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We introduce a new geometric invariant Λ to measure the
convexity of the boundary of a riemannian manifold with non-
negative Ricci curvature in the interior. Based on a theorem
of Perelman, we are able to show that this new invariant has
topological implications. More specifically, we show that if
Λ is close to 1 and the sectional curvature is positive on the
boundary, then the manifold is contractible.

1. Introduction.

Due to a theorem of Gromov [2], without any control on the boundary, every
compact manifold with non-empty boundary admits a riemannian metric of
positive sectional curvature. However, there are topological obstructions if
one further imposes convexity restrictions on the boundary. For example,
it is a result of Gromoll [1] that a compact riemannian manifold of positive
sectional curvature with non-empty convex boundary is diffeomorphic to the
standard disc. In this paper, we study the case of positive Ricci curvature.

Throughout this paper, Mn denotes an n-dimensional compact connected
riemannian manifold with non-empty boundary ∂M . Let S

∂M
: X 7→ ∇X η

be the second fundamental form of ∂M with respect to the unit outward
normal η. Furthermore, let λ be the infimum of eigenvalues of S

∂M
taken

over all points on ∂M . Then ∂M is convex if and only if λ > 0. In dimension
3, similar to the case of positive sectional curvature, a Ricci-positively curved
manifold which further satisfies the condition λ > 0 has to be diffeomorphic
to the 3-disc. It is not difficult to show this using Hamilton’s theorem on
closed 3-manifolds [3]. We shall prove it in the Appendix. In the case of
dimension 4 and above, however, there are manifolds with positive Ricci
curvature and convex boundary that are not even contractiable [9, 10].
Thus, a stronger convexity condition in higher dimensional cases is necessary.

We define a new convexity invariant Λ by

Λ(Mn) = λ

(
vol (∂M)

ωn−1

) 1
n−1

,

where ωn−1 is the volume of the (n − 1)-dimensional unit sphere Sn−1(1).
Note that Λ is scaling-invariant. The magnitude of Λ, for example, Λ = 1
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for any geodesic ball in the euclidean space, and Λ = cos r for a geodesic
ball of radius r in the unit sphere, does describe different degrees of con-
vexity. Based on a theorem of Perelman [5], we are able to show that this
new invariant has topological implications. Let KM and RicM denote the
sectional curvature and Ricci curvature of Mn respectively. Our main result
is the following.

Theorem 1. For any integer n ≥ 4, there exists 1 > δn > 0 with the
following property. If Mn satisfies:

(i) RicM > 0;
(ii) Λ(Mn) > 1− δn;
(iii) KM ≥ 0 at ∂M,

then Mn is contractible.

Since cos r → 1 as r → 0, Theorem 1 implies that one cannot replace
a geodesic ball in the standard sphere by anything non-contractible, while
keeping the Ricci curvature positive and the metric on the rest of the sphere
unchanged, if the ball is too small. Consequently, one cannot construct pos-
itively Ricci-curved manifolds with arbitrary topological complexity simply
by this kind of surgery on round spheres.

This paper represents part of author’s Ph.D. thesis. I would like to take
this opportunity to thank my advisor, Professor Ji-Ping Sha, for his constant
inspiration and guidance. The paper was completed while the author was
visiting Oberlin College.

2. Proof of Theorem 1.

We now prove a slightly stronger version of Theorem 1 (condition (ii) and
(iii) in Theorem 1 imply (iii) in Theorem 1′).

Theorem 1′. For any integer n ≥ 4, there exists 1 > δn > 0 with the
following property. If Mn satisfies:

(i) RicM > 0;
(ii) Λ(Mn) > 1− δn;

(iii)
(

Ric
∂M

n− 2

) 1
2

·
(

vol(∂M)
ωn−1

) 1
n−1

> 1− δn, where Ric
∂M

denotes the in-

trinsic Ricci curvature of ∂M ,
then Mn is contractible.

