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We classify circle actions on F -spaces X with Hod(X; Q) =
0 up to equivariant rational homotopy equivalence by the con-
cept of g-points in the spectrum of the cohomology ring of
Baut0(X). In the case of circle actions on closed oriented man-
ifolds X with the rational cohomology of flag varieties K/T
this gives a generalization of the rational homotopy classifi-
cation of linear (or homomorphic) circle actions to nonlinear
S1-actions.

1. Introduction.

There is an increasing experience that rational methods in classification
of maps between classifying spaces and homogeneous spaces respectively,
can be very effective thanks to the rigidity of spaces defined by compact
Lie groups. A fruitful application of rational methods can be found in the
theory of transformation groups. The main purpose of the present note is
to show how the theory of classification of linear actions of compact Lie
groups on homogeneous spaces can be embedded into a more general theory
including also nonlinear actions. Suppose G to be a compact connected
Lie group and let φ : G × X → X an action on a homogeneous space
X = K/U, where U ⊂ K is a equal rank pair of compact Lie groups. Then
φ is called linear if there exists a continuous homomorphism ρ : G → K
with φ = φρ, φρ(g, kU) = ρ(g)kU. In the case U a maximal torus not only
the equivariant rational homotopy type but also the stronger G-homotopy
type and even the diffeomorphism type of such an action is essentially given
by the character of ρ, see Thm. 10.

In rational homotopy theory a 1-connected space X is called of F -type
if the rational homotopy and the rational cohomology are finite Q-vector
spaces. If in addition the condition Hod(X; Q) = 0 is satisfied it has been
shown in [6] that H∗(X; Q) is a complete intersection. Let Baut0X be the
classifying space for the functor of fiber homotopy types of oriented Hurewicz
fibrations with fiber homotopy equivalent toX. Then it has been conjectured
by S. Halperin that Hod(Baut0(X); Q) = 0. This conjecture has been proved
in a series of cases, so for example if X is a homogeneous space K/U, rkK =
rk U, see e.g., [15]. Suppose G operates continuously on X by an action ϕ.
Then ϕ induces a homomorphism of topological monoids α : G → aut(X),
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where aut(X) is the topological monoid of self homotopy equivalences of X.
This in turn induces a map Bα : BG → Baut(X) of classifying spaces which
gives rise to a homomorphism H∗(Bα) : H∗(Baut(X); Q) → H∗(BG; Q).
This is the invariant we are mainly considering in this note. If G is acting
linearly or homomorphically on U(N)/T (N) the homomorphism factorizes
over the natural homomorphismH∗(Baut(X); Q)→ H∗(BU(N); Q) and thus
gives a homomorphism H∗(BU(N); Q) → H∗(BG; Q) which essentially is
nothing else than the total Chern class of the principal bundle

U(N)→ EG ×G U(N)→ BG.

But this in turn classifies the rational fiber homotopy type of the corre-
sponding flag bundle

U(N)/TN → EG ×G (U(N)/TN )→ BG.

Therefore the homomorphism H∗(Bα) can be taken into consideration as an
object generalizing representation theory to the case in which G does not act
linearly on U(N)/TN at the price that we have to take into consideration
also spaces homotopy equivalent to U(N)/TN . In the following we restrict to
the case G = S1. We can assume that α maps into aut0(X), the 1-connected
component of aut(X). The graded homomorphisms H∗(Baut0(X); Q) →
H∗(BG; Q) can be identified with the set of Q-valued points of V =
SpecH∗(Baut0(X); Q). Among all these points we distinguish the subclass
of the so called g-points by a purely algebraic condition, see Defs. 4 and
5. Denote by Gm the multiplicative group of Q, i.e., Gm ∼= Q∗. Then up to
minor modifications it is shown that the set of Gm-orbits of g-points classi-
fies G-actions on finite CW -complexes Y with H∗(Y ; Q) ∼= H∗(X; Q) up
to equivariant rational homotopy equivalence, see Th. 5. Here the actions
(X,φ) and (Y, ψ) are called rationally homotopy equivalent if there exist a
series of intertwining G-spaces

(X,φ)→ (X1, φ1)← · · · ← (Xi, φi)→ · · · ← (Y, ψ)

and equivariant maps inducing isomorphisms in rational homotopy.
As a first application of the theory we consider circle actions on spaces

of the rational homotopy type of CPn. As it is well-known, representations
of the circle group in a complex vector space V of dimension n are classi-
fied by n-tuples of weights or more concretely by the n × n diagonal ma-
trices diag{exp(2π

√
−1ai)}, where the ai are integers. Such a representa-

tion induces in a natural way an action on complex projective space, called
a linear action of G on projective space. One might ask when two such
linear actions are equivariantly Q-homotopy equivalent. Suppose we are
given two linear actions (PV, ρ), ρ = diag{exp(2π

√
−1ai)} and (PV, τ), τ =

diag{exp(2π
√
−1bj)} on the complex projective space PV = CPn. Let

S = T nE×Sn+1 the group generated by the diagonal translations T in the
affine space Qn+1, the homotheties E and the symmetric group Sn+1acting
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by permutation of coordinates. Then it is shown in this note, that the rep-
resentations ρ and τ are equivariantly Q-homotopy equivalent if and only
if there exists a Σ ∈ S such that (a1, . . . , an) = (b1, . . . , bn)Σ. (Thm. 6
(ii), Thm. 7.) The corresponding quotient space is a moduli space for the
equivariant rational homotopy types either of linear actions on CPn or of
arbitrary actions on spaces X with the rational homotopy type of CPn and
can be identified with the quotient of the fundamental Weyl chamber of
SU(n+ 1) modulo the canonical Q∗-action

As a second example we consider circle actions on spaces rationally ho-
motopy equivalent to X = U(N)/TN . The Weyl group SN of U(N) has a
natural action on V = SpecH∗(Baut0(X); Q). Then the rational homotopy
classes of linear actions on spaces homotopy equivalent to X are classified
by the Gm-orbits of g-points which are in the fixed set F = F (SN , V ). So,
an action of G on U(N)/TN is not rationally homotopy equivalent to a
linear action iff its g-point lies outside of F. It follows from a result of [9]
that there are indeed g-deformations (Def. 4) of the ring H∗(U(3)/T 3,Q)
which do not correspond to the equivariant cohomology of a linear action on
U(3)/T 3. As it has been shown in [13] these deformations can be realized by
circle actions on finite CW-complexes thus showing nonvoidness of the the-
ory. I would like to thank the ancient SFB 170, “Geometrie und Analysis”
at Göttingen University for support and the referee for his careful reading
of the manuscript and his suggestions.

2. Equivariant cohomology and localization.

Suppose X is a topological space and G a topological group which acts con-
tinuously on X. In transformation group theory one often is led to consider
the Borel fibration

X → EG ×G X → BG,

associated to the universal G-principal fibration EG → BG. One puts XG =
EG ×G X and calls the ring H∗

G(X; Q) = H∗(XG; Q) the (ordinary) equi-
variant rational cohomology. In the following we use always rational coeffi-
cients which will be omitted in the text. If we write RG = H∗(BG) the ring
H∗
G(X) has in a natural way the structure of a graded RG algebra. This

gives a contravariant functor from the category of G-spaces and G-maps into
the category of graded commutative RG algebras and graded RG-algebra ho-
momorphisms. In the particular case where G is a compact connected Lie
group and H∗(X) a graded Q-algebra vanishing in odd degrees the Serre
spectral sequence of the corresponding Borel fibration degenerates at the
2-term and thus the ring H∗

G(X) becomes a free RG module. Moreover
as a consequence of the filtration of the Serre spectral sequence one has
H∗
G(X)⊗RG

Q ∼= H∗(X). We are here in a typical algebraic situation, which
in algebraic geometry is known as deformation, see e.g., [8].



278 V. HAUSCHILD

Let S ⊂ RG be a homogeneously generated multiplicatively closed subset.
Denote by XS ⊂ X the closed G-invariant subspace which is defined as
follows:

For every point y ∈ X let ρy : RG → RGy be the homomorphism induced
by the inclusion Gy ⊂ G of the isotropy group of y. Then we define Iy =
ker ρy and we put

XS = {y ∈ X|Iy ∩ S = ∅}.

Definition 1. Let G be a compact Lie group and let X be a G-space. Then
X will be said to have the Q-localization property (or simply the L-property)
if for every homogeneously generated multiplicatively closed subset S ⊂ RG
the (equivariant) inclusion XS ⊂ X induces an isomorphism

S−1H∗
G(X) ∼= S−1H∗

G(XS)

of graded S−1RG algebras.

A localization theorem is a theorem which says that under certain condi-
tions on G,X and the G-action onX the L-property is satisfied, for example:

Theorem 1 (Localization theorem of Borel-Quillen-Hsiang). If G is a
compact Lie group and if G acts with finitely many orbit types on a com-
pact or paracompact space X which in the case of paracompactness has finite
Q-cohomology dimension, then the L-property holds.

As an example, we consider the special case S = RG −{0}. Then S−1RG
is the quotient field of RG. We denote by XS the subset of those points
y ∈ X with Iy = (0), i.e., the set of all points y ∈ X where the map ρy
is a monomorphism. Since ρy is injective if and only if the isotropy group
Gy ⊂ G contains a maximal torus Ty of G, we have XS = X(T ) where X(T )

is the subset X(T ) = {y ∈ X| rk Gy = rk G}. Therefore we obtain the
following isomorphism of S−1RG-algebras:

S−1H∗
G(X) ∼= S−1H∗

G(X(T )).

In the case where G is a torus, the set X(T ) coincides with the fixed set XG

and so we obtain

S−1H∗
G(X) ∼= S−1RG ⊗Q H

∗(XG),

as follows from the obvious isomorphism H∗
G(X) ∼= RG ⊗Q H∗(XG). We

observe that in the finite dimensional case, i.e., if dim H∗(X) < ∞, all the
RG modules involved are finitely generated and therefore it suffices to invert
a single element χG for to obtain an isomorphism

H∗
G(X)[χ−1

G ] ∼= H∗
G(XG)[χ−1

G ].
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In the case G = S1 the cohomology class χG can be chosen as the first
Chern class of the universal principal bundle EG → BG and is therefore a
multiplicative generator of the Q-algebra RG = Q[t]. The following lemma
will be crucial.

