
Pacific
Journal of
Mathematics

PARTIAL REPRESENTATIONS AND AMENABLE
FELL BUNDLES OVER FREE GROUPS

Ruy Exel

Volume 192 No. 1 January 2000



PACIFIC JOURNAL OF MATHEMATICS
Vol. 192, No. 1, 2000

PARTIAL REPRESENTATIONS AND AMENABLE
FELL BUNDLES OVER FREE GROUPS

Ruy Exel

We show that a Fell bundle B = {Bt}t∈F, over an arbitrary
free group F, is amenable, whenever it is orthogonal (in the
sense that B∗

xBy = 0, if x and y are distinct generators of
F) and semi-saturated (in the sense that Bts coincides with
the closed linear span of BtBs, when the multiplication “ts”
involves no cancelation).

In this work we continue the study of the phenomena of amenability
for Fell bundles over discrete groups, initiated in [E3]. By definition, a
Fell bundle is said to be amenable if the left regular representation of its
cross-sectional C∗-algebra is faithful. This property is also equivalent to the
faithfulness of the standard conditional expectation. The reader is referred
to [E3] for more information, but we also offer a very brief survey containing
some of the most relevant definitions, in our section on preliminaries below.

The starting point for our work is Theorem 6.7 of [E3], where it is
shown that a certain grading of the Cuntz–Krieger algebra gives rise to
an amenable Fell bundle over a free group. Our main goal is to further
pursue the argument leading to this result, in order to obtain a large class
of amenable Fell bundles. We find that the crucial properties implying the
amenability of a Fell bundle, over a free group F, are orthogonality and
semi-saturatedness. A Fell bundle B = {Bt}t∈F is said to be orthogonal if
the fibers Bx and By, corresponding to two distinct generators x and y of
F, are orthogonal in the sense that B∗

xBy = 0. On the other hand, B is said
to be semi-saturated when each fiber Bt is “built up” from the fibers cor-
responding to the generators appearing in the reduced decomposition of t.
More precisely, if t = x1x2 · · ·xn is in reduced form, then one requires that
Bt = Bx1Bx2 · · ·Bxn (meaning closed linear span). This property makes
sense for any group G, which, like the free group, is equipped with a length
function | · |. A Fell bundle over such a group is said to be semi-saturated if
Bts = BtBs (closed linear span), whenever t and s satisfy |ts| = |t|+ |s|.

Our main result, Theorem 6.3, states, precisely, that any Fell bundle over
F, which is orthogonal, semi-saturated, and has separable fibers, must be
amenable.
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To arrive at this conclusion we first restrict ourselves to a very special case
of Fell bundles, namely those which are associated to a partial representation
of F (see below for definitions). For these bundles, we prove an even stronger
result, which is that they satisfy the approximation property of [E3]. This
property implies amenability and also some other interesting facts related
to induced ideals of the cross-sectional C∗-algebra (see [E3, 4.10]).

The proof of the approximation property for these restricted bundles is
a direct generalization of [E3, 6.6], where we proved that, for every semi-
saturated partial representation σ of Fn (see below for definitions), such that∑n

i=1 σ(gi)σ(gi)∗ = 1, the associated Fell bundle satisfies the approximation
property. Here, {g1, . . . , gn} are the generators of the free group Fn.

Our generalization of this result, namely Theorem 3.7, below, amounts to
replacing the hypothesis that

∑n
i=1 σ(gi)σ(gi)∗ = 1, by the weaker require-

ment that this sum is no larger than 1, or, equivalently, that the σ(gi)σ(gi)∗

are pairwise orthogonal projections.
Arriving at this generalization turns out to require a considerable under-

standing of the various idempotents accompanying a partial representation
of F, and underlines the richness of ideas surrounding the concept of partial
representations. In addition, the new hypothesis, that is, the orthogonal-
ity of these projections, is easily generalizable to free groups with infinitely
many generators. With the same ease, based on a simple inductive limit ar-
gument, we extend Theorem 3.7 to the infinitely generated case, obtaining
Theorem 4.1, below.

In Section 5, armed with this partial result, we study Fell bundles which
satisfy, in addition to the hypothesis of our main theorem, a stability prop-
erty. Employing a fundamental result of Brown, Green and Rieffel [BGR],
we are able to show that, for such bundles, there is a hidden partial repre-
sentation of F which sends us back to the previously studied situation. We
finally remove the extra stability hypothesis by means of a simple stabiliza-
tion argument.

