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We state two families of trace formulas for the Howe duality.
We prove the matching of orbital integrals for the trace for-
mulas. The fundamental lemma (matching of orbital integrals
for spherical functions) turns out to be the consequence of lo-
cal Howe duality. We use the local Howe duality to prove the
fundamental lemmas for another interesting family of trace
formulas.

1. Introduction.

In [H], Howe conjectured a correspondence between the automorphic repre-
sentations of SO2n+1 and these of S̃pn. The local and global theory of the
Howe correspondence has been established by the works of Furusawa [F],
Howe [H2], Piatetski-Shapiro and Soudry [PS-S], Rallis [R], Waldspurger
[W], etc. In this paper, we study the correspondence from a new angle,
using the method of trace formula. We state two families of trace formulas
that yield the Howe correspondence.

The local Howe duality play an essential role in our trace formula. Let Fv
be a non-Archimedean field with odd residue characteristics. We consider
the Weil representation ωψ of the group S̃pn(2n+1)(Fv) (the twofold cover of
Spn(2n+1)(Fv)), which is determined by an additive character ψ of Fv. We
restrict ωψ to the dual pair SO2n+1 × S̃pn in S̃pn(2n+1), (where the sym-
plectic form is given by the tensor product Q ⊗ A, Q being a symmetric
nondegenerate bilinear form in 2n + 1 variables, A being an alternate non-
degenerate bilinear form in 2n variables). One version of the (local) Howe
duality conjecture is: there exists a surjective homomorphism

λ : H(SO2n+1//K) → H(S̃pn//K
′)

between the spherical Hecke algebras of S̃pn and SO2n+1, so that when ψ

is of order 0, for any w ∈ ωK×K′

ψ (the space of K ×K ′ fixed vectors in ωψ),
we have

ωψ(f)w = ωψ(λ(f))w, f ∈ H(SO2n+1//K).(1)

This conjecture is established in [H2], [R], [W].
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In spectral terms, the identity (1) means that if any spherical irreducible
representation π1 ⊗ π2 of SO2n+1 × S̃pn “occurs” in ωψ, then

Trace(π2(λ(f))) = Trace(π1(f)).

We will say f and λ(f) are spectrally matching functions. We observe here
that from the viewpoint of the trace formula, the identity (1) in the case
where v is the spherical vector in ωψ is essentially the fundamental lemma,
relating the orbital integrals for the matching Hecke functions.

We use the above observation to prove the fundamental lemma for an-
other family of trace formulas. These trace formulas describe the lifting
from automorphic representations of S̃L2 to these of SO2n+1. Our proof
avoids Jacquet’s delicate argument in the n = 1 case [J], relies rather on the
existence of the Weil representation and the identity (1).

While the lifting considered here can be studied directly using the Weil
representation, the trace formula approach yields extra information: An
identity of distributions relating the representation of SO2n+1 (or S̃pn) and
its lifting. Such an identity has implications on the vanishing of certain
linear functionals of the representations. In the case of Jacquet’s formula
[J], the identity has also interesting applications in the central L-values of
cuspidal representations of PGL2. The result in this paper suggests that
the extra information may be obtained without much of the usual extra
difficulties associated with the trace formula, namely, in the comparison of
local orbital integrals.

2. Two families of trace formulas.

Let F be a number field, A its adele ring. Let Q(X) be a quadratic form
on F 2n+1 such that

Q(x1, . . . , x2n+1) = 2x1x2n+1 + · · ·+ 2xnxn+2 + x2
n+1.

Denote by 〈X,Y 〉 the associated bilinear form. Let SO2n+1 be the associated
special orthogonal group. Let Spn be the symplectic group associated to the

bilinear form A with matrix
[

In
−In

]
. Let S̃pn be the twofold covering

of Spn. There is an embedding of SO2n+1 × S̃pn in S̃pn(2n+1), (where the
alternate form on Spn(2n+1) is given by Q ⊗ A), given by (g, h) → g ⊗ h.
Under this embedding, we can regard (g, h) as an element in S̃pn(2n+1).

Fix a nontrivial additive character ψ of A/F . For such a ψ, there is
a Weil representation ωψ of S̃pn, acting on S(An) the space of Schwartz
functions on An. We refer the reader to [F] for the definition of Weil rep-
resentation. Let φ ∈ S(An(2n+1)), we can then use the Weil representation
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ωψ of S̃pn(2n+1) to define a theta function on SO2n+1 × S̃pn:

Θψ
φ (g, h) =

∑
X∈Fn(2n+1)

ωψ(g, h)φ(X), g ∈ SO2n+1, h ∈ S̃pn.(2)

2.1. Bessel model for SO2n+1 and Whittaker model.
We introduce some subgroups of SO2n+1 and S̃pn. Let e1, . . . , e2n+1 be

the standard basis of F 2n+1. Define a subgroup of SO2n+1:

D = {d(a)|a ∈ GL1, d(a)en = aen, d(a)en+2 = a−1en+2,

d(a)ei = ei, i 6= n, n+ 2}.
Let Ul be the group of unit upper triangular matrices in GLl. Set

S′ =

s(A,B) =

 In−1 A B
I3 A′

In−1

 |s(A,B) ∈ SO2n+1

 ,

S =

t(u) =

 u
I3

u∗

 ∈ SO2n+1|u ∈ Un−1

 .