Lemma 1 ([12]). Let G = S1 and X be a G-space such that the L-property
holds. Denote by Qη = Q[t]/(t−η) the residue field of SpecRG in the closed
point t = η, η ∈ Q∗. Then the inclusion XG ⊂ X induces a (not necessarily
graded) isomorphism of Qη-algebras

H∗
G(X)⊗RG

Qη
∼= H∗(XG; Qη).

Proof. By the L-property the finitely generated RG-module Hod
G (X,XG) is a

torsion module. By graduation reasons, the only annihilating prime ideal of
Hod
G (X,XG) is given by P = (t) and therefore H∗

G(X)[t−1] ∼= H∗
G(XG)[t−1].

Let η ∈ Q∗. Tensoring with Qη = Q[t, t−1]/(t− η) we get the desired result
applying the universal coefficient theorem.

Using the terminology of affine algebraic geometry we can say that
H∗
G(XG) arises as the fiber algebra of the morphism Spec H∗

G(X) →
Spec RG over the closed point corresponding to the maximal ideal (t−η), η 6=
0.

3. On the long exact sequence of the pair (XG, X
G
G ).

Here we want to investigate a little bit closer the structure of the RG-algebra
H∗
G(X) in the particular case when the odd part of H∗(X) vanishes. We

suppose that G is a circle and X is a G-space such that the Q-localization
property holds. Let XG =

∑
j Fj be the decomposition of the fixed set

into its connected components Fj . Denote by i∗j : H∗
G(X) → H∗

G(Fj) the
RG algebra homomorphism induced by the inclusion Fj ⊂ X of the j-th
component. Correspondingly denote by i∗ : H∗

G(X) → H∗
G(XG) the ho-

momorphism induced by the inclusion of the full fixed set XG into X. The
following is a special case of W. Y. Hsiangs fundamental fixed point theorem,
see e.g. [10], [2] (3.8)

Theorem 2. Let G = S1, and suppose X is a G space with Hod(X) = 0
such that the L-property is satisfied. Then the following statements are true:

(i) The long exact cohomology sequence of the pair (EG×GX,EG×GXG)
has the form

0→ H∗
G(X)→ H∗

G(XG)→ Hod
G (X,XG)→ 0.

(ii) If (0) = ∩jQj is the reduced primary decomposition of the zero ideal in
H∗
G(X) then there is a natural bijection between the set {Qj}j and the

set π0(XG) of connected components of XG in such a way that there is
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exists a factorization i∗j = σj ◦ µj where µj is the canonical projection

µj : H∗
G(X)→ H∗

G(X)/Qj

and
σj : H∗

G(X)/Qj → H∗
G(Fj)

is an injective homomorphism of graded RG algebras such that Cj =
cokerσj is a finitely generated RG torsion module.

(iii) If Pj is the radical ideal of Qj, i.e., if Pj =
√
Qj then

H∗
G(X)/Pj ∼= RG.

(iv) If Qη is the residue field of RG in the closed point t = η, η 6= 0, then
the homomorphism σj induces an ungraded isomorphism

(H∗
G(X)/Qj)⊗RG

Qη
∼= H∗(Fj ; Qη).

Proof. (i) The long exact sequence of the pair (X,XG)G can be brought in
the form of a hexagon.

Hev
G (X) −→ Hev

G (XG)

↗ ↘ ∂∗

Hev
G (X,XG) Hod

G (X,XG).

∂∗ ↖ ↙

Hod
G (XG) ←− Hod

G (X)

(1)

From the localization theorem it follows that Hev
G (X,XG) and Hod

G (X,XG)
are finite RG-torsion modules. Moreover we have Hod

G (X) = 0. It is easy
to see that Hod

G (XG) is a free RG-module generated by the odd part of
H∗(XG). Thus it follows Hev

G (X,XG) = 0 because it is a torsion submodule
of a free module. Consequently H∗

G(X) ∼= Hev
G (X) and Hod

G (XG) = 0.
(ii) It suffices to show that for every connected component Fj of XG there

exists a primary component Qj such that Qj ⊂ ker i∗j . The element t ∈ RG
is a nonzero divisor of H∗

G(X). Therefore it follows that the primary decom-
position of the zero ideal (0) ⊂ H∗

G(X)[t−1] is given by (0) = ∩ρj=1Qj [t
−1].

The localization isomorphism is then given by the canonical homomorphism

H∗
G(X)[t−1]→

ρ∏
j=1

(H∗
G(X)/Qj) [t−1],

where
(H∗

G(X)/Qj) [t−1] ∼= H∗
G(F )[t−1].
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Thus it follows that the localized homomorphism i∗j [t
−1] vanishes on the

localized ideal Qj [t−1]. Therefore i∗j vanishes on Qj because t is a nonzero
divisor of Qj ⊂ H∗

G(X). This implies Qj ⊂ ker i∗j and therefore we have a
factorization i∗j = σj ◦ µj where µj is the canonical projection H∗

G(X) →
H∗
G(X)/Qj . Now σj induces an isomorphism after inverting t. It follows that

ker σj and cokerσj are RG-torsion modules. Because RG is a principal ideal
domain the module H∗

G(X)/Qj is free since it is torsionfree. Moreover it
is finitely generated because H∗

G(X) is finitely generated. It follows that
ker σj is finitely generated and therefore we have ker σj = 0. The proof of
(ii) is concluded with the simple observation that cokerσj is also finitely
generated.

(iii) We observe that the radical
√

(0) of (0) in H∗
G(F )[t−1] ∼= RG[t−1]⊗Q

H∗(Fj) is generated by the augmentation ideal H∗
+(Fj) ⊂ H∗(Fj). Thus

it follows
(H∗

G(X)/Pj) [t−1] ∼= RG[t−1].

Because H∗
G(X) is a free graded RG module this implies

H∗
G(X)/Pj ∼= RG.

(iv) The statement follows from the fact that cokerσj is a finite torsion
module. �

The following special case will be of interest in the following.

Lemma 2. If H∗(X) is generated as a graded Q-algebra by finitely many
elements of degree two, then σj is an isomorphism for all j.

Proof. The homomorphism

σj : H∗
G(X)/Qj → RG ⊗Q H

∗(Fj)

becomes an isomorphism after inverting the element t ∈ RG. By the as-
sumption and Lemma 1 the RG- algebra H∗

G(X) has generators X1, . . . , Xn

which have also degree two. Let X̄i ∈ H∗
G(X)/Qj be the residue class of

Xi. It follows that σj has the form

σj(X̄i) = ωi ⊗ 1 + 1⊗ Yi, ωi ∈ H2(BG), Yi ∈ H2(Fj).

Since σj [t−1] is an isomorphism the elements σj(X̄i), i = 1, . . . , n, form a
generator system of the Q-algebra H∗(Fj). Thus it follows that σj induces
an isomorphism

σj : H∗
G(X)/Qj ⊗RG

Q
∼=→ H∗(Fj)

of graded Q-algebras. In particular one has cokerσj ⊗RG
Q = 0. By the

Lemma of Nakayama this implies cokerσj = 0 and therefore the result
follows from the preceding theorem.
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Thus in particular the long exact sequence of the pair (XG, X
G
G ) degen-

erates into the canonical exact sequence

0→ H∗
G(X)→

ρ∏
j=1

H∗
G(X)/Qj → cokerµ→ 0.

This motivates the following definition.

Definition 2. Let k be a field, let R = k[t], deg t = 2, and let A be a
graded R-algebra which is free as an R-module. Then an exact sequence
0→ A→ B → Q→ 0 will be called a g-sequence if:

(i) There exists a family Bj , j = 1, . . . ρ, of graded artinian k-algebras
such that B ∼=

∏
j R⊗k Bj .

(ii) The cokernel Q is a finite R-torsion module.

In [13] it has been shown that any g-sequence is given by the equivariant
cohomology ring of a G-action on some finite G-CW-complex. Conversely
we will show that under some circumstances the rational homotopy type
(and even more) of a circle action is determined by its g-sequence given by
equivariant cohomology.

4. F-spaces and formality of maps.

As defined in [6] an F-space is a 1-connected topological space with finite
dimensional rational cohomology and finite dimensional rational homotopy.
If X is an F-space with Hod(X) = 0, then it is shown in [6] that H∗(X)
is a quasihomogeneous complete intersection of finite length. Such a space
is formal in the sense of rational homotopy theory, i.e., its minimal model
M(X) is a formal consequence of its rational cohomology. Consequently
there exists a D.G.A.-morphism ρX :M(X)→ H∗(X) inducing an isomor-
phism in cohomology considering H∗(X) as a differential graded algebra
(D.G.A.) with d = 0.

In the following let k, char k = 0, be a fixed field, let A0|k be a complete
intersection with positive graduation:

A0 = k[x1, . . . , xn]/I0,

where the generators xi have weights |xi| = di ≡ 0(mod 2). Then the ideal
I0 is generated by a prime series {f1, . . . , fm},m ≤ n, of quasi-homogeneous
elements. We consider A0 as D.G.A. with d = dA0 = 0. Let (M(A0), d) be
the corresponding minimal model. Then it can be shown that (M(A0), d)
is isomorphic in the D.G.A.-sense to

M(A0) = k[ξ1, . . . , ξn]⊗k Λ(β1, . . . , βm),

where the degrees are given by

|ξi| = di
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|βj | = |fj | − 1

and the differential is
dξi = 0, i = 1, . . . , n,

dβj = fj(ξ1, . . . , ξn), j = 1, . . . ,m.

Moreover, a formality map ρ :M(A0)→ A0 is given by

ρ(ξi) = x̄i = xi + I0,

ρ(βj) = 0 ∈ A0.

Consequently, ρ can be identified with the natural projection map

k[(ξ)]⊗k Λ((β))→ k[(ξ)]⊗k Λ((β))/I ′0,

where I ′0 is the D.G.A.-ideal generated by I0 and the elements βj . For these
and similar observations see [2, 3, 6]. We recall that the above considerations
do not depend on the number of generators of the ideal I0, i.e., the complete
intersections need not be artinian. In the following we fix once for all this
kind of formality map. The following is a simple but useful observation.
The proof will be left to the reader. As usual, an algebra A with a unique
maximal ideal mA will be called local. In our case the maximal ideal of A
is identical with the augmentation ideal A+.