By the Bishop-Gromov volume comparison theorem, the following hy-
potheses:

(I) RicNn ≥ 0, and
(II) vol(Bp(r)) > (1− cn)vol(B0(r)), where 1 > cn > 0 for some p ∈ Nn

and for all r > 0, imply
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(∗) vol(Bq(ρ)) > (1− cn)vol(B0(ρ)) for all q ∈ Nn and for all ρ > 0.
In [5], Perelman shows, using (∗) in an essential way, that for every n ≥ 2,
there exists a constant cn > 0 such that the following true: If Nn is a
complete non-compact riemannian manifold satisfying (I) and (II), then Nn

is contractible. A priori, one does not have estimate like (∗) for manifolds
with boundary. However, as we shall show in the proof of Theorem 1′, under
suitable curvature conditions on Mn, the assumption Λ(Mn) > 1−δn, where
1− δn = (1− cn)

1
n−1 , implies that one can attach an “open end” to Mn such

that the resulting open manifold satisfies (I) and (II).

Proof of Theorem 1′. Let g
∂M

denote the intrinsic metric of ∂M . We shall
construct a riemannian manifold N such that N is diffeomorphic to ∂M ×
[0,∞) with the following properties:

(a) ∂N is isometric to ∂M , let φ be such a fixed isometry;
(b) N has positive Ricci curvature;
(c) S

∂N
(p) + S

∂M
(φ(p)) is positive definite.

Furthermore, N satisfies a volume condition which will be specified later.
We now consider the warped metrics f2(t) g

∂M
+dt2 on ∂M×[0,∞), where

f : [0,∞) → (0,∞) is a smooth function with f(0) = 1. We denote such
a riemannian manifold with respect to the fixed f by Nf . Then, obviously,
∂Nf is isometric to ∂M . Also note that S

∂Nf
= −f ′(0) · I. Moreover, the

Ricci curvature of Nf can be expressed explicitly in terms of Ric
∂M

and f
as follows.

Let p be a point in the interior of Nf , then p = expq(ρηq) for some q on
∂Nf and ρ > 0, where ηq is the unit inward normal of ∂Nf at q. We may
choose an orthonormal basis of Tq∂Nf , denoted by {ei}n−1

i=1 , such that

Ric
∂M

(ei, ej) = 0 , whenever i 6= j.

Let Ei be the parallel extension of ei along the ray γ : t 7→ expq(tηq).
Straightforward computations show that the Ricci tensor of Nf at p can be
expressed as follows:

RicNf
(Xi, Xi) =

1
f2

Ric
∂M

(ei, ei)−
f ′′

f
− (n− 2)

f ′2

f2
, i = 1, . . . , n− 1;

RicNf
(Xn, Xn) = −(n− 1)

f ′′

f
;

RicNf
(Xi, Xj) = 0, whenever i 6= j,

where Xi and Xn denote the vector fields 1
f(t)Ei(t) and ∂

∂t respectively.
Therefore, RicNf

> 0 if f satisfies

f ′′ < 0 and ff ′′ + (n− 2)f ′2 < (n− 2)k,

where k := 1
n−2 infx Ric

∂M
(x, x) over all unit vectors x tangent to ∂M .
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By assumption (ii) and (iii) in Theorem 1′, we can choose positive con-
stants c and α such that

(1− δn)
(

ωn−1

vol(∂M)

) 1
n−1

< c < min{
√

k, λ} and c < α < λ .

We shall construct a function F of t on [0,∞), which satisfies F ′ > c, F > ct,
F ′′ < 0, and FF ′′ + (n− 2)F ′2 = (n− 2)c2 < (n− 2)k. It then follows that
NF satisfies (a), (b) and (c), which then imply that the metric on M ∪NF

can be smoothed out in an ε-neighborhood of ∂M to have positive Ricci
curvature [6], and the metric is obviously complete.

