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We classify the strongly free actions of discrete amen-
able groups on strongly amenable subfactors of type III0.
Winsløw’s fundamental homomorphism is a complete invari-
ant.

1. Introduction.

In the theory of operator algebras, classification of group actions on approx-
imately finite dimensional (AFD) factors has been done since Connes’s work
[2].

In subfactor theory, various results on classification of group actions have
been obtained. The most powerful results have been obtained by Popa in
[16], who classified the strongly outer actions of discrete amenable groups on
strongly amenable subfactors of type II1 up to cocycle conjugacy. (Strong
outerness for automorphisms are introduced by Choda-Kosaki in [1], and
Popa in [16] independently. Popa use the terminology “proper outerness”.)

In our previous work [13], we have classified the strongly free actions
of discrete amenable groups on strongly amenable subfactors of type IIIλ,
0 < λ < 1. Our method in [13] has been based on [18] and [19]. But in [18]
and [19], Sutherland and Takesaki treated factors of type IIIλ, 0 ≤ λ < 1,
including the case λ = 0. So it is natural to ask if their method works for
the classification of group actions on subfactors of type III0. In this paper,
we classify strongly free actions of discrete amenable groups on strongly
amenable subfactors of type III0. The complete invariant we use is Winsløw’s
fundamental homomorphism, [22, Definition 4.2], which is an analogue of
the Connes-Takesaki module ([5]) in subfactor theory. It is well known
that in the single factor case, centrally free actions of discrete amenable
groups on injective factors are completely classified by their Connes-Takesaki
modules, [2], [14], [18], [19], [10]. And in subfactor theory, strong freeness
is an analogy of centrally freeness, so the results in [13] and this paper
are “subfactor-version” of these results. (In the case of strongly amenable
subfactors of type II and type IIIλ, 0 < λ < 1, strong freeness is equivalent
to central freeness. See [16], [21].)
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To classify actions on subfactors of type III0, we must consider actions of
groupoids on subfactors of type II∞. Groupoid actions on semifinite factors
are studied in [9] first, and developed in [18] and [19]. A basic idea to
classify groupoid actions is the followings. First we split a groupoid into
an isotropy part and a principal part, second apply the classification results
of group actions to the isotropy part, and the cohomology lemma to the
principal part, and finally combine them. Our idea to classify groupoid
actions on strongly amenable subfactor of type II∞ owes much to this idea.

Note that in the type IIIλ case, 0 < λ < 1, we need only classification
results on group actions and do not have to use the cohomology lemma
because the form of the flow of weights of type IIIλ factor is simple and the
principal parts become trivial.

This paper is organized as follows.
In Section 2, we collect facts on group actions and strongly amenable

subfactor of type III0 which we need in this paper.
In Section 3, we explain how to reduce the classification of group actions

to that of groupoid actions. We also discuss relation between invariants of
group actions and those of groupoid actions.

In Section 4, we classify groupoid actions on strongly amenable subfactor
of II∞. We split the groupoid into the isotropy part and the principal
part. To classify the isotropy part, we use Popa’s classification result, [16,
Theorem 3.1] and to classify the principal part, we use the cohomology
lemma, [17, Theorem 5.5]. Then we get outer conjugacy, but it may happen
that the actions are not cocycle conjugate. To obtain cocycle conjugacy, we
use model actions constructed by Sutherland and Takesaki in [18] and we
complete the classification.

Acknowledgement. The author is grateful to Prof. M. Izumi and Prof.
Y. Kawahigashi for helpful advice and constant encouragement. He also
thanks Professor C. Winsløw for pointing out his misunderstanding in The-
orem 2.7

2. Preliminaries and notations.

In this section, we recall several facts about group actions on subfactors and
strongly amenable subfactors of type III0.

Definition 2.1 ([1, Definition 1], [16, Definition 1.5.1]). Let N ⊂ M be a
subfactor with finite index and N ⊂ M ⊂ M1 ⊂ · · · be the Jones tower.
For α ∈ Aut (M,N), α is said to be strongly outer if there are no nonzero
a ∈ Mk such that α(x)a = ax holds for every x ∈ M . An action α of G is
said to be strongly outer if αg is strongly outer for g ∈ G \ {e}.