Lemma 3. Let A and B local graded complete intersections considered as
D.G.A.s with trivial differential. LetM(A) andM(B) be the corresponding
minimal models and let I and J, respectively, be ideals with A = M(A)/I
and B =M(B)/J. Let F :M(A)→M(B) a D.G.A.-homomorphism of the
corresponding minimal models. Then the map H(F ) induced in homology
coincides with the canonical map induced by F on the respective quotients.

Therefore, if we fix the formality maps ρA and ρB in the way indicated
above, the diagram

M(A) F−−−→ M(B)

ρA

y yρB

A −−−→
H(F )

B

(2)

will be commutative.
Let A =

∏
iAi and B =

∏
j Bj be graded k-algebras, let f : A → B be

a graded k-algebra homomorphism, then one can write f as a matrix (fij)
of graded ring homomorphisms fij : Ai → Bj of connected components. It
follows from the multiplicativity of f that for any Bj there is at most one
Ai with fij 6= 0.
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Lemma 4. Let A =
∏
iAi and B =

∏
j Bj , where the local components

Ai and Bj are graded complete intersections. Let f : A → B be a graded
homomorphism of graded k-algebras. Then there exists a D.G.A.-morphism
F :M(A)→M(B) such that the diagram

M(A) F−−−→ M(B)

ρA

y yρB

A −−−→
f

B

(3)

is commutative and such that f coincides with the homomorphism H(F )
induced in homology by F.

Proof. The minimal models M(A) andM(B) are products

M(A) =
∏
i

M(Ai),

M(B) =
∏
j

M(Bj).

The homomorphism f is a matrix (fij) of graduation preserving homomor-
phisms fij : Ai → Bj of complete intersections. First we have to show that
there is a lifting F : M(A) → M(B) of f : A → B when A and B are
connected.

There are quite general theorems which can be applied to this situation,
for example (2.2.9) Theorem in [2]. By the simplicity of the situation it
seems reasonable to give an explicit lifting using the above observations on
minimal models of complete intersections.

Let A = P/I where P = k[x1, . . . , xn] is a homogeneous polynomial al-
gebra and I ⊂ (x1, . . . , xn) an ideal generated by a maximal length prime
series f1, . . . , fn of homogeneous elements. Analogously write B = Q/J with
Q = k[y1, . . . , ym] and J = (g1, . . . , gm). Then choose a graded homomor-
phism F̃ : P → Q inducing f on the quotients. Let F̃ (xi) = pi(y1, . . . , ym).
Since F̃ (I) ⊂ J, one can choose a matrix (λij) of homogeneous elements
λij ∈ Q such that F̃ (fi) =

∑
j λijgj in Q. Write the minimal model of

(M(A), dA) of (A, d = 0) as

M(A) = k[ξ1, . . . , ξn]⊗ Λ(β1, . . . , βn)

with dAξi = 0 and dAβj = fj(ξ1, . . . , ξn) and formality map ρA(ξi) =
x̄i, ρA(βj) = 0. Similarly write the minimal model (M(B), dB) of (B, d = 0)
as

M(B) = k[η1, . . . , ηm]⊗ Λ(γ1, . . . , γm)
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with dBηi = 0 and dBγj = gj(η1, . . . , ηm) where the formality map is given
by ρB(ηi) = ȳi and ρB(γj) = 0. Then define F : M(A)→M(B) by

F (ξi) = pi(η1, . . . , ηm), i = 1, . . . n

and

F (βj) =
∑
k

λjk(η1, . . . , ηm)γk, j = 1, . . . n.

One simply verifies that F is welldefined. Moreover, one has dB ◦F = F ◦dB,
i.e., F defines a D.G.A.-morphism. By the previous lemma one has H(F ) =
f since by construction F induces f on the quotients. It follows that for
all (i, j) with fij 6= 0 we have a D.G.A.-morphism Fij and a commutative
diagram

M(Ai)
Fij−−−→ M(Bj)

ρAi

y yρBj

Ai −−−→
f

Bj

(4)

with H(Fij) = fij . Then define F as the matrix F = (Φij) where Φij = Fij ,
if fij 6= 0 and Φij = 0 if fij = 0. Thus it follows that for any j there is at
most one i with Fij 6= 0. For to show multiplicativity of F it suffices therefore
to consider the case when A is connected. We therefore can assume that
F has the form of a column matrix F = (Fj), where for any j the map
Fj : M(A) → M(Bj) is multiplicative. But since M(B) =

∏
jM(Bj) is

the direct product, F is multiplicative if and only if Fj is multiplicative for
any j. �

Recall that the cohomology ring with rational coefficients of the classifying
space BG of a compact Lie group G is a graded commutative polynomial
algebra in finitely many even generators. It follows that the minimal model
M(BG) of BG is isomorphic to RG = H∗(BG) considered as a differential
graded algebra with trivial differential. Suppose G is acting on a 1-connected
F -space X with vanishing odd rational cohomology. Then the Q-algebras
H∗(X) and H∗

G(X) are complete intersections. Moreover H∗
G(X) is a RG-

relative complete intersection and the minimal model M(XG) becomes a
RG-algebra such that the formality map ρG : M(XG) → H∗

G(X) is also a
RG-module homomorphism.

Definition 3. Let G be a torus and suppose we are given two G-actions
on 1-connected spaces X and Y respectively. Let H∗

G(X) and H∗
G(Y ) be

free RG-modules. Then the two G-spaces are called similar if there exists



286 V. HAUSCHILD

a commutative diagram of RG-algebra homomorphisms

H∗
G(X) −−−→ H∗

G(XG)

∼=
y y∼=

H∗
G(Y ) −−−→ H∗

G(Y G)

(5)

where the vertical maps are isomorphisms and the horizontal maps are in-
duced by the respective inclusions of the fixed sets.

Of course, the simple existence of an RG-algebra homomorphism H∗
G(X)

∼= H∗
G(Y ) does not imply similarity. Nonetheless this is true under certain

special hypotheses, for example, if H∗(X) is generated as Q-algebra by el-
ements of degree two. It is clear that similarity is an equivalence relation
between G- actions.

Theorem 3. Suppose X and Y to be F -spaces without odd cohomology. Let
a torus G act on both spaces with the respective fixed spaces XG and Y G.
Suppose there is a commutative diagram

H∗
G(X) −−−→ H∗

G(XG)

α

y yβ
H∗
G(Y ) −−−→ H∗

G(Y G)

(6)

of RG-algebra homomorphisms where the horizontal maps are induced by the
respective inclusions. Then there exists a homotopy commutative diagram

M(XG) −−−→ M(XG
G )y y

M(YG) −−−→ M(Y G
G )

(7)

of RG − D.G.A.-maps of the minimal models inducing the diagram (3) in
(co)homology.

Proof. By [6] the rings H∗(X) and H∗(Y ) are complete intersections. Then
by standard results in cohomology theory of transformation groups the local
components of H∗(XG) and H∗(Y G) are complete intersections too, see e.g.,
[5] or for example the result of Allday, [1] on the homotopy Euler charac-
teristic of a fixed space component, see also 3.3.11 and (3.8.12) Theorem in
[2]. Then the statement is an immediate consequence of Lemma 4.

5. Similarity implies equivariant rational homotopy equivalence.

Let G be a compact Lie group acting on the spaces X and Y. Then the
two actions are called weakly equivariantly rationally homotopy equivalent if
there is a finite chain X0, X1, . . . , Xn of G-spaces with X0 = X and Xn =
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Y such that for all i, i = 0, . . . , n, there exists either an equivariant map
fi : Xi → Xi+1 or an equivariant map fi : Xi → Xi−1 which are inducing
rational homotopy equivalences. Therefore we have something like

X0 → X1 ← X2 ← · · · → Xn.

This gives an equivalence relation on the set of G-spaces.

Remarks 1. The spaces X = X0 and Y = Xn are Q-homotopy equivalent
if and only if we are in one of the following four cases:

X0 ← X1 → X2

X0 → X1

X0 ← X1

X0 = X1

(8)

as can be shown in the following way: We can assume that successive arrows
have always opposite direction otherwise we take the composition. Suppose
now that the length of the diagram is bigger than four. Then it contains a
subdiagram either of type

→ ← → ←
or

← → ← → .

But by successively forming pullbacks one can reduce the first type to

←→ .

The second type can be reduced by forming the pullback of →← and then
composing. So in both cases we arrive at the type←→ . This gives a modulo
two reduction of all diagrams of length bigger than four and thus proves the
observation.

IfX = X0 and Y = Xn are finite G-CW complexes one also can take finite
G-CW complexes for the intertwining spaces X1, . . . , Xn−1. The equivalence
class of a G-space will be called its weak equivariant rational homotopy type.
Let X ← Z → Y be a weak equivariant rational homotopy equivalence.
Then, since the maps are equivariant, for every subgroup H ⊂ G there is an
induced diagram

X
f←−−− Z

g−−−→ Yx x x
XH ←−−−

fH
ZH −−−→

gH
Y H .

(9)

If α = (g∗)−1◦f∗ and β = ((gH)∗)−1◦(fH)∗ it follows that a weak equivariant
rational homotopy equivalence for every closed subgroup H ⊂ G induces a
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commutative diagram

H∗
G(X) −−−→ H∗

G(XH)

α

y yβ
H∗
G(Y ) −−−→ H∗

G(Y H).

(10)

Here the first vertical homomorphism is an isomorphism whereas the second
in general is not. It can however be an isomorphism under special conditions
on the graduation of H∗(X) and H∗(XG), for example in the case of a torus
action β is also an isomorphism if H∗(X) is multiplicatively generated by
elements of degree two.