It does not seem outlandish to expect that all amenable Fell bundles
satisfy some form of the approximation property. However, having no def-
inite evidence that this is so, we must be cautious in distinguishing these
properties. Accordingly, we must stress that our main result falls short of
proving the approximation property for the most general situation treated,
that is, of orthogonal semi-saturated bundles. In this case, all we obtain is
amenability, leaving that stronger property as an open question.

The author would like to express his thanks to the members of the Math-
ematics Department at the University of Newcastle – Australia, where part
of this work was developed. Stimulating conversations with M. Laca and
I. Raeburn were essential to the formulation of the question we have studied
here.
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1. Preliminaries.

For the reader’s convenience, and also to fix our notation, we shall begin
by briefly discussing some basic facts about partial group representations,
Fell bundles and the rich way in which these concepts are interrelated. The
reader is referred to [FD], [E2], and [E3] for more information on these
subjects.

Let G be a group, fixed throughout this section. Also, let H be a Hilbert
space and denote by B(H) the algebra of all bounded linear operators on
H.

Definition 1.1. A partial representation of G on H is, by definition, a map
σ : G → B(H) such that

i) σ(t)σ(s)σ(s−1) = σ(ts)σ(s−1),
ii) σ(t−1) = σ(t)∗,
iii) σ(e) = I,

for all t, s ∈ G, where e denotes the unit group element and I is the identity
operator on H.

Let σ be a partial representation of G on H. It is an easy consequence of
the definition that each σ(t) is a partially isometric operator and hence that

e(t) := σ(t)σ(t)∗

is a projection (that is, a self-adjoint idempotent). It is not hard to show
(see [E2]) that these projections commute among themselves, and satisfy
the commutation relation

σ(t)e(s) = e(ts)σ(t),(1.2)

for all t, s ∈ G.
There is a special kind of partial representations worth considering, when-

ever G is equipped with a “length” function, that is, a non-negative real val-
ued function | · | : G → R+ satisfying |e| = 0 and the triangular inequality
|ts| ≤ |t|+ |s|.

Definition 1.3. A partial representation σ of G is said to be semi-saturated
(with respect to a given length function | · | on G) if σ(t)σ(s) = σ(ts)
whenever t and s satisfy |ts| = |t|+ |s|.

The concept of partial representations is closely related to that of Fell
bundles (also known as C∗-algebraic bundles [FD]) as we shall now see.

Definition 1.4. Given a partial representation σ of G, for each t in G, let
Bσ

t be the closed linear subspace of B(H) spanned by the set of operators
of the form

e(r1)e(r2) · · · e(rk)σ(t),
where k ∈ N, and r1, r2, . . . , rk are arbitrary elements of G.
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Using the axioms of partial representations and 1.2, it is an easy exercise
to show (see [E3, Section 6]) that, for all t, s ∈ G, we have

Bσ
t Bσ

s ⊆ Bσ
ts and (Bσ

t )∗ = Bσ
t−1 .

Therefore, the collection
Bσ := {Bσ

t }t∈G

is seen to form a Fell bundle over G.

Definition 1.5. A Fell bundle over a discrete group G is a collection B =
{Bt}t∈G of closed subspaces of B(H), such that BtBs ⊆ Bts and (Bt)∗ =
Bt−1 , for all t and s in G.

As is the case with C∗-algebras, which can be defined, concretely, as a
norm-closed *-subalgebra of B(H), as well as a certain abstract mathemati-
cal object, defined via a set of axioms, Fell bundles may also be seen under
a dual point of view, specially if one restricts attention to the case of dis-
crete groups. The above definition of Fell bundles is the one we adopt here,
referring the reader to [FD, VIII.16.2] for the abstract version and to [FD,
VIII.16.4] for the equivalence of these. Nevertheless, it should be said that
the point of view one usually adopts in the study of Fell bundles stresses
that each Bt should be viewed as a Banach space in its own, and that for
each t and s in G, one has certain algebraic operations

· : Bt ×Bs → Bts

and
∗ : Bt → Bt−1 ,

which, in our case, are induced by the multiplication and involution on B(H),
respectively. If G is not discrete, then one should also take into account a

topology on the disjoint union
·⋃

t∈GBt, which is compatible with the other
ingredients present in the situation. See [FD] for details. Since we will only
deal with Fell bundles over discrete groups, we need not worry about this
topology.