Let R be the product of groups D, S′ and S. Let R′ be the subgroup of
SO2n+1 consisting of elements that fixes e1, . . . , en−1 and en+1. Then R′ is
a subgroup of R. Let N be the unit upper triangular subgroup of SO2n+1.

Let V be the subgroup of Spn consisting of elements of the form v(s) =[
In s

In

]
. Let U ′

n be the subgroup of Spn with elements t′(u) =
[
u

u∗

]
where u ∈ Un. Let N ′ be the product of U ′

n and V . Note the covering of Spn
splits over N ′, thus we may consider N ′ as a subgroup of S̃pn. For n ∈ N ′,
we will use ñ to denote the element (n, 1) in S̃pn.

Given an automorphic representation π of SO2n+1(A), we say it has a
Bessel model with respect to ψ if there is a φ in the space of π such that:∫

R(F )\R(A)
φ(r)χ−1(r)dr 6= 0.

Here χ is a character on R with:

χ(t(u)s(A,B)d(a)) = ψ(u1,2 + · · ·+ un−2,n−1 +An−1,2).

Note that χ is trivial on R′.
Given an automorphic representation π of SO2n+1(A), we say it has a

Whittaker model with respect to ψ if there is a φ in the space of π such
that: ∫

N(F )\N(A)
φ(n)θ(n−1)dn 6= 0

where θ(n) = ψ(n1,2 + · · ·+ nn,n+1) for n ∈ N .
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Given a genuine automorphic representation π′ of S̃pn(A), we say it has
a Whittaker model with respect to ψ if there is a φ in the space of π′ such
that: ∫

N ′(F )\N ′(A)
φ(ñ)θ′(n−1) 6= 0

where θ′(t′(u)v(s)) = ψ(−u1,2 − · · · − un,n+1 + sn,n/2) for v(s) ∈ V, u ∈ Un.

2.2. The trace formulas.
Let C∞

c (S̃pn(A)) be the set of genuine Schwartz functions on S̃pn(A).
Given f ∈ C∞

c (SO2n+1(A)) and a genuine function f ′ ∈ C∞
c (S̃pn(A)), we

can define kernel functions:

Kf (x, y) =
∑

γ∈SO2n+1(F )

f(x−1γy), x, y ∈ SO2n+1(A),

Kf ′(x, y) =
∑

γ∈Spn(F )

f(x−1 · γ̃ · y), x, y ∈ S̃pn(A).

Note that the covering of Spn(A) splits over Spn(F ), and we denote by γ̃

the element (γ, 1) in S̃pn(A).
Our first claim is: There exists a map (δ, ε) from C∞

c (SO2n+1(A)) to
S(An(2n+1))×C∞

c (S̃pn(A)), such that we have an identity of distributions:

I1(f) = J1(δ(f), ε(f))(3)

where

I1(f) =
∫
R(F )\R(A)

Kf (r, 1)χ−1(r)dr,

J1(φ, f ′) =
∫
Spn(F )\S̃pn(A)

∫
N ′(F )\N ′(A)

Kf ′(ñ, g)Θ
ψ
φ (1, g)θ′(n−1)dndg.

The proof of this claim is indicated in Section 4. From the spectral de-
composition of the identity (3), one expects to establish a correspondence
between certain cuspidal automorphic representations of SO2n+1(A) with a
Bessel model and certain cuspidal automorphic representations of S̃pn(A)
with a Whittaker model relative to the character ψ.

Our second claim is: There exists a map (δ′, ε′) from C∞
c (S̃pn(A)) to

S(An(2n+1)) × C∞
c (SO2n+1(A)), such that we have an identity of distribu-

tions:

I2(δ′(f ′), ε′(f ′)) = J2(f ′)(4)

where

I2(φ, f) =
∫
SO2n+1(F )\SO2n+1(A)

∫
N(F )\N(A)

Kf (g, n)Θψ
φ (g, 1)θ(n)dndg,
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J2(f ′) =
∫
N ′(F )\N ′(A)

Kf ′(ñ, 1)θ′(n−1)dn.

The proof of this claim is indicated in Section 4. From the spectral decompo-
sition of the identity (4), one expects to establish a correspondence between
certain cuspidal automorphic representations of S̃pn(A) with a Whittaker
model relative to ψ and certain cuspidal automorphic representations of
SO2n+1(A) with a Whittaker model relative to ψ.

The correspondences mentioned above are the Howe correspondence for
the representations in question.

3. Local orbital integrals.

The definition of the distributions Ii, Ji, i = 1, 2 are motivated from the
considerations in [F], [PS-S]. These distributions can be unwinded into
sums of orbital integrals.

Before stating the result of unwinding, we fix some notations. We will
use two different models for the Weil representation ωψ, associated to two
polarizations of the symplectic space Fn(2n+1). The space Fn(2n+1) can be
considered to be Z = X ⊗ Y , where X is the 2n + 1 dimensional space
equipped with the form Q, Y is the 2n dimensional space with the form
A. Let ei be the standard basis of X ∼= F 2n+1 and fi be the standard
basis of Y ∼= F 2n. Let X+ be the span of e1, . . . en, Y + be the span of
f1, . . . , fn; they are two maximal isotropic space associated to Q and A.
Let Z = Z+ ⊕ Z− be a polarization of Z, then ωψ acts on S(Z+).