On the other hand one can define strong equivariant rational homotopy
equivalence between G-spaces X0 and Xn as a sequence of commutative
diagrams of rational homotopy equivalences

X0 → X1 ← X2 ← . . . → Xn

∪ ∪ ∪ ∪

XH
0 → XH

1 ← XH
2 ← . . . → XH

n

(11)

for any closed subgroup H ⊆ G where the maps in the upper row are G-
equivariant and the maps in the lower row are equivariant with respect to
the natural NGH/H-actions. This again gives an equivalence relation. The
equivalence class of a G-space will be called its strong rational homotopy
type or simply its rational homotopy type. For our purpose we consider a
somewhat intermediate category requesting the existence of such a diagram
for closed connected subgroups H only. In the following this functor will
be called the equivariant connected Q-homotopy type. In the case of G =
S1 equivariant cohomology gives therefore a functor from the category of
equivariant connected Q-homotopy types of G-actions on 1-connected spaces
X with Hod(X) = 0 to the category of similarity classes of g-sequences. In
[13] it was shown that the above functor is surjective, i.e., to every exact
sequence γ = {0 → A → R ⊗ B̄} there exists a finite G-CW complex
(X,XG) such that the corresponding exact cohomology sequence of the pair
(X,XG)G is similar to the given exact sequence. In this paragraph we intend
to prove the injectiveness of the above functor.

Theorem 4. Let G = S1 and let X and Y be 1-connected G-spaces with
vanishing odd dimensional rational cohomology. Let H∗(X) and H∗(Y ) be
complete intersections of finite length and suppose that in both cases the L-
property is satisfied. Moreover, suppose XG and Y G to be componentwise
simply connected. Then similarity of the G-actions implies equivariant Q-
homotopy equivalence.
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If X and Y are similar G-spaces satisfying the above conditions, the proof
will consist in the construction of a third G-space Z with a commutative
diagram

X
f←−−− Z

g−−−→ Y

jX

x jZ

x xjY
XG ←−−−

fG
ZG −−−→

gG
Y G

(12)

where f and g are equivariant maps which induce rational homotopy equiv-
alences. Here the maps fG and gG induced on the fixed sets are also rational
homotopy equivalences. The maps jX , jY and jZ denote the inclusions of
the respective fixed sets.

Proof. We have a commutative diagram

H∗
G(X) −−−→ H∗

G(XG)

α

y yβ
H∗
G(Y ) −−−→ H∗

G(Y G)

(13)

of RG-algebras and RG-algebra homomorphisms where the vertical maps are
isomorphisms. In the first step of the proof we begin with the construction
of the fixed set Z0 = ZG. First recall that every local component of the rings
H∗(XG) ∼= H∗(Y G) = B0 is a graded complete intersection [5]. Therefore
the rational homotopy type of ZG is uniquely determined by the isomor-
phism type of B0. In the following we first assume B0 to be local, i.e., XG

and Y G connected, and try to construct a finite componentwise 1-connected
CW-complex Z0 with H∗(Z0) = B0. This will be done stepwise. In the first
step we take a Q-space Z̃0 with H∗(Z̃0; Z) ∼= B0. The existence of such a
space is an immediate consequence of Sullivan theory. Moreover one has
maps

XG
Q

f̃0←− Z̃0
g̃0−→ Y G

Q
(14)

into the corresponding localizations inducing homotopy equivalences. This
also follows from Sullivan theory. Let now e = edim B0 be the embedding
dimension of this component, i.e., e is the number of multiplicative gener-
ators of B0 as a graded Q-algebra. Let d1 ≤ d2 ≤ · · · ≤ de be the degrees
of the generators of a minimal homogeneous generator system of B0 and
consider the wedge

Z1
0 = Sd1 ∨ Sd2 ∨ · · · ∨ Sde .
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Then we have a commutative diagram

XG
Q

f̃0←−−− Z̃0
g̃0−−−→ Y G

Q

loc

x xJ0

xloc

XG ←−−−
f1
0

Z1
0 −−−→

g10

Y G

(15)

where the left and the right vertical maps are the respective localization
maps. Moreover the multiplicative generators of degrees d1, . . . , de respec-
tively are spherical (since XG and Y G are componentwise simply connected)
and thus correspond to maps J i0 : Sdi → Z̃0 thus inducing J0 = J1

0 ∨· · ·∨Je0 .
In the same way we obtain the maps f1

0 and g1
0. In the next steps by standard

algebraic topology we successively attach cells to Z1
0 and extend the maps.

This process must come to an end because B0 is a finite Q-vector space. So
we have gotten a finite CW-complex Z0, H

∗(Z0) ∼= B0, and a diagram

XG f0←−−− Z0
g0−−−→ Y G(16)

where f0, g0 are rational homotopy equivalences such that β = g∗−1
0 ◦ f∗0 .

The details will be left to the reader.
We come now to the equivariant part of the proof.
Let A = H∗

G(X), A0 = H∗(X) and let RG = H∗(BG). We begin with the
construction of a Q-fibration

Z∞ −−−→ Z̃∞y y
{∗} −−−→ BG,Q,

(17)

which realizes the commutative diagram

A −−−→ A0x x
RG −−−→ Q,

(18)

i.e., H∗(Z∞; Z) ∼= A0 and H∗(Z̃∞; Z) ∼= A with H∗(Z̃∞; Z) ⊗RG
Q ∼=

H∗(Z∞; Z). Recall that the existence of such a fibration is an immediate
consequence of Sullivan theory, see e.g., [8], no. 3. We insert the injective
homomorphism A → H∗(BG × Z0) into the diagram (13) thus obtaining a
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commutative diagram

H∗
G(X) F−−−→ A

G←−−− H∗
G(Y )y y y

H∗
G(XG) −−−−−→

(id×f0)∗
H∗(BG × Z0) ←−−−−−

(id×g0)∗
H∗
G(Y G)

(19)

where F and G are isomorphisms with α = G−1 ◦F. If we apply Lemma 5 to
the homomorphisms in diagram (19), we obtain a homotopy commutative
diagram

M(XG) F−−−→ M(Z̃∞) G←−−− M(YG)y M(J)

y y
M(XG

G ) −−−−−−→
M(id×f0)

M(BG × Z0) ←−−−−−−
M(id×g0)

M(Y G
G )

(20)

covering diagram (19) in the sense of Theorem 3. Using the fibration Z̃∞ →
BG,Q as a model we want to realize in a bootstrap technique a Borel fibration
by attaching equivariant cells to Z0 and simultaneously extend the maps f0

and g0 to equivariant maps fi and gi on a space Zi. Moreover we will extend
J0 to Ji : EG ×G Zi → Z̃∞ until it has become a rational homotopy
equivalence.

In the first step of the construction of the G− CW -complex Z we make
Z0 connected by attaching as many equivariant one-cells G×e1 as necessary
to kill the first homology group of J. This means that we build bridges of
S2-type between the connected components of Z0, where G is acting on such
a bridge with two isolated fixed points anchored in two different components
of Z0. Then it is clear that the map J0 can be extended and f0 and g0 can
be extended equivariantly. We may therefore assume that Z is connected
and that the mapping cone C = CJ of J is one-connected.

Let Z = Zi and let J = Ji, f = fi and g = gi. Thus we can suppose that
we have the following commutative diagram of minimal models.

M(XG) F−−−→ M(Z̃∞) G←−−− M(YG)

=

y M(J)

y y=

M(XG) −−−−−−−→
M(id×Gf)

M(ZG) ←−−−−−−
M(id×Gg)

M(YG).

(21)

LetM = MJ be the mapping cylinder of J. Recall thatHod
G (Z)=Hod(Z̃∞; Z)

= 0. Then there is a minimal odd number 2m + 1 ∈ N,m > 0, with the
property rk H i(M,ZG) = 0 for all i < 2m + 1 and H2m+1(M,ZG) 6= 0.
Consider the exact cohomology sequence

0→ H2m(Z̃∞)→ H2m(ZG)→ H2m+1(M,ZG)→ 0.
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Then there is an corresponding exact sequence in homology

0→ H2m+1(M,ZG) ∂∗→ H2m(ZG)→ H2m(Z̃∞; Z)→ 0.

Recall that Z, ZG and Z̃∞ are 1-connected. Now the rational Hurewicz
homomorphism gives a diagram which is commutative up to sign with exact
rows where the first vertical arrow is an isomorphism of Q-vector spaces.
Here πQ

i (−) means πi(−)⊗Z Q.

0→ H2m+1(M,ZG) ∂−−−→ H2m(ZG) −−−→ H2m(Z̃∞; Z)→ 0

∼=
x x x

0→ πQ
2m+1(M,ZG) −−−→ πQ

2m(ZG) −−−→
J∗

πQ
2m(Z̃∞) → 0.

(22)

The diagram (21) induces a commutative diagram of rational homotopy
groups.

πQ
2m(XG)

∼=←−−− πQ
2m(Z̃∞)

∼=−−−→ πQ
2m(YG)

=

x xJ∗ x=

πQ
2m(XG) ←−−−

fG∗
πQ

2m(ZG) −−−→
gG∗

πQ
2m(YG).

(23)

Let g′ ∈ H2m+1(M,ZG) be a nonzero element, let c′ ∈ πQ
2m+1(M,ZG) be

the corresponding element under the Hurewicz isomorphism and let c =
∂∗(c′) ∈ πQ

2m(ZG). Then we have J∗(c) = 0, fG∗(c) = 0 and gG∗(c) = 0. Let
χG : ∂e2m+1 → ZG be a map with [χG] = c, then we can conclude that
fG∗[χG], g∗G[χG] and J∗[χG] are torsion elements. Let α, β and γ be the
minimal nonvanishing natural numbers such that

α fG∗[χG] = 0,
β gG∗[χG] = 0,
γ J∗[χG] = 0.

(24)

Let n = l.c.m.(α, β, γ) and substitute χG : ∂e2m+1 → ZG by its n-multiple
n[χG]. Then it follows that the maps fG ◦ χG, gG ◦ χG and J ◦ χG are null-
homotopic.

Lemma 5. Let m ≥ 1 be a number as above, let g′ ∈ H2m+1(M,ZG) and let
c′ ∈ π2m+1(M,ZG) be the element corresponding to g′ under the Hurewicz
isomorphism. Let [χG] = ∂∗(c′) ∈ π2m(ZG). Let ib : Z → ZG be the
inclusion of the fiber with respect to a base point b. Then there is a map
χ : ∂e2m+1 → Z with ib◦χ ' χG. Moreover f ◦χ and g◦χ are nullhomotopic
iff fG ◦ χG and gG ◦ χG are.