Definition 2.2 ([12, Section 5]). Set Φ(α) := {α|M ′∩Mk
}k. We call Φ(α)

the Loi invariant.
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In the case of subfactors in type II, the following classification results are
obtained by Popa and Winsløw.

Theorem 2.3 ([16, Theorem 2.1, Theorem 3.1], [21, Theorem 4.3]). Let
N ⊂ M be a strongly amenable subfactor of type II1 or II∞. Let α and
β be actions of a discrete amenable group G. Then α and β are cocycle
conjugate if and only if Φ(α) = Φ(β) and mod (α) = mod (β). (In the type
II1 case, the last condition is not necessary.)

Let ϕ be a faithful normal state of N and E the minimal conditional
expectation from M onto N . Set (Ñ ⊂ M̃) := (N oσϕ R ⊂ M oσϕ◦E R).
Let α ∈ Aut (M,N) and α̃ the canonical extension of α to Ñ ⊂ M̃ . (See
[7].)

Definition 2.4 ([21, Definition 3.2], [22, Definition 4.2]). Let N ⊂ M be
a subfactor type III with finite index and Ñ ⊂ M̃ ⊂ M̃1 ⊂ · · · be the Jones
tower for Ñ ⊂ M̃ . For α ∈ Aut (M,N), α is said to be strongly free if there
are no nonzero a ∈ M̃k such that α̃(x)a = ax holds for every x ∈ M̃ . An
action α of G is said to be strongly free if αg is strongly free for g ∈ G \ {e}.
Definition 2.5 ([22, Definition 4.2]). Set Υ(α) := {α̃|M̃ ′∩M̃k

}k. We call
Υ(α) the fundamental homomorphism.

In the case of subfactors of type II and type IIIλ, strong amenability has
been introduced by Popa, [15] and [16]. Based on strong amenability of
subfactor of type II, Winsløw introduced strong amenability for subfactors
of type III0.

Definition 2.6 ([25, Definition 3.5]). Let N ⊂ M be a subfactor of type
III0 with the common flow of weights and Ñ ⊂ M̃ := Noσϕ R ⊂Moσϕ◦E R.
N ⊂ M is said to be strongly amenable if Z(Ñ) = Z(M̃) and (Ñ ⊂ M̃) ∼=
Z(Ñ) ⊗ (P ⊂ Q), where P ⊂ Q is a strongly amenable subfactor of type
II∞.

On the classification of subfactors of type III0, the following result has
been obtained by Winsløw.

Theorem 2.7 ([25, Theorem 4.2]). Let N ⊂ M be a strongly amenable
subfactor of type III0. Then N ⊂ M is classified by its relative flow of
weights,

FM⊃N :=
{
M̃ ′

1 ∩ M̃k ⊂ M̃ ′ ∩ M̃k, θt|M̃ ′∩M̃k

}
k
.

3. Reduction to groupoid actions.

In the rest of this paper N ⊂ M is always a strongly amenable subfactor
of type III0 and G denotes a discrete amenable group. We also use the
notations in the previous section.

Our main theorem of this paper is the following.
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Theorem 3.1. Let α and β be strongly free actions of G on N ⊂M . Then
α and β are cocycle conjugate if and only if there exists σ ∈ Aut (FM⊃N )
such that

Υ(α) = σ ◦Υ(β) ◦ σ−1.

We give the proof of above theorem in this section and next section.
In this section, we reduce the classification of actions of G to that of

actions of groupoids.
First we consider only one action α. For the same reason as at the begin-

ning of Section 3 in [13], we only have to classify the actions of G̃ := G×R
on Ñ ⊂ M̃ defined by (g, t) → α̃θt. We also denote this action of G̃ by α̃.

Let (X,µ,Ft) be the flow of weight of M . Then L∞(X,µ) = Z(Ñ) =
Z(M̃). Then by assumption,(

Ñ ⊂ M̃ ⊂ M̃1 ⊂ · · ·
)
∼= L∞(X,µ)⊗ (P ⊂ Q ⊂ Q1 ⊂ · · · )

holds.
Let G̃ n X be the auxiliary groupoid. Then the source map s and the

range map r from G̃nX to X are the following:

s(g, x) := x, r(g, x) := gx, (g, x) ∈ G̃nX.

