] D. Quillen, The Adams Conjecture, J. Topology, 10 (1970), 67-80.

Received July 28, 1997 and revised October 23, 1998.

BILKENT UNIVERSITY ANKARA TURKEY

E-mail address: dibag@fen.bilkent.edu.tr