Proof. m > 1: The statement follows from the surjectivity of the map
π2m(Z)→ π2m(ZG) induced by ib.
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m = 1: Let g′ ∈ H3(M,ZG) be nonzero, let c′ ∈ π3(M,ZG) be the element
corresponding to g′ under the Hurewicz isomormorphism. Since the exact
sequence

0→ H∗(Z̃∞)→ H∗(ZG)→ H∗+1(M,ZG)→ 0

is a sequence of RG-modules, we have a commutative diagram

π2(Z)
↓

π3(M,ZG) → π2(ZG) → π2(Z̃)
↓ ↓

π2(BG) = π2(BG)

(25)

where the middle horizontal and the middle vertical sequences are exact.
Thus it follows c = ∂∗(c′) ∈ Im ib∗. Therefore there are maps χG and χ such
that ib◦χ and χG are homotopic. Moreover the inclusion of the fiber induces
an injection in the homotopy groups for the Borel fibrations XG → BG and
YG → BG which proves the statement. �

Let now φ : G×∂e2m+1 → Z be the equivariant map φ(g, e) = gχ(e). Let
φG : EG ×G (G × ∂e2m+1) → ZG be the induced map. Let e1 ∈ EG be a
fixed point which projects down to the point b ∈ BG. Let j1 : 1×∂e2m+1 →
EG×∂e2m+1 be the inclusion j1(1, e) = (e1, e). Then we have a commutative
diagram

1× ∂e2m+1 −−−→ G× ∂e2m+1 φ−−−→ Z

j1

y y yib
EG × ∂e2m+1 −−−→

=
EG ×G (G× ∂e2m+1) −−−→

φG

ZG.

(26)

Thus it follows φG ◦ j1 = ib ◦ φ = ib ◦ χ ' χG. So, attaching a free G-cell
G × e2m+1 to Z by the equivariant map φ : G × ∂e2m+1 → Z, φ(g, e) =
g · χ(e), homotopy-theoretically means to attach a homotopy cell EG ×G
(G× e2m+1) ' e2m+1 to ZG by the map χG : ∂e2m+1 → ZG. Let Z ′ = Zi+1

be the equivariant adjunction space

Z ′ = Z ∪φ (e2m+1 ×G)

and let Z ′1 ⊂ Z ′ be the ordinary adjunction space

Z ′1 = Z ∪χ e2m+1.

Then by Lemma 5 we can extend the maps f, g to Z ′1 and so we can extend
them equivariantly to maps f ′ : Z ′ → X and g′ : Z ′ → Y. Again we
can extend the map J to a BG-map J ′ : Z ′G → Z̃. Therefore we get a
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commutative diagram

XG ←−−− Z̃∞ −−−→ YG

=

x xJ ′
x=

XG
f ′G←−−− Z ′G

g′G−−−→ YG

=

x xincl x=

XG ←−−−
fG

ZG −−−→
gG

YG.

(27)

Moreover one has dimQH
∗(Z̃∞, Z ′G) = dimQH

∗(Z̃∞, ZG)−1, since the one-
dimensional subspace generated by g′ ∈ H2m+1(M,ZG) has been killed at-
taching the homotopy-cell EG ×G (e2m+1 × G) to ZG. Substituting Z :=
Z ′, J := J ′, f := f ′, g := g′ we can iterate the process until H∗(Z̃∞, ZG)
is zero, J is a rational homotopy equivalence and f and g are equivariant
maps inducing isomorphisms in rational cohomology.

6. Special points in the spectrum of H∗Baut0(X).

Let k be a field. Let A0 = P/I0, where P = k[X1, . . . , Xn] the graded com-
mutative polynomial algebra in the indeterminates X1, . . . , Xn of positive
degree with degXi ≡ 0(mod 2), i = 1, . . . , n. If R is a positively graded
k-algebra let PR = R[X1, . . . , Xn]. The augmentation ideal of the positively
graded ring R will be denoted by mR.

Lemma 6. Let R be a connected non-negatively graded k-algebra, let I0 ⊂
mPP be the ideal generated by homogeneous elements f1, . . . , fm. Let A0 =
P/I0 and assume dimk A0 < ∞. If A is a graded R-algebra, free as a R-
module such that A/mRA is isomorphic to A0 as a graded k-algebra, then
A can be written as A = PR/I where the ideal I ⊂ PR is generated by ho-
mogeneous elements Fj of the form Fj = fj + rj , j = 1, . . . ,m, rj ∈ mRPR.
Furthermore, A is a finitely generated R-module with rkRA = dimk A0.

For a proof see [7]. The R-algebra A will be called a (positively) graded
deformation of A0 along the ring R. Here and in the following we put k = Q.
By the observations at the beginning of Section 2 the ring H∗

G(X) is a
deformation of H∗(X) along RG. It is clear that the polynomials rj are
coding a certain amount of information on the geometric behaviour of the
G-action. This information can be detected by the Borel-Quillen-Hsiang
localization theorem. We want to characterize those defomations which arise
as equivariant cohomology rings for circle actions on spaces X where the Q-
algebra A0 = H∗(X) is multiplicatively generated by finitely many elements
x1, . . . , xn of degree di = deg xi = 2. Let R = Q[t],deg t = 2, and let A =
PR/I, be a deformation of A0 along R. If A0 = P/I0 where I0 ⊂ (x1, . . . , xn)
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is generated by the homogeneous polynomials f1, . . . , fn, then by Lemma
6 the ideal I has a generator system of the type Fj , j = 1, . . . , n, Fj =
fj + rj , rj ∈ (t)PR. The following definition is motivated by Thm. 2 and
Lemma 2 which give necessary conditions for the structure of the exact
sequence of the pair (XG, X

G
G ).

Definition 4. A graded deformation A of A0 along R will be called a g-
deformation if the following is true: Let (0) = ∩αQα be the primary de-
composition of the zero ideal in A then the corresponding exact chinese
sequence

0→ A→
∏
α

A/Qα → C → 0

is a g-sequence. (Def. 2.)

In particular there are graded artinian k-algebras Bα such that A/Qα ∼=
R ⊗k Bα. By graduation reasons, the algebras Bα are also multiplicatively
generated over Q by elements of degree two. According to Thm. 2 (iii) the
associated prime ideals Pα =

√
Qα of Qα are regular and therefore have the

form
Pα = (X1 − ωα,1, . . . , Xn − ωα,n),

where ωα,i = wα,it, wα,i ∈ Q. For a geometric interpretation of the numbers
wα,i in the case A is the equivariant cohomology of a smooth circle action
on a smooth manifold, see e.g. [7], Th. 2.2.

Let X be a topological space, then denote by aut0(X) the topological
monoid of those homotopy self equivalences h : X → X which are ho-
motopic to the identity map. Choose a base point {∗} ⊂ X and consider
the corresponding submonoid aut•0(X) ⊂ aut0(X) of pointed self homotopy
equivalences. The fibration

aut•0(X)→ aut0(X)→ X

gives rise to a fibration ξu

X → Baut•0(X)→ Baut0(X).

which is universal for the functor of oriented fiber homotopy classes of ori-
ented Hurewicz fibrations with fiber X, see e.g., [8], Thm. 3.3. Applying
the cohomology functor gives a commutative diagram

H∗(Baut•0(X)) −−−→ H∗(X)x x
H∗(Baut0(X)) −−−→ Q .

(28)

If X is a space of type F such that H∗(X) has no odd cohomology and
A0 = H∗(X) has no negative derivations, the diagram (28) represents the
positively graded part of a graded versal deformation of the Q-algebra A0 =
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H∗(X), see [8], no. 3. In the following this part will be called θu. Moreover
in [8] it is shown that θu has even the universality (!) property in so much
as any positively graded deformation γ = {S → A → A0} over a positively
graded ring S is given by a base change with a unique homomorphism fγ :
H∗(Baut0(X))→ S.

Let S = R = Q[t],deg t = 2, and let L = SpecR = Hom(R, k) be
the weighted line. Let V = SpecH∗(Baut0(X)) then to fγ corresponds a
geometric morphism ν : L → V. Let Gm ∼= Q∗. The image of L under ν
is a Gm-stable curve C, 0 ∈ C, which in general will have a singularity in
the origin. Thus we can consider C as the closure of the Gm-orbit of one
of its Q-valued points t ∈ C − {0}, i.e., C = cl(Gm · t) which as a set is
equal to Gm · t ∪ {0}. Then C is a monomial curve with a Gm-equivariant
normalization ν : L→ C given by a ring inclusion of the type

Q[a1 t
m1 , . . . , as t

ms ] ⊂ Q[t].

Conversely, let t ∈ V be a Q-valued (and thus closed) point, let Ct ⊂ V
be the closure of its Gm-orbit and let νt : L → Ct be the corresponding
Gm-equivariant normalization. Let γt be the induced Gm-equivariant defor-
mation on the weighted line, i.e., γt = ν∗t θu.

Definition 5. A Q-valued point t in the spectrum of H∗(Baut0(X)) is
called a g-point, if γt is a g-deformation.

Obviously any equivariant cohomology ring of a circle action on X gives
rise to a g-point in V. Conversely to any g-point in V there exists a circle
action on a space Y withH∗(Y ) ∼= A0 as follows from the realization theorem
in [13].