We consider the groupoid action of G̃ n X on P ⊂ Q by the following
equation:

α̃g(a) =
∫ ⊕

X
α̃(g,g−1x)(a(g

−1x))dµ(x).

We express (X,µ,Ft) as the flow built under a ceiling function on the
base transformation T on the measure space (Y, ν). So X is of the form
{(y, s) ∈ Y × R|0 ≤ s ≤ f(y)}. We define maps π : X → Y and h :→ R
by the equality x = (π(x), h(x)). Set G := {γ ∈ G̃ n X|s(γ), r(γ) ∈ Y }.
The groupoid G is an orbitally discrete groupoid. (See [6].) For x ∈ X, put
Hx := {g ∈ G̃|gx = x}. Then Hx is a discrete amenable group. Since R is
in the center of G̃, Hx = Htx holds for t ∈ R. Since R acts on X ergodicaly,
Hx = H for a.e x. Then we have a semidirect product of G as G = H o K,
where K is a principal groupoid derived from G. In this case, K is an AF
ergodic groupoid by [4], [26].

Here as in [13, Proposition 3.2], the following holds.

Proposition 3.2. If α is a strongly free action on N ⊂ M , the action of
Hx on P ⊂ Q is strongly outer for a.e x ∈ Y .

Proof. Assume that there exists Z ⊂ Y such that ν(Z) > 0 and actions of
Hz are not strongly outer for any z ∈ Z. Then for every z ∈ Z there exists
k ∈ N, 0 6= a(z) ∈ Pk and e 6= h ∈ Hz such that α̃h(x)a(z) = a(z)x holds
for every x ∈ P . It is possible that k and g depend on z. But since Hz is
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countable, we may assume k and g are independent from z ∈ Z. Note that
since τQα̃h = τ , g is in G. Set

ã :=
∫ ⊕

X
α̃(h(x),π(x))(a(π(x)))dµ(x).

Then an easy computation shows that this element breaks strong freeness
and α is not strongly free. �

By the next lemma, we know the relation between cocycle conjugacy of
actions of G̃nX and that of G.

Lemma 3.3. Let α̃ and β̃ be actions of G̃ nX on P ⊂ Q. If α̃ and β̃ are
cocycle conjugate when we restrict actions on G, then actions of G̃nX are
also cocycle conjugate.

Proof. The proof of [19, Theorem 4.2] works in the same way. But we
present the proof here for the reader’s convenience.

First we define a map from G̃nX to G as follows

p(g, x) := (h(gx)−1gh(x), π(x)).

By assumption, there exist automorphisms {θy}y∈Y ⊂ Aut (Q,P ) and a
cocycle vγ ∈ Z1

β̃
(G, U(P )) such that

θr(γ) ◦ α̃γ ◦ θ−1
s(γ) = Ad vγ β̃γ , γ ∈ G.

Define θ′x, x ∈ X and v′(g,t), (g, t) ∈ G̃nX as follows:

θx := β̃(h(x),π(x)) ◦ θπ(x) ◦ α̃−1
(h(x),π(x)),

v(g,x) := β̃(h(gx),π(gx))(vp(g,x)).

Note that (g, x) = (h(gx), π(gx))p(g, x)(h(x), π(x))−1 holds. Then using
the above equations, we can show that

θ′gx ◦ α̃(g,x) ◦ θ
′−1
x = Ad v′(g,x) β̃(g,x)

holds and this shows that actions of G̃nX are cocycle conjugate. �

In the end of this section, we discuss invariants of actions of G on P ⊂ Q.

Lemma 3.4. Let α and β be actions of G on N ⊂ M such that Υ(α) =
Υ(β). Let α̃ and β̃ be actions of G induced from α and β respectively by the
above procedure. Then we have Φ(α̃) = Φ(β̃) and mod (α̃) = mod (β̃).

Proof. First we compare mod . Let τ be the trace of M̃ such that τθt = e−tτ ,
where θt is the dual action. For (g, t) ∈ G̃, set ψ(g, t) := e−t. Then τα̃h =
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ψ(h) = τ β̃h holds for h ∈ G̃. Express τ by direct integral, τ =
∫ ⊕
X τxdµ(x).