One choice of the polarization is to let Z+ = X ⊗ Y +. In this case,
an element in Z+ has the form ⊕xi ⊗ fi; we denote such an element by
(x1, . . . , xn).

The other choice of the polarization is to let Z+ = X+ ⊗ Y ⊕ en+1 ⊗ Y +.
For an element in Z+, it has the form ⊕ei ⊗ yi ⊕ en+1 ⊗ y′, where yi ∈ Y
and y′ ∈ Y + ∼= Fn. We denote such an element by (y1, . . . , yn, y

′). We will
use f ′i to denote the standard basis of Y + ∼= Fn.

For both polarization, for fv, f ′v Schwartz functions of SO2n+1(Fv) and
S̃pn(Fv), φ ∈ S(Z+(Fv)), define for X ∈ Z+(Fv)

ωψ(fv)φv(X) =
∫
SO2n+1(Fv)

fv(g)ωψ(g, 1)φv(X)dg,(5)

ωψ(f ′v)φv(X) =
∫
S̃pn(Fv)

f ′v(g)ωψ(1, g)φv(X)dg.(6)

For f a function on SO2n+1(Fv), we let f̂(g) = f(g−1). For g ∈ S̃pn(Fv), let

g∨ = (δ, 1) · g · (δ, 1)−1, where δ =
[
−In

In

]
lies in the similitude group

GSpn, (this automorphism is defined in [Mo-V-W, p. 90]).
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In this section, we prove:

Proposition 1. If f = ⊗fv, f ′ = ⊗f ′v and φ = ⊗φv are products of local
components, then:

I1(f) =
∑

γ∈R(F )\SO2n+1(F )

∏
v

I1,v(γv, fv),(7)

J1(φ, f ′) =
∑

γ∈R(F )\SO2n+1(F )

∏
v

J1,v(γv, ωψ(f ′v)φv),(8)

I2(φ, f) =
∑

γ∈N ′(F )\Spn(F )

∏
v

I2,v(γv, ωψ(f̂v)φv),(9)

J2(φ, f ′) =
∑

γ∈N ′(F )\Spn(F )

∏
v

J2,v(γ∨v , f
′
v)(10)

where

I1,v(γv, fv) =
∫
Rv

fv(r−1γv)χ−1(r)dr

J1,v(γv, φv) =
∫
Rv/R′v

ωψ(r−1γv, 1)φv(e1, . . . , en−1, en+1)χ−1(r)dr

and

I2,v(γv, φv) =
∫
Un,v

ωψ(1, ˜t′(u)
−1
· γv)φv(fn+1, . . . , f2n,−f ′n)θ(t(u))du

J2,v(γ∨v , f
′
v) =

∫
N ′
v

f ′v(ñ
−1 · γ∨v )θ′(n−1)dn.

In J1,v(γv, φv), we use the first polarization, while in I2,v(γv, φv) we use the
second polarization.

The proof of the proposition uses the computation that appears in [F]. We
will sketch the proof for the identity of J1(φ, f ′). The following calculation
is formal, however it could be justified using the argument similar to Prop.
1 in [M-R].

We will use the following formulas for the Weil representation ωψ. Using
the polarization where Z+ = X ⊗ Y +:

ωψ(g, ˜t′(u))φ(x1, . . . , xn) = φ(g−1x1u, . . . , g
−1xnu)

ωψ(1, ṽ(S))φ(x1, . . . , xn) = ψ(Tr(Gr(x1, . . . , xn)S)/2)φ(x1, . . . , xn)

where Gr(x1, . . . , xn) = [〈xi, xj〉] as an n× n matrix.
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Proof of the proposition. From the definition of J1(φ, f ′) in (2.2), we get it
equals:∫

Spn(F )\S̃pn(A)

∫
N ′(F )\N ′(A)

∑
γ∈Spn(F )

f ′(ñ−1 · γ̃ · g)Θψ
φ (1, g)θ′(n−1)dndg.

Since Θψ
φ (1, γ̃ · g) = Θψ

φ (g), we can unwind the above integral and get the
following expression for J1(φ, f ′):∫

S̃pn(A)

∫
N ′(F )\N ′(A)

f ′(ñ−1 · g)Θψ
φ (1, g)θ′(n−1)dndg.

Make a change of variable g → ñ · g. Using the notation in (6), we get

J1(φ, f ′) =
∫
N ′(F )\N ′(A)

Θψ
ωψ(f ′)φ(1, ñ)θ′(n−1)dn

which is∑
X∈Fn(2n+1)

∫
Un(F )\Un(A)

∫
V (F )\V (A)

ωψ(1, ṽ)ωψ(1, ˜t′(u))

· ωψ(f ′)φ(X)θ′(v−1t′(u)−1)dudv.