Denote by Γ(A0) the group of graded automorphisms of the Q-algebra
A0. Then Γ(A0) contains the grading group Γ0

∼= Gm = Q∗ as a central
subgroup. Moreover suppose Γ(A0) is reductive over Q. (This for example
is true for the cohomology algebra of the flag varietyX = K/T, K a compact
Lie group, T ⊂ K, a maximal torus where the group Γ(A0)/Γ0 is given by
the symmetry group of the root system of K and therefore is also a finite
group, see e. g. [11].) As it is well-known in deformation theory, the Γ(A0)-
action on A0 induces an action on the deformation θu, see e.g., [14]. Thus
the space V inherits a structure of a representation space of the group Γ(A0).
Denote by V (G;A0) ⊂ V the subset of g-points of V. Then the Γ(A0)-action
on V induces a Γ(A0)-action on V (G;A0). Denote by

P (G;A0) = (V (G;A0)− {0})/Γ(A0)

the corresponding quotient space.
Recall that an action of a compact Lie group G on X is called c-effective

with coefficients in k if H∗(X,XS ; k) 6= 0 for every subtorus S ⊂ G. In the
following we say that an action is c-effective if it is c-effective with coefficients
in Q. In the case we consider here, i.e., if H∗(X) is generated by elements
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of degree two, and if G is the circle, an action is c-effective if and only if
H∗
G(X) is not isomorphic to H∗(X)⊗QRG as a graded RG-algebra as follows

easily from Sec. 3.
Define now

OpQ(G;A0)
as the set of equivariant connected Q-homotopy types of c-effectiveG-actions
with L-property on F -spaces Y with H∗(Y ) ∼= A0 with componentwise sim-
ply connected fixed spaces.

Let φ̄ ∈ OpQ(G;A0) and take a representative φ : G × Y → Y of φ̄. The
Borel construction gives a fibration

βφ : X → EG ×G Y → BG

which in turn determines up to homotopy a classifying map fφ : BG →
Baut0(X) and thus a homomorphism H∗(fφ) : H∗(Baut0(X))→ H∗(BG),
which gives a point in P (G;A0). We thus get a map

ω : OpQ(G;H∗(X))→ P (G;H∗(X)).

Theorem 5. Let A0 = H∗(X; Q) be a complete intersection of finite length
generated by elements of degree 2 with Γ(A0) reductive. Then the map ω is
bijective.

Before we come to the proof of Theorem 5 we have to collect some pre-
liminary results.

Lemma 7. Let A0 be a graded complete intersection over Q of finite length
generated by elements of degree two. Let R = Q[t],deg t = 2 and let A
and A′ be g-deformations of A0 along R. Let φ : A → A′ be a graded R-
isomorphism. If (0) = ∩i∈IQi and (0)′ = ∩j∈JQ′j are the respective primary
decompositions of the zero ideals in A,A′ respectively, then I = J and there
is a permutation π and homomorphisms φi such that there is a commutative
diagram

0→ A −→
∏
iA/Qi

φ
y y∏

i φi

0→ A′ −→
∏
iA

′/Q′π(i)

(29)

where the φi are the induced isomorphisms.

Proof. We have (0)′ = φ(0) = φ (∩iQi) = ∩iφ(Qi) = ∩jQ′j . Since the rings
A and A′ are Cohen-Macaulay the zero ideals are unmixed. Therefore they
have a unique (up to permutation) primary decomposition. This shows
I = J and φ(Qi) = Q′π(i) for a permutation π. Let φi : A/Qi → A/Q′π(i) be
the induced homomorphisms, then the above diagram is commutative.
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Lemma 8. Let A0|Q be a complete intersection with Γ(A0) reductive and
let s, t ∈ V be Q-valued points in the base V of θu with s = γt, γ ∈ Γ(A0).
Then the corresponding graded 1-parameter deformations ν∗t θu and ν∗sθu are
isomorphic as Q[t]-algebras.

This is obvious.

Proof of Theorem 5. The surjectivity of the map ω is guaranteed by the
main result of [13].

Suppose (X1, φ) and (X2, ψ) are S1-actions of the kind considered here
on spaces X1 and X2 with the rational cohomology of X. Let s = ω(φ) and
t = ω(ψ) be the corresponding g-points. Let γ ∈ Γ(A0) with s = γt. Then
by Lemma 7 the corresponding 1-parameter deformations ν∗t θu and ν∗sθu are
isomorphic as Q[t]-algebras. This means that the equivariant cohomology
rings H∗

ψ(X) and H∗
φ(X) are isomorphic as RG-algebras. By Lemma 6 the

actions are similar. By Theorem 4 the actions are equivariantly Q-homotopy
equivalent which proves injectivity. �

7. Applications.

In the following we want to give a more intrinsic criterion for a point t ∈ V
to be a g-point.

Definition 6. Let k be a field, let P = k[x1, . . . , xn] and let f ∈ P. Let
w = (w1, . . . , wn) ∈ kn and put fw (x1, . . . , xn) = f(x1 + w1, . . . , xn + wn).

(i) The polynomial f is called translation homogeneous if there exists a
vector w ∈ kn such that fw is homogeneous.

(ii) An ideal J ⊂ P is called translation homogeneous if there exists a
generator system f1, . . . , fm of J and a w ∈ kn such that fw1 , . . . , f

w
m

are homogeneous.

Proposition 1. Let J ⊂ P be an ideal generated by a regular series of
maximal length, let Jh ⊂ k[x0, . . . , xn] be its homogeneization with respect
to x0. Then the following statements are equivalent.

(i) There is a graded complete intersection B0 and a graded isomorphism

k[x0, . . . , xn]/Jh ∼= k[x0]⊗k B0

of k[x0]-algebras.
(ii) The ideal J ⊂ k[x1, . . . , xn] is translation homogeneous.

For the proof of this proposition we need the following statement on ho-
mogeneous ideals in the polynomial ring P.

Proposition 2. Let k be a field, char k = 0, let I ⊂ P be an ideal such that
the following conditions are satisfied.
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(i) The ideal J is generated over P by a regular series of maximal length
n.

(ii) The ideal J is generated by homogeneous elements.

Then J is generated by a regular series of homogeneous elements of maximal
length n.

Proof. Let A = P/J and consider the A-module J/J2. Then by (i) J/J2 is
free of rank n. By (ii) it is graded, i.e., has a k∗-action induced by the k∗-
action on P and J. The n-dimensional k-vector space V = J/J2⊗Ak inherits
a graduation in a natural way. Consider the natural projection p : J → V.
Since k∗ is reductive, there exists a series f1, . . . , fn of homogeneous elements
in J projecting to a graded base of V. Let K be the subideal of J generated
by f1, . . . , fn. Let B = P/K. By the choice of the fj the canonical map
c : K/K2⊗BA→ J/J2 induces an isomorphism after applying (−)⊗A k. It
follows that c is surjective. Let 0→ K → J → C → 0 be the exact sequence
of P -modules given by the inclusion K ⊂ J. Then one has K ⊗P A =
K/K2 ⊗B A and J ⊗B A = J/J2 and the homomorphism induced by the
inclusion between these A-modules is equal to c. Thus it follows C⊗P A = 0.
In particular one has C ⊗P k = 0 and by the graded version of the Lemma
of Nakayama it follows C = 0. But then K = J. It is clear that the fj are a
series of consecutive nonzero divisors since dim P/J = 0. �

Proof of Proposition 1. (i) ⇒ (ii): Let B0 = P/(g1, . . . , gn), where the gj
are homogogeneous. By hypothesis we have a graded isomorphism of k[x0]-
algebras

α : k[x0]⊗k
P

(g1, . . . , gn)
→ k[x0, . . . , xn]

Jh

which by graduation reasons must be of the form

α(xi) =
∑
j

αijxj + βix0, i = 1, . . . , n

where (αij) is a non-singular n × n-matrix with k-entries and βi ∈ k. Let
v = (v1, . . . , vn) be the solution of the system

∑
j αijvj = βi, i = 1, . . . , n.

Let yi =
∑

j αij(xj + vjx0), let K ⊂ k[x0, . . . , xn] be the ideal generated by
the polynomials gj(y1, . . . , yn), j = 1, . . . .n Then K ⊂ Jh. We show that
K = Jh.

By the inclusion of ideals we have the natural projection

p : k[x0, . . . , xn]/K → k[x0, . . . , xn]/Jh

which remains surjectice after tensorizing over k[x0] with k. But the ten-
sorized rings are of the same k-length and therefore p̄ is an isomorphism.
Now the ring k[x0, ..., xn]/Jh is a free k[x0]-module and therefore Ker p⊗k[x0]
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k = Ker p̄. This shows Ker p ⊗k[x0] k = 0 and therefore by the graded ver-
sion of the Lemma of Nakayama it follows Ker p = 0. So, p must be an
isomorphism and K = Jh.

But then Jh = (F1, . . . , Fn) where the Fj = gj(y1, . . . , yn) are the homo-
geneizations of the polynomials

fvi = gi

∑
j

αij(xj + vj), . . . ,
∑
j

αnj(xj + vj)


with respect to x0, i.e., J = (fv1 , . . . , f

v
n) with

fi = gi

∑
j

αijxj , . . . ,
∑
j

αnjxj

 .

But of course the fi are homogeneous with respect to x1, . . . , xn, i.e., J is
translation homogeneous.

(ii) ⇒ (i): Let J = (fv1 , . . . , f
v
m) where f1, . . . , fm is a series of homoge-

neous elements. Put J0 = (f1, . . . , fm). Since J is generated by a regular
series of elements of maximal length, the same is true for J0. Thus it follows
by Proposition 2 that J0 is generated by a regular series of maximal length
of homogeneous elements which by simplicity will be called g1, . . . , gn. It
follows J = (gv1 , . . . , g

v
n). Let Fj be the homogeneization of gvj with respect

to x0. Then the homogeneization Jh of J is given by Jh = (F1, . . . , Fn),
i.e., is given elementwise. This follows from the flatness of the k[x0]-algebra
k[x0, . . . , xn]/(F1, . . . , Fn) since the gj are a regular series. But then it
follows easily that the map defined by xi 7→ xi − vix0 is an isomorphism
k[x0, . . . , xn]/Jh → k[x0]⊗k B0, where B0 = P/(g1, . . . , gn). �

In the following we write θu = {A(V ) → A(X) → A0}. The geomet-
ric notation is θu = {X0 → X → V }. Let t ∈ V be a Q-valued point
and let Xt be the fiber of t. Let Xt = Xt,1 t · · · t Xt,ρ be the decompo-
sition of Xt into irreducible (but not necessarily reduced) components. If
A(X) = A(V )[x1, . . . , xn]/I, then the ring A(Xt) has the form A(Xt) =
Q(t)[x1, . . . , xn]/It, where Q(t) ∼= Q is the residue field of t and It the defin-
ing ideal of Xt. Let It = ∩j It,j be the corresponding primary decomposi-
tion. �

Lemma 9. A Q-valued point t ∈ V is a g-point if and only if for every j
the ideal It,j is translation homogeneous.