Then

τα̃h(a) =
∫ ⊕

X
τhx(α̃(h,x)(a(x)))dµ(gx)

=
∫ ⊕

X
τhx(α̃(h,x)(a(x)))

dµ ◦ g
dµ

(x)dµ(x)

holds and we get an equality dµ ◦ g/dµ(x)τhx α̃(h,x) = e−tτx. A similar
equality holds for β̃. From these equations, we can easily get mod (α̃(h,x)) =
mod (β̃(h,x)).

Next we compare Φ. By assumption, α̃h|M̃ ′∩M̃k
= β̃h|M̃ ′∩M̃k

holds for
every k. Note that an action α̃ of G̃nX can be extended to Qk such that
the equation

α̃h(a) =
∫ ⊕

X
α̃(h,h−1x)(a(h

−1x))dµ(x)

holds for every a ∈ M̃k. (See the proof of [25, Lemma 4.3].) Then we get
an equality Φ(α̃) = Φ(β̃). �

4. Classification results.

Let α and β be strongly free actions of G on N ⊂ M . By the results of
previous section, we get two actions α̃ and β̃ of a groupoid G such that
α̃h and β̃h act strongly freely on P ⊂ Q and satisfy Φ(α̃) = Φ(β̃) and
mod (α̃) = mod (β̃).

In this section, we classify actions of G on P ⊂ Q and complete the
classification of actions of G on N ⊂M .

Theorem 4.1. Two actions α̃ and β̃ of G are cocycle conjugate, i.e., there
exists {θy}y∈Y ⊂ Aut (Q,P ) and a cocycle uγ ∈ Z1

β̃
(G, U(P )) such that

θr(γ) ◦ α̃γ ◦ θ−1
s(γ) = Aduγ β̃γ , γ ∈ G.

In the following, we give a proof of Theorem 4.1.
We express G as the semidirect product H o K. We use Theorem 2.3 to

classify the H part and the cohomology lemma to classify the K part.
First we compare the H part. By the above assumption, we have Φ(α̃h) =

Φ(β̃h) and mod (α̃h) = mod (β̃h) for h ∈ Hx. So by Theorem 2.3, there exist
automorphisms {θx}x∈Y and a cocycle uh ∈ Z1

β̃
(Hx, U(P )) such that

θx ◦ α̃ ◦ θ−1
x = Aduh β̃h.

So we replace α̃γ by θr(γ) ◦ α̃ ◦ θ−1
s(γ), we may assume α̃h = Aduh β̃h for

h ∈ Hx.
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Next we compare the K part by applying the cohomology lemma, [17,
Theorem 5.5]. To use the cohomology lemma, we need several preparations.

Define two groups N0
x and N1

x as follows:

N1
x :=

{
(θ, vh) | θ ∈ Aut (Q,P ), τQθ = τQ, Φ(θ) = id,

vh ∈ Z1
β̃
(Hx, U(P )), θ ◦ β̃h ◦ θ−1 = Ad vh β̃h, for h ∈ Hx

}
,

N0
x :=

{
(Adu, uβ̃h(u∗)) |u ∈ U(P ), h ∈ Hx

}
.

Then obviously N0
x ⊂ N1

x .

Lemma 4.2. N0
x is dense in N1

x .

Proof. Take (θ, vh) ∈ N1
x . Since Φ(θ) = id and τQθ = τ , θ is in Int(Q,P ).

(See [22].) So there exist {un} ∈ U(P ) such that limn→∞Adun = θ. By
assumption, θ ◦ β̃h ◦ θ−1 = Ad vh β̃h holds, so limn→∞Adun β̃h(u∗n)β̃h =
Ad vh β̃h holds and {v∗hunβ̃h(u∗n)}n is a central sequence.

Fix a free ultrafilter ω over N. Let Cω(Q,P ) be the central sequence
algebra for P ⊂ Q and β̃(ω) the induced action on Cω(Q,P ) from β̃. Then
strong outerness of the action β̃ on P ⊂ Q means that β̃(ω) acts freely on
Cω(Q,P ). (See [21, Proposition 3.4] and [2, Proposition 2.1.2].)

Here we need the next proposition, which is a subfactor version of the
1-cohomology vanishing theorem of [14, Proposition 7.2].

Proposition 4.3. Every 1-cocycle wh ∈ Z1
β̃(ω)(Hx, U(Cω(Q,P ))) is a co-

boundary, i.e., there exists a unitary w′ in Cω(Q,P ) such that w′∗β̃(ω)
h (w′) =

wh.