For a fixed X = (x1, . . . , xn), the above integration has the form:∫
V (F )\V (A)

Φ(X)ψ(Tr(Gr(x1, . . . , xn)S)/2− Sn,n/2)dv(S)

where Φ(X) equals:∫
Un(F )\Un(A)

ωψ(1, ˜t′(u))ωψ(f ′)φ(x1, . . . , xn)θ′(t′(u)−1)du.

The integration over V is only nonzero for X lying in the set:

Z0 = {(x1, . . . , xn) ∈ Z+(F )|〈xi, xj〉 = 0 except 〈xn, xn〉 = 1}.

Over this set, the integration over V gives Φ(X). Thus

J1(φ, f ′) =
∑
X∈Z0

∫
Un(F )\Un(A)

ωψ(1, ˜t′(u))ωψ(f ′)φ(x1, . . . , xn)θ′(t′(u)−1)du.

(11)

From Lemma 1 in [F], we can restrict the above sum to the subset where xi’s
are linearly independent, (since Φ(X) = 0 otherwise). By Witts theorem,
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the expression (11) can be written as∫
Un(F )\Un(A)

∑
γ∈R′(F )\SO2n+1(F )

ωψ(1, ˜t′(u))ωψ(f ′)

· φ(γ−1e1, . . . , γ
−1en−1, γ

−1en+1)θ′(t′(u)−1)du

=
∫
Un(F )\Un(A)

∑
γ∈R′(F )\SO2n+1(F )

ωψ(γ, ˜t′(u))ωψ(f ′)

· φ(e1, . . . , en−1, en+1)θ′(t′(u)−1)du.

From the formula of the Weil representation, we see there is an isometry ρ
from Un to R/R′, such that

ωψ(1, ˜t′(u))φ(e1, . . . , en−1, en+1) = ωψ(ρ(u)−1, 1)φ(e1, . . . , en−1, en+1)

and θ′(t′(u)−1) = χ−1(ρ(u)). Thus J1(φ, f ′) equals∫
(R/R′(F ))\(R/R′(A))

∑
R′(F )\SO2n+1(F )

ωψ(r−1γ, 1)ωψ(f ′)

· φ(e1, . . . , en−1, en+1)χ−1(r)dr

=
∫
R(A)/R′(A)

∑
R(F )\SO2n+1(F )

ωψ(r−1γ, 1)ωψ(f ′)

· φ(e1, . . . , en−1, en+1)χ−1(r)dr.

This identity implies our assertion on J1(φ, f ′). The argument for I2(φ, f)
is similar, and we refer to [F] for the details. The unwinding for I1(f) and
J2(f ′) is standard. �

We note that the group Spn(F ) is stable under the automorphism g → g∨.
Thus one may as well replace γ∨v by γv in the equality (10). Our choice of
the representative γ∨v however is more suitable for the comparison of local
orbital integrals. (See below.)

4. Proof of the claims: Fundamental lemma.

From the Proposition 1, to show the claims in (2.2), we only need to prove
the related identities between local orbital integrals. Fix a place v of F . We
will now drop the reference to v in the notations.

If v is a finite place with odd residue characteristic, let O be the ring
of integers; we fix the Haar measures so that SO2n+1(O) and S̃pn(O) have
volume 1. Note that Spn(O) embeds in S̃pn(F ) as a subgroup (as the cover-
ing splits over Spn(O)), denoted K ′. Thus the maximal compact subgroup
S̃pn(O) of S̃pn(F ) is a direct product of {±1} and K ′. The Hecke algebra
of S̃pn(F ) is the set H(S̃pn//K ′) of genuine compactly supported functions
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on S̃pn(F ) which are bi-invariant under K ′. Similarly we define the Hecke
algebra H(SO2n+1//K) of SO2n+1(F ), where K = SO2n+1(O). As in the
introduction, there is an algebra homomorphism between the Hecke algebras
of SO2n+1(F ) and S̃pn(F ). We say two Hecke functions of SO2n+1(F ) and
S̃pn(F ) match if they correspond under the algebra homomorphism.

The following theorem yields our first claim:

Theorem 1.

(1) For all places v, given a function f , there exists functions f ′ and φ,
such that I1(γ, f) = J1(γ, ωψ(f ′)φ) for all γ ∈ SO2n+1(F ).

(2) For almost all finite places v, if f and f ′ are matching Hecke functions,
and φ = φ0 is the characteristic function of Z+(O), then I1(γ, f) =
J1(γ, ωψ(f ′)φ) for all γ ∈ SO2n+1(F ).

The part 2 of the Theorem is the fundamental lemma for the trace formula
(3). It is used to establish the functoriality of the correspondence. We
will see that the fundamental lemma is essentially the Howe duality for
unramified dual pairs, the identity (1) in introduction.

Proof of the Theorem. Since χ is trivial on R′, we can write I1(γ, f) as∫
R/R′

∫
R′
f(h−1r−1γ)χ−1(r)drdh.

Define φf in S(Z+(F )) by the identity

ωψ(g, 1)φf (e1, . . . , en−1, en+1) =
∫
R′
f(h−1g)dh.