Thus it follows that for every j there exists a wj ∈ Qn such that
√
It,j =

mj = (x1 − wj1, . . . , xn − wjn).

Proof. The condition is necessary. This follows from the above proposition
applied to the primary components It,j .
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The condition is sufficient. It is easy to see that the induced deformation
γt is given by the homogeneization of A(Xt), i.e., let the variable x0 be de-
noted by x0 = s, then denote by Iht ⊂ Q[s, x1, . . . , xn] the homogeneization
of It with respect to s. Moreover let

A = Q[s, x1, . . . , xn]/Iht .

The primary decomposition of It gives a primary decomposition

Iht =
⋂
j

Iht,j .

By the above proposition the algebras

Aj = Q[s, x1, . . . , xn]/Iht,j

are in the graded sense isomorphic to Q[s]⊗QBj , where the Bj , j = 1, . . . , ρ,
are graded Q-algebras of finite length, generated by x1, . . . , xn. Therefore the
exact sequence

0→ A→
∏
j

Aj

is equivalent to

0→ A→
∏
j

R⊗Q Bj

with R = Q[s]. �

As a first example we consider the versal Gm-equivariant deformation of
the graded Q-algebra A0 = Q[x]/(xn+1). The usual exact sequence [8], no.
1, gives for f = xn+1 the expression

T 1(A0) ∼=
∂

∂f
A0/x

nA0.

Thus it follows that T 1(A0) is a Q-vector space of dimension n. There-
fore the versal deformation has the form θu = {R → A → A0} with
R = Q[t2, . . . , tn+1] and A = R[X]/(F ) where F is given by

F (X) = Xn+1 + t2X
n−1 + · · ·+ tn+1.

Let V = Qn+1 be the set of Q-valued points of SpecR, let σ1, σ2, . . . , σn+1

be the elementary symmetric polynomials.

Lemma 10. The g-points are precisely the points s = (s1, . . . , sn+1) ∈ V
with

si = σi(w1, . . . , wn+1)

for w = (w1, . . . , wn+1) ∈ Qn+1 and
∑

iwi = 0.
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Proof. It is clear that the points of the described type are g-points. Con-
versely, let s ∈ V, be a g-point. The corresponding fiber algebra is given by
As = Q(s)[X]/(Fs) with Fs = xn+1 + s2x

n−1 + · · ·+ sn+1. By the definition
of a g-point Fs must split into a product of linear factors, i.e.,

Fs(X) =
ρ∏
j=1

(X − wj)mj ,

∑
jmj = n+1. Moreover the polynomial Fs does not have a n-power if and

only if
∑

j wj = 0. This shows that the coefficients have the desired form.
The converse is clear.

Recall that the cohomology H∗(X) of the complex projective space X =
CPn is given by A0. If K is a circle acting on X such that the L-property
is satisfied, then the corresponding equivariant cohomology is given by the
homogeneization of a ring of type As, i.e.,

H∗
K(X) ∼= H∗(BK)[ξ]/(F )

with

F =
ρ∏
j=1

(ξ − wjt)mj .

If we put
Fj = (ξ − wjt)mj ,

the exact sequence in Th. 2 (i) assumes the form

0 −−−→ H∗(BK)[ξ]/(F ) −−−→
∏ρ
j=1H

∗(BK)[ξ]/(Fj).(30)

This is the exact sequence for equivariant cohomology considered in Sec.
3. In the case of a circle action on a space X with the rational coho-
mology of CPn. In the following this exact sequence will be denoted with
Ch(w1, . . . , wn+1). The (n+ 1)-tuple (w1, . . . , wn+1) is called the (rational)
weight system of the action. �

Remarks 2. If a circle acts linearly on CPn induced by a representation
with diagonal matrix

ρ
(
exp

(
2π
√
−1t

))
= diag

{
exp(2π

√
−1w1t), . . . , exp

(
2π
√
−1wρt

)}
,

where the weights wj ∈ Z have multiplicity mj , then the roots of F can be
identified with the wjt.

We make now a direct application of Th. 4 establishing the automor-
phisms of such an exact sequence. The RK-automorphisms of H∗

K(X) are of
the form ξ 7→ µξ+ λt with λ ∈ Q and µ ∈ Q∗. These maps induce automor-
phisms of the chinese sequence (30) in the sense of Definition 3. Conversely,
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suppose there is given a similarity between two exact sequences of the type
(30):

H∗(BK)[ξ]/(F ) −−−→
∏ρ
j=1H

∗(BK)[ηj ]/((ηj − vjt)mj )

α

y yβ
H∗(BK)[ξ]/(G) −−−→

∏ρ
j=1H

∗(BK)[ηj ]/((ηj − wjt)nj ).

(31)

Then α has been induced by a homomorphism of the type ξ 7→ µξ + λt.
At the other hand the isomorphism β includes only permutation of factors
and eventually for every factor the multiplication with a νj ∈ Q∗. The
permutations don’t affect the automorphism α. Moreover by commutativity
the νj must all be equal. Therefore the group S of similarities of a sequence
Ch(w1, . . . , wn+1) can be described as follows. Let V ∼= Qn+1 then consider
the group S = ToE×Sn+1 where T ∼= Q is the group of diagonal translations
and E ∼= Q∗ is the group of homotheties whereas the symmetric group
Sn+1 is acting on V by permutation of coordinates. Now S is acting in the
following way on the set of exact chinese sequences of the type (30): Let
Σ = (λ, µ, π) ∈ S then

Ch(w1, . . . , wn)Σ = Ch(µ(wπ(1) + λ), . . . , µ(wπ(n+1) + λ)).

Therefore we conclude:

Lemma 11. The exact sequences Ch(v1, . . . , vn+1) and Ch(w1 . . . , wn+1)
are similar if and only if there exists a Σ = (λ, µ, π) ∈ S with

(v1, . . . , vn+1) = (µ(wπ(1) + λ), . . . , µ(wπ(n+1) + λ)).

Then by Th. 4 we get the following nonsurprising result.

Theorem 6.
(i) Any circle action on a 1-connected space X with H∗(X) ∼= Q[x]/(xn+1)

which satisfies the L-property and has a componentwise simply con-
nected fixed space is Q-equivariantly homotopy equivalent to a linear
action on a CPn.

(ii) Two such circle actions with weight systems {vi} and {wi} are Q-
equivariantly homotopy equivalent if and only if there exists a λ ∈ Q,
a µ ∈ Q∗ and a permutation π such that

(v1, . . . , vn+1) = (µ(wπ(1) + λ), . . . , µ(wπ(n+1) + λ)).

The quotient V/T with respect to the translation group can be identified
with the subspace U = {(w1, . . . , wn+1) |

∑
iwi = 0} on which the restgroup

E × Sn+1 acts in a natural way. Therefore the set of similarity classes of
exact chinese sequences can be identified with the fundamental domain of
the action of the Weyl group W (SU(n + 1)) on the set of rational points
of the Cartan subalgebra of su(n + 1). This will be called the rationalized
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fundamental Weyl chamber or FWn(Q). Now it remains to divide out the
natural action of E ∼= Q∗. Thus we have by Th. 4.

Theorem 7.

OpQ(S1,CPn) ∼= FWn(Q)/Q∗.

Thus we see that up to equivariant rational homotopy equivalence there
is only one circle action on S2, i.e., OpQ(S1,CP1) consists of a single point.
The set OpQ(S1,CP2) can be identified with the set of rational numbers of
a semiclosed intervall and OpQ(S1,CP3) is realized by the rational points of
an equilateral triangle with two semiclosed edges omitted.

Remarks 3. (i) It is plausible that the homotopy type of the circle action
on CPn does only depend on the weight systems modulo a translation
group isomorphic to Z since the weight system describes the linear
action on the vector space Cn+1−{0} whereas the action on CPn does
only depend on the differences of weights.

(ii) The space FWn(Q)/Q∗ can be obtained taking lattice vectors (w1, . . . ,
wn+1) ∈ Zn+1 and then divide out the multiplicative group just giving
a fundamental domain of the natural action of W (SU(n + 1)) on the
rational points of the projective space P (h) of the Cartan subalgebra.
But this is a quotient of the set of irreducible representations of SU(n+
1).

(iii) In any case we see that the rational homotopy classification of arbitray
circle actions on a space X which is rationally homotopy equivalent
to CPn does not go beyond the corresponding classification of linear
circle actions on CPn.

As another example we want to consider the case of the flag manifolds
X = K/T,K a compact connected Lie group and T ⊂ K a fixed maximal
torus. First we have to calculate the equivariant cohomology of a circle
action on the homogeneous space K/T. Here we consider a slightly more
general case. Let K be a compact connected Lie group, U ⊂ K be a closed
connected subgroup and let G be another compact Lie group, let ρ : G→ K
be a homomorphism. Then there is an action of of G on X = K/U by left
translation:

φρ : G×X → X,

(g, kU)→ ρ(g)kU.

Such actions will be called homomorphic or linear. We specialize to the case
where U ⊂ K is a closed connected subgroup of maximal rank. We put

RG = H∗(BG), RU = H∗(BU ), RK = H∗(BK).
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Let j : U → K be the inclusion homomorphism and let Bj and Bρ be the
induced maps on the classifying spaces. Then there is a cartesian diagram

EG ×G X −−−→ BUy yBj
BG −−−→

ρ
BK .

(32)

Since U is a subgroup of maximal rank the ring homomorphism (Bj)∗ :
RK → RU makes the ring RU into a free RK-module. Consequently the
2-term of the corresponding Eilenberg-Moore spectral sequence is given by

E2
∼= TorRK (RG, RU ) ∼= RG ⊗RK

RU ,

i.e., the higher Tor’s vanish. Therefore the canonical homomorphism

RG ⊗RK
RU → H∗

G(X)

becomes an isomorphism of rings. Thus we can state the following suggestive
result.

Theorem 8. Let G be a compact, not necessarily connected Lie group and
let ρ : G → K be a homomorphism into a compact connected Lie group K.
Let U ⊂ G be a closed connected subgroup of maximal rank. If φρ : G×X →
X is the corresponding linear action on X = K/U then there is a canonical
isomorphism

H∗
G(X) ∼= RG ⊗RK

RU .