Fix po ∈ M and let d denote the diameter of M . Since we have chosen c

so that cn−1 > (1− δn)n−1
(

ωn−1

vol(∂M)

)
, for sufficiently large r,

vol(Bpo(r)) ≥ vol(∂M)
∫ r−d

ε
Fn−1(t)dt

>
1
n

vol(∂M) · cn−1 ·
(
(r − d)n − εn

)
>

1
n

(1− δn)n−1 · ωn−1 · rn

= (1− δn)n−1 · vol(B0(r)) ,

where B0(r) is the ball of radius r in the euclidean space. Hence, by Perel-
man’s theorem, M∪NF is contractible, which implies that M is contractible.

The function F is constructed as follows. Consider the differential equa-
tion:

yz
dz

dy
+ (n− 2)z2 = (n− 2)c2(1)

z(1) = α.

One has the following unique solution of (1) on [0,∞):

z =
√

c2 + (α2 − c2) y−2(n−2) .

Let F be the unique solution of the following differential equation on [0,∞):

dy

dx
=

√
c2 + (α2 − c2) y−2(n−2)

y(0) = 1.

It is easy to see that F satisfies the above conditions. This completes the
proof. �

Remarks.
1) We do not know whether condition (iii) in Theorem 1 is necessary or

not.
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2) It would be interesting to have a more explicit estimate for δn. Among
all the examples we know of non-contractible manifolds with positive
Ricci curvature, Λ is rather small ( < 1

2).
3) Using Bochner’s formula, one can show that Λ ≤ 1 for every regular

closed geodesic ball in a manifold with non-negative Ricci curvature.
It would be interesting to know if Λ ≤ 1 is generally true for manifolds
with non-empty boundary and non-negative Ricci curvature.

3. Appendix: The Case in Dimension 3.

Let (M, g) be a closed 3-dimensional riemannian manifold. Hamilton proved
in [3] that if RicM > 0, then the metric g can be deformed to a metric with
constant sectional curvature 1. We now prove the following using Hamilton’s
theorem.

Theorem 2. Let M be a compact connected 3-dimensional riemannian
manifold with non-empty boundary ∂M . If M satisfies:

(i) RicM > 0;
(ii) ∂M is convex,

then M is diffeomorphic to the 3-dimensional disc D3.

Proof. Let N be the compact manifold obtained by gluing two copies of M
along their boundaries with the identity map. Since ∂M is convex, S

∂M
+S

∂M

is clearly positive definite. By the same reason as in the proof of Theorem 1′,
the metric near ∂M can be smoothed out so that the resulting new metric
on N has positive Ricci curvature. Then Hamilton’s theorem and the Synge
Theorem imply that N (hence M) is orientable. Moreover, by the Meyers
Theorem, both π1(N) and π1(M) are finite. We shall show that ∂M is
diffeomorphic to the 2-dimensional sphere S2, and N is diffeomorphic to the
3-dimensional sphere S3. It then follows from the Schoenflies-Brown-Mazur
Theorem that M is diffeomorphic to D3.

Since π1(M) is finite, H1(M) is finite. This implies that

H2(M,∂M) ∼= H1(M) ∼= Hom(H1(M),Z) = 0.

Therefore, the homomorphism H1(∂M) −→ H1(M) is injective in the fol-
lowing long exact sequence

· · · −→ H2(M,∂M) −→ H1(∂M) −→ H1(M) −→ · · · .

Hence, H1(∂M) is also finite. On the other hand, due to a theorem of Law-
son [4], assumptions (i) and (ii) imply that ∂M is connected. Since S2 is
the only orientable closed surface with finite first homology group, ∂M is
diffeomorphic to S2. Therefore, π1(∂M) = π1(S2) = 0, which implies that
π1(N) is the free product π1(M) ∗ π1(M) by the Van Kampen Theorem.
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Since π1(N) is finite, π1(M) must be trivial, and hence π1(N) is also triv-
ial. Hamilton’s theorem then implies that N is diffeomorphic to S3. This
completes the proof. �
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