Definition 1.6. A Fell bundle B, over of G, is said to be semi-saturated
(with respect to a given length function | · | on G) if Bts = BtBs (closed
linear span), whenever t and s satisfy |ts| = |t|+ |s|.

When σ is semi-saturated, one can prove, as in [E3, 6.2], that the Fell
bundle Bσ is also semi-saturated.

Definition 1.7. Given any Fell bundle B = {Bt}t∈G, with G discrete, one
defines its l1 cross-sectional algebra [FD, VIII.5], denoted l1(B), to be the
Banach *-algebra consisting of the l1 cross-sections of B, under the multi-
plication

fg(t) =
∑
s∈G

f(s)g(s−1t), for t ∈ G, f, g ∈ l1(B),
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involution
f∗(t) = (f(t−1))∗, for t ∈ G, f ∈ l1(B),

and norm
‖f‖ =

∑
s∈G

‖f(s)‖, for f ∈ l1(B).

The cross-sectional C∗-algebra of B [FD, VIII.17.2], denoted C∗(B), is de-
fined to be the enveloping C∗-algebra of l1(B).

There is also a reduced cross-sectional C∗-algebra, indicated by C∗
r (B),

which is defined to be the closure of l1(B) in a certain regular representation
(acting on the right-Be-Hilbert-bimodule formed by the l2 cross-sections).
See [E3, 2.3] for a precise definition.

Both C∗(B) and C∗
r (B) contain a copy of the algebraic direct sum

⊕
t∈GBt,

as a dense subalgebra, making them into G-graded C∗-algebras in the sense
of [FD, VIII.16.11] (see also [E3, 3.1]). In both cases, the projections onto
the factors extend to bounded linear maps on the whole algebra, and, in
particular, for Be, that projection gives a conditional expectation [E3, 3.3].

This conditional expectation, say E, is faithful in the case of C∗
r (B), in

the sense that
E(x∗x) = 0 ⇒ x = 0

for every x ∈ C∗
r (B) [E3, 2.12]. However, the same cannot be said with

respect to C∗(B). In fact, there always exists an epimorphism

Λ : C∗(B) → C∗
r (B)

which restricts to the identity map on
⊕

t∈G Bt (see the discussion following
[E3, 2.2] as well as [E3, 3.3]). The kernel of Λ coincides with the degeneracy
ideal for E, namely

D = {x ∈ C∗(B) : E(x∗x) = 0},
where we are also denoting the conditional expectation for C∗(B) by E, by
abuse of language (see [E3, 3.6]). This can be used to give an alternate
definition of C∗

r (B), as the quotient of C∗(B) by that ideal.
The crucial property of Fell bundles with which we will be concerned

throughout this work is that of amenability. This property is inspired, first
of all, in the corresponding concept for groups [G], but also in the work of
Anantharaman-Delaroche [A] and Nica [Ni]. In the context we are inter-
ested, that is, for Fell bundles, it first appeared in [E3], for discrete groups,
and was subsequently generalized by Ng for the non-discrete case [Ng]. See
also [EN].

Definition 1.8. A Fell bundle B, over a discrete group G, is said to be
amenable, if Λ is an isomorphism.

According to the characterization of the kernel of Λ, as in our discussion
above, we see that:
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Proposition 1.9. A necessary and sufficient condition for B to be amenable
is that the conditional expectation E of C∗(B) be faithful.

Any bundle is amenable when the base group G is amenable [E3, 4.7],
whereas the typical example of non-amenable bundle is the group bundle
[FD, VIII.2.7] over a non-amenable group G. That is, the bundle C × G,
with the operations (abstractly) defined by

(z, t)(w, s) = (zw, ts) and (z, t)∗ = (z̄, t−1)

for t, s ∈ G and z, w ∈ C. In this case C∗(B) is the full group C∗-algebra
of G, while C∗

r (B) is its reduced algebra. It is well known [P] that Λ is an
isomorphism, in this case, if and only if G is amenable.

A Fell bundle may be amenable even if its base group G is not. One
example of this situation is given by [E3, 6.7]. It consists of a Fell bundle
over the non-amenable free group which is, itself, amenable. This example
is particularly interesting, since its cross-sectional C∗-algebra is isomorphic
to the Cuntz–Krieger algebra OA.

Definition 1.10. We say that B has the approximation property [E3, 4.5]
if there exists a net {ai}i∈I of finitely supported functions ai : G → Be,
which is uniformly bounded in the sense that there exists a constant M > 0
such that ∥∥∥∥∥∑

t∈G

ai(t)∗ai(t)

∥∥∥∥∥ ≤ M,

for all i, and such that for all bt in each Bt one has that

bt = lim
i→∞

∑
r∈G

ai(tr)∗btai(r).