Such a φf exists since R′ is the fixator of (e1, . . . , en−1, en+1). Thus

I1(γ, f) =
∫
R/R′

ωψ(r−1γ, 1)φf (e1, . . . , en−1, en+1)χ−1(r)dr.(12)

Compare with the expression for J1(γ, ωψ(f ′)φ), to prove part (1) of the
theorem, we only need to show that: Given f , there exists f ′, φ such that
ωψ(f ′)φ = φf . This is clear.

For the proof of part (2), let v be a finite place where ψ has conductor
O and the residue characteristic of F is odd. This set of v includes almost
all finite places. Over this set of finite places v, the identity (1) holds for
matching Hecke functions f and f ′. Apply it to the case w = φ0, we see

ωψ(f)φ0 = ωψ(f ′)φ0(13)

for matching f and f ′. Let f0 and f ′0 be the unit elements of the Hecke
algebras of SO2n+1 and S̃pn respectively. Clearly

ωψ(f0)φ0 = ωψ(f ′0)φ0 = φ0.
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If g ∈ SO2n+1(F ), let g = ank be the Iwasawa decomposition of g, where
n ∈ N , k ∈ K and a = diag [a1, a2, . . . , a

−1
1 ]. We say g is relevant if

|ai| ≤ |ai+1| ≤ 1 for i ≤ n − 2. Note that g being relevant is equivalent to
hg being relevant, for any h ∈ R.

Lemma 1. Let g ∈ SO2n+1(F ). With the above assumptions on the place v,
if g is not relevant, then I1(g, f) = J1(g, ωψ(f ′)φ0) = 0 for Hecke functions
f and f ′; if g is relevant, then

ωψ(g, 1)φ0(e1, . . . , en−1, en+1) =
∫
R′
f0(h−1g)dh.(14)

Assuming the Lemma, then the identity in part (2) of the Theorem holds
for γ not relevant. For g relevant, for any Hecke function f of SO2n+1, since
f(g−1) = f(g), we have∫

R′
f(h−1g)dh =

∫
R′

∫
SO2n+1(F )

f(j−1)f0(h−1gj)dhdj

=
∫
SO2n+1(F )

f(j)ωψ(gj, 1)φ0(e1, . . . , en−1, en+1)dj

= ωψ(g, 1)ωψ(f)φ0(e1, . . . , en−1, en+1).

Thus if γ is relevant, we can take φf in the expression (12) to be ωψ(f)φ0.
The assertion (2) for the relevant γ follows from the identity (13). �

Proof of the Lemma. If g is not relevant, we show the vanishing of I1(g, f)
and J1(g, ωψ(f ′)φ). There is i < n− 1 with |ai| > |ai+1| or |an−1| > 1. We
may as well assume g is in the diagonal form. There is an x with ψ(x) 6= 1
and |ai+1

ai
x| ≤ 1 or |a−1

n−1x| ≤ 1. Let T be an element in N with the (i, i+1)th
(or (n− 1, n+ 1)th) entry x, and other Ti,j = 0 if i ≤ n, i 6= j. Then

I1(g, f) = ψ(x)I1(Tg, f) = ψ(x)I1(gT ′, f)

with T ′ ∈ SO2n+1(O). Thus I1(g, f) = ψ(x)I1(g, f) equals 0. Same argu-
ment shows J1(g, ωψ(f ′)φ0) = 0 when g is not relevant.

To prove the identity (14), let F1(g) and F2(g) be the LHS and RHS of
the equation. Since Fi(hgk) = Fi(g) for i = 1, 2, h ∈ R′, k ∈ SO2n+1(O), we
only need to show the identity for g = Td, with T ∈ N and Ti,n = Ti,n+2 = 0,
i < n, and d being in diagonal form and relevant, and |an| = 1. For such
a g, a simple computation shows that Fi(g) equal 1 when T ∈ N(O) and
|ai| = 1 for all i, they equal 0 otherwise. �

Remark. We ask the question whether the validity of the fundamental
lemma implies the existence of Howe duality. That is, can we prove a priori
that if for all γ ∈ SO2n+1(F ), I1(γ, f) = J1(γ, ωψ(f ′)φ0) for matching func-
tions f and f ′, then the identity (13) is valid? In particular, we ask for any
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φ̃ being K ×K ′ invariant, whether the vanishing of∫
R/R′

ωψ(r−1γ, 1)φ̃(e1, . . . , en−1, en+1)χ−1(r)dr = 0

for all γ ∈ SO2n+1(F ) implies that φ̃ ≡ 0. An affirmative answer would
imply that Theorem 1 (2) yields the identity (13).

We now consider the second claim in (2.2). Its proof is similar to that of
the first claim. We will state the results and give a sketch of the proof:

Theorem 2.

(1) For all places v, given a function f ′, there exists functions f and φ,
such that J2(γ∨, f ′) = I2(γ, ωψ(f̂)φ) for all γ ∈ S̃pn(F ).

(2) For almost all finite places v, if f and f ′ are matching Hecke functions,
and φ = φ0 is the characteristic function of Z+(O), then J2(γ∨, f ′) =
I2(γ, ωψ(f̂)φ) for all γ ∈ S̃pn(F ).

Proof. We can write J2(γ∨, f ′) as∫
V

∫
Un

f ′( ˜v(s)
−1 ˜t′(u)

−1
γ∨)θ′(v(s)−1t′(u)−1)dudv(s).