The proof in [14] works in the same way. When the group is Z, the above
result has been obtained by Loi in [12, Proposition 4.2]. We can easily verify
that {v∗hunβ̃h(u∗n)}n is a β̃ω cocycle. So by Proposition 4.3, we can find a
unitary w = {wn}n ∈ Cω(Q,P ) such that {w∗nβ̃h(wn)}n = {v∗hunβ̃h(u∗n)}n in
Cω(Q,P ). Set yn := wnun. Then limn→ω Ad yn = θ holds, and

lim
n→ω

ynβ̃h(y∗n) = lim
n→ω

wnunβ̃h(u∗nw
∗
n)

= lim
n→ω

vhv
∗
hwnunβ̃h(u∗nw

∗
n)

= lim
n→ω

vhwnv
∗
hunβ̃h(u∗n)β̃h(w∗n)

= lim
m→ω

vhwnw
∗
nβ̃h(wn)β̃h(w∗n)

= vh.

So by choosing a subsequence, we get unitaries {yn}n such that

lim
n→∞

(Ad yn, ynβ̃h(y∗n)) = (θ, vh).
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This shows that N0
x is dense in N1

x and the proof of Lemma 4.2 is complete.
�

For k = (y, x) ∈ K, put γk := α̃kβ̃
−1
k . Then it is clear that Φ(γk) = id

and mod (γk) = 1. Moreover

γkβ̃hγ
−1
k = α̃kβ̃k−1hkα̃

−1
k

= α̃kAdu∗k−1hk α̃k−1hkα̃
−1
k

= Ad α̃k(u∗k−1hk) α̃h

= Ad α̃k(u∗k−1hk)uh β̃h

holds and α̃k(u∗k−1hk)uh is a β̃ cocycle. So γ̃k := (γk, α̃k(u∗k−1hkuh)) is an
element of N1

x .
Next, for k = (y, x) ∈ K, we define a Borel map N1

k from N1
x to N1

y as
follows:

N1
k (θ, vh) := (β̃k ◦ θ ◦ β̃−1

k , β̃(vk−1hk)).

Then (N1
x , N

1
k ) is a Borel functor in the sense of [17, Definition 4.1] and

γ̃ is a N1
k cocycle, i.e., γ̃k1k2 = γ̃k1N

1
k1

(γ̃k2). Here we apply the cohomology
lemma, [17, Theorem 5.5], for γ̃ and id .

Then we get Borel maps θ : Y → Aut (Q,P ) and a : K → U(P ) and a
cocycle vh ∈ Z1

β̃
(Hx, U(P )) which satisfy equalities

θy ◦ γk ◦ θ−1
x = Ad ak, k = (y, x) ∈ K,

θx ◦ β̃h ◦ θ−1
x = Ad vh β̃h.

Since K is AF, we may consider that ak is a cocycle for β̃k. By definition
of γk, we obtain the equality

θy ◦ α̃k ◦ θ−1
x = Ad ak β̃k.

Then for h ∈ Hy and k = (y, x) ∈ K

θy ◦ α̃hk ◦ θ−1
x = θy ◦ α̃h ◦ θ−1

y ◦ θy ◦ α̃k ◦ θ−1
x

= θy ◦Aduh ◦ β̃h ◦ θ−1
y ◦Ad ak ◦ β̃k

= Ad θy(uh)vh ◦ β̃h ◦Ad ak ◦ β̃k

= Ad θy(uh)vhβ̃h(ak) β̃hk.

Set ah := θx(uh)vh for h ∈ Hx and ahk := ahβ̃h(ak), we get

θy ◦ α̃hk ◦ θx = Ad ahk β̃hk.

Here ah and ak are cocycles for β̃h and β̃k, but ahk is not necessary a
cocycle for β̃hk. But by comparing α̃h1k1α̃h2k2 with α̃h1k1h2k2 , we get the
following equality:

ah1k1 β̃h1k1(ah2k2) = ϕ(k1, h2)ah1k1h2k2 ,
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where ϕ(k1, h2) is the element of Z1(K, Ĥ) and does not depend on h1 and
k2, where Ĥ is the set of 1 dimensional representations of H.

To remove ϕ, we use the model actions constructed by Sutherland and
Takesaki.