As an example take G = U = T a fixed maximal torus of K. Then we
obtain H∗

G(X) ∼= RG ⊗RK
RU ∼= RT ⊗RK

RT . In the following we want to
investigate in a greater detail the structure of this ring and the corresponding
geometric scheme.

Let g be the real Lie algebra of G, denote by h ⊂ g the R-Lie algebra of
T. Let Oh = Q[h∗] be the ring of rational valued regular functions on h. Let
W = WG = NG/T be the Weyl group of G. Since W acts Q-rationally on
h it acts naturally on the ring Oh. Denote by OWh ⊂ Oh the corresponding
invariant ring. NowW acts on h as a reflection group and then by the famous
theorem of Shephard and Todd, see e.g., [4], Thm. 6.4.12, the invariant
ring OWh is again a polynomial algebra. Since the natural homomorphism
RG → RT induced by the fiber map BT → BG can be identified with the
inclusion of homomorphism OWh ⊂ Oh, the pushout diagram

RT −−−→ RT ⊗RK
RTx x

RK −−−→ RT

(33)
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corresponds to the pullback diagram

h×h/W h −−−→ hx x
h −−−→ h/W .

(34)

As a corollary of Th. 8 we obtain:

Lemma 12. The equivariant cohomology H∗
T (K/T ) of the natural T -action

on K/T is induced from the quotient morphism π : h → h/W by the same
morphism.

There is then a unique homomorphism

fξ : H∗(Baut0(K/T ))→ H∗(BK)

inducing the deformation ξ :

RT −−−→ H∗(K/T )x x
RK −−−→ Q.

(35)

Let RX = H∗(Baut0(X)) and R•X = H∗(Baut•0(X)). We want to identify
the deformation ξ with a subdeformation of the universal deformation θu.

R•X −−−→ H∗(K/T )x x
RX −−−→ Q.

(36)

Let V = SpecRX. Since W = WK acts in a natural way on RX it acts
also on the space V. Let Y = Fix(W,V ) be the fixed space of this W -action.
Let S = OY be the coordinate ring of Y.

Lemma 13. Let K be a semisimple compact Lie group, then the deforma-
tion

R•X ⊗RX S −−−→ H∗(K/T )x x
S −−−→ Q

(37)

is isomorphic as a deformation to ξ.

Proof. This follows from the explicit construction of the versal deformation
given in [8], Sec. 3. Let

A0 = H∗(K/T ) ∼=
RT

R+
K ·RT

=
RT

(f1, . . . , fn)
,
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where the fj are the homogeneous generators of the W -invariant ring in
RT . Since K is semisimple, the generators must have a degree greater
than two. It follows fj ∈ m2

RT
⊂ RT . In the following we write RT =

k[x1, . . . , xn], deg xi = 2. We consider the associated exact sequence, see
[8], p. 551.

0→ Derk(A0)→
n∑
i=1

A0
∂

∂xi

∆→
n∑
j=1

A0
∂

∂fj
→ T 1

Q(A0)→ 0

where ∆ is the Jacobian homomorphism. It is clear that W acts on all
terms of this sequence such that the homomorphisms are equivariant. Now,
the tangential space of S can be identified with the dual of T 1

Q(A0)W . By
exactness one has

T 1
Q(A0)W ∼=

(∑
A0

∂
∂fj

)W
Im ∆ ∩

(∑
A0

∂
∂fj

)W .

At the other hand

Im ∆ ∩
(∑

A0
∂

∂fj

)W

= Im ∆ ∩
(∑

AW0
∂

∂fj

)
(38)

= Im ∆ ∩
(∑

A0
0

∂

∂fj

)
(39)

= 0(40)

as follows from the formula

∆
(
∂

∂xi

)
=

∑
j

(
∂fj
∂xi

)
∂

∂fj

and fj ∈ m2
RT
. Thus we have

T 1
Q(A0)W =

n∑
j=1

A0
0

∂

∂fj
.

Now, after the recipe in [8] we choose for any basis element ∂
∂fj

a generator
tj of degree deg tj = −deg ∂/∂fj = deg fj and constructing the part of θu
over S = k[t1, . . . , tn] ∼= RK we get the ring

A = R•X ⊗RX S = S[X1, . . . , Xn]/J

with J = (Φ1, . . . ,Φn) where Φj = fj(X) − tj . Thus it follows A ∼= RT
where the homomorphism S → A is given by tj 7→ fj(X). �

As a corollary of this result we obtain Theorem 9.

Theorem 9. The ring homomorphism fξ is an epimorphism and coincides
with the ring homomorphism corresponding to the closed immersion Y ⊂ V.
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Proof. The group K acts in a natural way on X = K/T by left translations.
This gives a continuous monoid homomorphism α : K → aut0(X). Then
fξ = H∗(Bα). Thus we have a pullback diagram

BT −−−→ Baut•0Xy y
BK −−−→ Baut0X.

(41)

Write EX = Baut•0X and BX = Baut0X. Using the Eilenberg Moore
spectral sequence we get

RT ∼= H∗(EX)⊗RX RK .

Let f1 : RX → S be the epimorphism corresponding to the closed immersion
Y ⊂ V. Then by W -equivariance fξ factorizes as fξ = f2 ◦ f1 with f2 : S →
RK . From the preceding result and universality of the deformation θu it
follows that f2 is an isomorphism which proves the claim. �

Let nowG be a circle acting linearly on aX = K/T with a homomorphism
ρ : G→ T. Then the inducing homomorphism RX → RG factorizes as

RX
fξ−−−→ S ∼= RK

H∗(Bρ)−−−−−→ RG.

Therefore the g-points corresponding to the equivariant rational homotopy
type of linear circle actions on K/T lie within the subspace Y ⊂ V.

So, we get a commutative diagram

OpQ(G,H∗(K/T ))
∼=−−−→ P (G;H∗(K/T ))

∪
x x∪

OpQ
lin(G,H

∗(K/T )) −−−→
∼=

PWK(G;H∗(K/T ))

(42)

where OpQ
lin(G,H

∗(K/T )) is the set of rational equivariant homotopy classes
of linear actions whereas PWK(G;H∗(K/T )) is the fixed set of WK in
P (G;H∗(K/T )).

For to compare our results with the homotopy classification of linear circle
actions on K/T we conclude this note with a result giving a finer classifica-
tion than equivariant rational homotopy equivalence.

Theorem 10. Let G be a circle, let X = K/T be the flag variety of the
compact connected Lie group K. Suppose ρ, τ : G→ T ⊂ K are continuous
homomorphisms and denote by φρ, φτ respectively, the corresponding linear
G-actions on X. Then the following assertions are equivalent:

(i) The actions φρ and φτ are G-equivariantly diffeomeorphic.
(ii) The actions φρ and φτ are G-homotopy equivalent.
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(iii) There exists an equivariant homotopy equivalence h : (X,φρ) →
(X,φτ ).

(iv) There exists an equivariant map h : (X,φρ) → (X,φτ ) which is a
rational homotopy equivalence.

(v) The homomorphisms H∗(Bρ; Q) and H∗(Bτ ; Q) coincide.
(vi) The representations ρ and τ are conjugate by an element w ∈ NKT/T

of the Weyl group.

It follows that the set of g-points (v) gives the finest possible classification
for linear action on K/T. For to obtain the equivariant rational homotopy
classification one has to divide out the natural Q∗-action. Therefore we can
say that the concept of g-points is a natural generalization of representation
theory. It seems to me that this is the right place to mention that it has
already been shown that the set of nonlinear g-points is non empty show-
ing nonvoidness of our theory. Suppose a circle is acting nontrivially on a
space X which has the rational cohomology of U(3)/T 3. In [9] the authors
show that up to rational cohomology there are the following fixed space
configurations:

S2 + S2 + S2

S2 + S2 + 2p
S2 + 4p

6p.

Only the first and the last configuration can be realized by linear actions.
The two middle configurations are new and correspond to g-deformations of
H∗(U(3)/T 3; Q) which after [13] can be realized by finite S1-complexes.

Before we begin with the proof of Thm. 10 we cite some additional
information.

Lemma 14. Let ρ, τ : T → H be homomorphisms from a torus T to a
compact connected Lie group H. If H∗(Bρ; Q) = H∗(Bτ ; Q), then ρ and τ
are conjugate.

For the proof see [16], Lemma 1.

Proof of Th. 10. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious.
(iv) ⇒ (v): We consider the Borel fibrations

βρ = {X → EG ×ρ X → BG}
βτ = {X → EG ×τ X → BG}

which correspond to the two linear actions of G on X. Then the map h
induces a rational fiber homotopy equivalence between βρ and βτ . Denote
by fρ, fτ the corresponding classifying maps from BG in BX = Baut0(X).
By universality the corresponding rationalizations fρ,Q and fτ,Q are homo-
topic and therefore the induced homomorphisms H∗(fρ; Q) and H∗(fτ ; Q)
coincide. Moreover by linearity there are factorizations (up to homotopy)
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fρ = Bα ◦ Bρ and fτ = Bα ◦ Bτ. Now, after Th. 9 the homomorphism
fξ = H∗(Bα; Q) is epi. Therefore the equation H∗(fρ; Q) = H∗(fτ ; Q)
implies H∗(Bρ; Q) = H∗(Bτ ; Q).
(v) ⇒ (vi): By Lemma 14 the homomorphisms ρ and τ are conjugate by
an element of K. But since ρ(G) and τ(G) are in the same maximal torus
T ⊂ K, they are conjugate by an element of WK. (Recall that in a compact
Lie group K two elements t1, t2 in a fixed maximal torus T are conjugate
by an element of K iff they are conjugate by an element of WK. Apply this
to to the topological generators t1 and t2 of ρ(G) and τ(G) respectively.)
(vi) ⇒ (i): Let a ∈ NT be an element such that τ(g) = aρ(g)a−1. Then
define h = ha : (K/T, φρ) → (K/T, φτ ) as h(kT ) = aka−1T. It is then a
simple calculation to show that h is G-equivariant. It is obvious that h is a
diffeomorphism.
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