Since ˜t′(u)
∨

= ˜t′(u) and θ′(t′(u)−1) = θ(t(u)), we get∫
V

∫
Un

f ′( ˜v(s)
−1 ˜t′(u)

∨−1
γ∨)θ′(v(s)−1)θ(t(u))dudv(s).(15)

Since the group V is stable under the automorphism g → g∨, and ˜v(s)
∨

=
˜v(s)

−1
, there is a function φf ′ on Z+(F ) with

ωψ(1, g)φf ′(fn+1, . . . , f2n,−f ′n) =
∫
V
f ′( ˜v(s)

−1
g∨)θ′(v(s)−1)dv(s).

Thus J2(γ∨, f ′) equals:∫
Un

ωψ(1, ˜t′(u)
−1
γ)φf ′(fn+1, . . . , f2n,−f ′n)θ(t(u))du.

Given f ′, we choose φ and f such that ωψ(f̂)φ = φf ′ ; such a pair satisfies
the condition in part (1) of the Theorem.

We now show part (2) of the Theorem. Make the assumption on the
place v as in the proof of part (2) of Theorem 1. For g ∈ S̃pn(F ), let
g = ank be the Iwasawa decomposition, where n ∈ N ′, k ∈ K ′ and a =
(diag [a1, a2, . . . , a

−1
n ], ζ), ζ ∈ {±1}. We say g is relevant if |ai| ≤ |ai+1| for

1 ≤ i < n.
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Lemma 2. If g is not relevant, then I2(g, ωψ(f̂)φ0) = J2(g∨, f ′) = 0 when
f and f ′ are Hecke functions. When g is relevant,

ωψ(1, g)φ0(fn+1, . . . , f2n,−f ′n) =
∫
V
f ′0(ṽ

−1g∨)θ′(v−1)dv.(16)

We skip the proof of the Lemma, which is similar to that of Lemma 1,
and uses the fact that K ′ is stable under the automorphism g → g∨. From
the Lemma, the identity in part (2) holds for γ not relevant. When γ is
relevant, from (15), J2(γ∨, f ′) equals:∫ ∫

V

∫
Un

f ′0( ˜v(s)
−1 ˜t′(u)

∨−1
γ∨g∨)f ′(g∨−1)θ′(v(s)−1)θ(t(u))dudv(s)dg.

From the Lemma and the fact f ′(g∨−1) = f ′(g) ([Mo-V-W, p. 92]), we get∫ ∫
Un

f ′(g)ωψ(1, ˜t′(u)
−1
γg)φ0(fn+1, . . . , f2n,−f ′n)θ(t(u))dudg

=
∫
Un

ωψ(1, ˜t′(u)
−1
γ)ωψ(f ′)φ0(fn+1, . . . , f2n,−f ′n)θ(t(u))du.

Once again from identity (1), we get the identity (13), and the Theo-
rem follows from the identity (13) and the fact f(g) = f̂(g) when f ∈
H(SO2n+1//K). �

We note that the identities in Lemma 1 and 2 are not true for g not
relevant. For example in Lemma 2 if g is in diagonal form, with |an| = 1
and |ai| > 1, i 6= n, then the RHS of (16) equals 0 while the LHS is nonzero.

5. The lifting from S̃L2 to SO2n+1.

In [M-R], we introduced a family of trace formula that describes the lift-
ings of automorphic representations of SL2 and S̃L2. The argument in
[M-R] suggests the following trace formula: Given a genuine function f ′

in C∞
c (S̃L2(A)), there is a function ε(f ′) ∈ C∞

c (SO2n+1(A)), such that
I(ε(f ′)) = J(f ′) where

I(f) =
∫
Hn+1(F )\Hn+1(A)

∫
N ′′(F )\N ′′(A)

Kf (h, n)θ′′(n)dndh

and

J(f ′) =
∫
N ′×N ′(F )\N ′×N ′(A)

Kf ′(ñ1, ñ2)θ′(n1n
−1
2 )dn1dn2.

Here we kept the notations in the previous sections, the group Hn+1 is
the fixator of en+1 in SO2n+1(F ); it is isomorphic to SO2n; the group N ′′
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consists of elements of the form

c(X) =

 1 X −〈X,X〉/2
I2n−1 X ′

1


where X ∈ F 2n−1. Let e′i be the standard basis of F 2n−1; let θ′′(c(X)) =
ψ(〈X, e′n〉). For a vector X, we will let Xi be the i-th coordinate of X. Thus
〈X, e′n〉 = Xn.

Observe that when n = 1, our trace formula is just the relative trace
formula proved in [J]. From the trace formula, we expect to get a lifting
from the cuspidal representations of S̃L2 to the automorphic representation
of SO2n+1 with a nonvanishing SO2n-period and a degenerate Whittaker
model with respect to θ′′−1 on N ′′.

The purpose of this section is to unwind the integrals I(f) and J(f ′) as
in Section 3, and prove the fundamental lemma for the trace formulas. The
proof uses the formula (1) and the formulas of the Weil representation.

5.1. Local orbital integrals.
We prove a similar result as in Proposition 1.
Given f ∈ C∞

c (SO2n+1(A)), there is a function φf ∈ S(A2n+1) satisfying:

ωψ−1(g, 1)φf (en+1) =
∫
Hn+1(A)

f(h−1g)dh.