Theorem 4.4 ([18, Theorem 3.1]). Let R0,1 be the AFD factor of type II∞.
Then there exists an action m of G satisfy the following conditions.

(1) For every y ∈ Y , Hy acts outer on R0,1.
(2) mod (m) = mod (α̃).
(3) For every ϕ ∈ Z1(K, Ĥ), there exist {θy}y∈Y ⊂ Aut (R0,1) and uhk ∈

U(R0,1) such that:
(a) uh and uk are cocycle for Hy and K,
(b) θy ◦mhk ◦ θx = Aduhk mhk,

(c) uh1k1mh1k1(uh2k2) = ϕ(k1, h2)uh1k1h2k1 .

We define the model action m̄ of G on (P ⊂ Q) ∼= (∨k(P ′k ∩P ) ⊂ ∨k(P ′k ∩
Q))⊗R0,1 as follows:

m̄γ := α̃st
γ ⊗mγ .

We complete the proof of Theorem 4.1 by comparing α̃ with the model
action m̄.

The action m̄ has the same invariant of α̃ and m̄h, h ∈ Hx, acts strongly
outer on P ⊂ Q by the construction of m̄. Then the above discussion is
valid for α̃ and m̄, so we may assume the following equalities:

α̃hk = Ad ahk ◦ m̄hk,

ah1k1m̄h1k1(ah2k2) = ϕ(k1, h2)ah1k1h2k2

for some ϕ. Take {θy}y∈Y ⊂ Aut (R0,1) and uhk satisfying the conditions of
Theorem 4.4.

Then

(id ⊗ θr(k)) ◦ α̃hk ◦ (id ⊗ θs(k))
−1

= (id ⊗ θr(k)) ◦Ad ahk ◦ m̄hk ◦ (id ⊗ θs(k))
−1

= Ad (id ⊗ θr(k))(ahk)α̃st
hk ⊗ (θr(k) ◦mhk ◦ θ−1

s(k))

= Ad (id ⊗ θr(k))(ahk)α̃st
hk ⊗ (Aduhkmhk)

= Ad (id ⊗ θr(k))(ahk)(1⊗ uhk)m̄hk
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and

(id ⊗ θr(k1))(ah1k1)(1⊗ uh1k1)m̄h1k1((id ⊗ θr(k2))(ah2k2)(1⊗ uhk))

= (id ⊗ θr(k1))(ah1k1) (α̃st
h1k1

⊗ θr(k1)mh1k1)(ah2k2) (1⊗ uh1k1)

· (1⊗mh1k1(uh2k2))

= (id ⊗ θr(k1))(ah1k1m̄
st
h1k1

(ah2k2)) (1⊗ uh1k1mh1k1(uh2k2))

= (id ⊗ θr(k1))(ϕ(k1, h2)ah1k1h2k2) (1⊗ ϕ(k1, h2)uh1k1h2k2)

= (id ⊗ θr(k1))(ah1k1h2k2)uh1k1h2k2

hold, so (id ⊗ θr(k))(ahk)(1 ⊗ uhk) is a cocycle for m̄hk and finally we can
conclude two actions α̃ and m̄ are cocycle conjugate and proof of Theorem
4.1 is complete.

Proof of Theorem 3.1. Let α and β be strongly free actions of G on N ⊂M
such that Υ(α) = Υ(β). Then by the results of Section 3 and Section 4, two
actions α̃ and β̃ of G on P ⊂ Q are cocycle conjugate. Then by Lemma 3.3,
two actions α̃ and β̃ are cocycle conjugate, i.e., there exist automorphisms
{θx}x∈X ⊂ Aut (Q,P ) and a cocycle uγ ∈ Zβ̃(G̃nX,U(P )) such that

θr(γ) ◦ α̃γ ◦ θ−1
s(γ) = Aduγ β̃γ .

We put θ̃ :=
∫ ⊕
X θx dµ(x) and ug :=

∫ ⊕
X
u(g,x) dµ(x), then we get

θ̃ ◦ α̃g ◦ θ̃−1 = Adug β̃g

for g ∈ G̃, so actions α̃ and β̃ of G̃ = G × R are cocycle conjugate and
we conclude α and β are cocycle conjugate as explained at the beginning of
Section 3. �
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