Here we are using the polarization of first type, (see §4). Thus I(f) equals:∑
γ∈Hn+1(F )\SO2n+1(F )

∫
Hn+1(A)

∫
A2n−1/F 2n−1

f(h−1γc(X))ψ(Xn)dXdh

=
∑

γ∈Hn+1(F )\SO2n+1(F )

∫
A2n−1/F 2n−1

ωψ−1(γc(X), 1)φf (en+1)ψ(Xn)dX

=
∑

〈Y,Y 〉=1,Y ∈F 2n+1

∫
A2n−1/F 2n−1

φf (c(X)−1Y )ψ(Xn)dX.

In the last step, we applied the Witts theorem and the formula for Weil
representation. Separate the above sum into two parts, according to whether
Y2n+1 equals 0 or not. If Y is such that Y2n+1 = 0 and there is an i 6= n+1, 1
with Yi 6= 0, then there exists X0 with ψ(X0

n) 6= 1 such that c(X0)−1Y = Y .
For such a Y , the integration over X then gives value 0. Thus we can write
the above sum as I+(f) + I−(f) + I ′(f), where I ′(f) is the above sum with
condition Y2n+1 6= 0 and

I±(f) =
∑
y∈F

∫
A2n−1/F 2n−1

φf (C(X)−1Y ±(y))ψ(Xn)dX



342 ZHENGYU MAO AND STEPHEN RALLIS

where Y ±(y) is the vector with Y ±(y)n+1 = ±1, Y ±(y)1 = ±y and Y ±(y)i =
0 for other i’s. Assuming the measure is so chosen that the volume of A/F
is 1. The integral I±(f) unwinds into∫

Xn∈A
φf (Y ±(Xn))ψ(Xn)dXn.

Meanwhile the integral I ′(f) equals∑
Y2n+1∈F×,〈Y,Y 〉=1

∫
X∈A2n−1/F 2n−1

φf

· (Y ′
1 , Y2 − Y2n+1X2n−1, . . . , Y2n − Y2n+1X1, Y2n+1)ψ(Xn)dX

where Y ′
1 is the only number which gives the vector length 1. Make changes

of variables Xi → −Y −1
2n+1(Xi + Y2n+1−i), the integral unwinds into:∑

Y2n+1∈F×

∫
X∈A2n−1

φf

·
(

1− 〈X,X〉
2Y2n+1

, X2n−1, . . . , X1, Y2n+1

)
ψ(−Xn/Y2n+1)dXn.

From the above discussion, we get:

Proposition 2. If f = ⊗fv, then there exists φf = ⊗φf,v, so that

I(f) =
∑
a∈F×

∏
v

Iv(av, fv) +
∏
v

I+
v (fv) +

∏
v

I−v (fv)(17)

where

I±v (fv) =
∫
Fv

φf,v(Y ±(x))ψ(x)dx

Iv(a, fv) =
∫
F 2n−1
v

φf,v

(
1− 〈X,X〉

2a
,X, a

)
ψ(−Xn/a)dX.

The unwinding for J(f ′) is standard; we state the result here, (see [J]).

Proposition 3. If f ′ = ⊗f ′v, then

J(f ′) =
∑
a∈F×

∏
Jv(av, f ′) +

∏
J+
v (f ′) +

∏
J−v (f ′)(18)

where

J±v (f ′v) =
∫
Fv

f ′v((±v(x), 1))ψ(−x/2)dx

Jv(a, f ′v) =
∫
F 2
v

f ′(v(x) · w∨ ·m(a)∨ · v(y))ψ(−(x+ y)/2)dxdy.
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Here

v(x) =
([

1 x
1

]
, 1

)
, w =

([
1

−1

]
, 1

)
and m(a) =

([
a

a−1

]
, 1

)
.

5.2. The fundamental lemma.
Let v be a finite place where ψ has conductor O and the residue char-

acteristic is odd. We study the orbital integrals over the field Fv. We will
drop the references for v in the notations.

Let f and f ′ be Hecke functions as in Section 4. The concept of match-
ing functions is also defined in the current situation. For matching Hecke
functions, the identity (1) still holds. Also (13) holds. We prove:

Theorem 3. If f and f ′ are matching Hecke functions, then I±(f) =
J±(f ′), and I(a, f) = |a|n+1/2γ(a, ψ−1)J(a, f ′), a ∈ F×.

This theorem is the fundamental lemma. The factor |a|n+1/2γ(a, ψ−1) is
called the transfer factor. The Weil constant γ(a, ψ) is defined by:∫

Φ̂(x)ψ(ax2/2)dx = |a|−1/2γ(a, ψ)
∫

Φ(x)ψ(−a−1x2/2)dx(19)

where Φ̂ is the Fourier transform of Φ

Φ̂(x) =
∫

Φ(y)ψ(xy)dy.

In the n = 1 case, the theorem is proved in [J] using relation between relative
Kloosterman sum and Salié sum. The n = 2 case was proved by Flicker-
Mars [Fl-Ma] (for the unit Hecke functions f0 and f ′0) and Zinoviev [Z] (for
general Hecke functions). Our method of proof is different from theirs, and
gives a considerably shorter proof for the general case. We note also that
our transfer factor is different from the one in [J], that is because we define
our local orbital integrals differently.

The Theorem follows from a couple of Lemmas.

Lemma 3. Let f be a Hecke function of SO2n+1(F ) and φ0 be the charac-
teristic function of O2n+1, then

ωψ−1(g, 1)ωψ−1(f)φ0(en+1) =
∫
Hn+1(F )

f(h−1g)dh.

Proof. Similar to the argument in Theorem 1, we only need to show the
above identity for f = f0. Let K = SO2n+1(O). Then the identity is
equivalent to the following: For g ∈ SO2n+1(F ), gen+1 ∈ O2n+1 if and only if
g ∈ KHn+1. Observe that any vector X = gen+1 satisfies 〈X,X〉 = 1. Thus
K acts transitively on the intersection of O2n+1 and the SO2n+1(F ) orbit
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of en+1. Under the assumption of 1), there is a k ∈ K with gen+1 = ken+1.
Thus k−1g ∈ Hn+1 and g ∈ KHn+1. �

From the Lemma, we can let φf in the definition of I(f) and I(a, f) to
be ωψ−1(f)φ0.

Lemma 4. If f ′ is a Hecke function of S̃L2(F ), then

∫
F
ωψ−1(1, g)ωψ−1(f ′)φ0(Y +(x))ψ(x)dx =

∫
F
f ′(v(x) · g∨)ψ(−x/2)dx.

(20)

Proof. As in the argument of Theorem 2, we only need to show the identity
for f ′0. Denote by F1(g) and F2(g) the LHS and RHS of the equation (20)
when f ′ = f ′0. Observe that both F1(g) and F2(g) are genuine functions on
S̃L2 and satisfy:

Fi(v(s)gk) = ψ(−s/2)Fi(g), s ∈ F, k ∈ SL2(O).

Thus we only need to show F1(m(a)) = F2(m(a)). It is clear that F2(m(a)) =
1 when a ∈ O× and 0 otherwise. While

F1(m(a)) =
∫
a,ax∈O

ψ(x)dx

which clearly equals 1 when a ∈ O× and 0 otherwise. We have shown the
identity for g = m(a) and the Lemma. �

Apply Lemma 4 to the case g = (±I2, 1). Then g∨ = g, we see

J±(f ′) =
∫
F
ωψ−1(f ′)φ0(Y ±(x))ψ(x)dx.

The fact I±(f) = J±(f ′) follows immediately from Lemma 3 and the identity
(13).

Fix now a ∈ F×. From the Lemma and the fact v(−y)∨ = v(y),

J(a, f ′) =
∫
F
F1(w ·m(a) · v(−y))ψ(−y/2)dy.

Recall the action of w on the space of Weil representation is essentially the
Fourier transform. Using the formulas in [F], we see F1(w ·m(a) · v(−y))
equals: ∫

F
ωψ−1(1, w ·m(a) · v(−y))ωψ−1(f ′)φ0(Y +(x))ψ(x)dx

which is γ(a, ψ−1)−1|a|n+1/2 times∫
F

∫
F 2n+1

ωψ−1(f ′)φ0(aY )ψ−1(〈Y, Y +(x)〉)ψ(x)ψ(〈aY, aY 〉y/2)dxdY.(21)
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Note that 〈Y, Y +(x)〉 = Yn+1 + xY2n+1. The integral over Y2n+1 and x has
the form ∫

F

∫
F
φ(Y2n+1)ψ(x− xY2n+1 + a2yY2n+1Y1)dxdY2n+1.

Using the fact that ˆ̂
φ(x) = φ(−x), the above integral equals φ(1)ψ(a2yY1).

Integrate over x and Y2n+1; use X to denote the vector (Y2, . . . , Y2n), (21)
becomes:∫

X∈F 2n−1,Y1∈F
ωψ−1(f ′)

· φ0(aY1, aX, a)ψ(−Xn)ψ(a2yY1 + 〈aX, aX〉y/2)dY1dX.

Thus J(a, f ′) equals γ(a, ψ−1)−1|a|n+1/2 times:

(22)
∫
X∈F 2n−1,Y1,y∈F

ωψ−1(f ′)

· φ0(aY1, aX, a)ψ(−Xn)ψ(a2yY1 + 〈aX, aX〉y/2− y/2)dY1dXdy.

Use the Fourier inversion formula ˆ̂
φ(x) = φ(−x) to integrate over y and Y1,

J(a, f ′) equals:

γ(a, ψ−1)−1|a|n−3/2

∫
X∈F 2n−1

ωψ−1(f ′)φ0

(
1− 〈aX, aX〉

2a
, aX, a

)
ψ(−Xn)dX.

Make a change of variable X → a−1X, we get:

γ(a, ψ−1)−1|a|−n−1/2

∫
X∈F 2n−1

ωψ−1(f ′)φ0

(
1− 〈X,X〉

2a
,X, a

)
ψ(−Xn/a)dX.

(23)

The identity in Theorem 3 follows immediately from the above expression,
Lemma 3 and the identity (13). �
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