The relevance of the approximation property is that:

Theorem 1.11. If a Fell bundle B has the approximation property, then it
is amenable.

Proof. See [E3, 4.6]. ut

For later use, it will be convenient to have certain equivalent forms of the
approximation property, which we now study.

Lemma 1.12. Let B be a Fell bundle over G, and let a : G → Be be a
finitely supported function. Then, for each t in G, the map

bt ∈ Bt 7→
∑
r∈G

a(tr)∗bta(r) ∈ Bt

is bounded, with norm no bigger than
∥∥∑

r∈G a(r)∗a(r)
∥∥.
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Proof. Recall that ‖
∑n

i=1 x∗i yi‖ ≤ ‖
∑n

i=1 x∗i xi‖
1
2 ‖
∑n

i=1 y∗i yi‖
1
2 , whenever

x1, . . . , xn and y1, . . . , yn are elements of a C∗-algebra. Therefore, letting
M =

∥∥∑
r∈G a(r)∗a(r)

∥∥, we have, for all bt in Bt, that∥∥∥∥∥∑
r∈G

a(tr)∗bta(r)

∥∥∥∥∥ ≤
∥∥∥∥∥∑

r∈G

a(tr)∗a(tr)

∥∥∥∥∥
1
2
∥∥∥∥∥∑

r∈G

a(r)∗b∗t bta(r)

∥∥∥∥∥
1
2

≤ M
1
2 ‖bt‖

∥∥∥∥∥∑
r∈G

a(r)∗a(r)

∥∥∥∥∥
1
2

= M‖bt‖.

ut

Proposition 1.13. Let B = {Bt}t∈G be a Fell bundle over the discrete
group G. Also, suppose we are given a dense subset Dt of Bt, for each t in
G. Then the following are equivalent:

i) B satisfies the approximation property.
ii) There exists a net {ai}i∈I satisfying all of the properties of 1.10, except

that the condition involving the limit is only assumed for bt belonging
to Dt.

iii) There exists a constant M > 0 such that, for all finite sets {bt1 , bt2 , . . . ,
btn}, with btk ∈ Dtk , and any ε > 0, there exists a finitely supported
function a : G → Be such that∥∥∥∥∥∑

t∈G

a(t)∗a(t)

∥∥∥∥∥ ≤ M

and ∥∥∥∥∥btk −
∑
r∈G

a(tkr)∗btka(r)

∥∥∥∥∥ < ε,

for k = 1, . . . , n.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious. We shall
than prove that (iii) ⇒ (ii) and (ii) ⇒ (i). With respect to our first task,
consider the set of pairs (X, ε), where X is any finite subset of the disjoint

union
·⋃

t∈GDt, and ε is a positive real. If these pairs are ordered by saying
that (X1, ε1) ≤ (X2, ε2) if and only if X1 ⊆ X2 and ε1 ≥ ε2, we clearly get a
directed set. For each such (X, ε), let aX,ε be chosen such as to satisfy the
conditions of (iii) with respect to the set X and ε. It is then clear that the
net {aX,ε}(X,ε) provides the required net.

As for (ii) ⇒ (i), since the maps of 1.12 are bounded, the convergence
referred to in (ii) is easily seen to hold throughout Bt. ut
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2. Free groups and orthogonal partial representations.

This section is devoted to introducing a certain class of partial representa-
tions of the free group. Let F denote the free group on a possibly infinite
set S (whose elements we call the generators). Each t in F has a unique
decomposition (called its reduced decomposition, or reduced form)

t = x1x2 · · ·xk,

where xi ∈ S ∪ S−1 and xi+1 6= x−1
i for all i. In this case, we set |t| = k

and it is not hard to see that this gives, in fact, a length function for F. It
is with respect to this length function that we will speak of semi-saturated
partial representations of F.

Definition 2.1. A partial representation σ of F is said to be orthogonal if
σ(x)∗σ(y) = 0 whenever x, y ∈ S are generators with x 6= y.

A partial representation of a group may not be determined by its values
on a set of generators. For example, if we set

σ(t) =

{
1 if |t| is even
0 if |t| is odd

then σ is a partial representation of F (on a one dimensional Hilbert space),
which coincides, on the generators, with the partial representation

σ′(t) =

{
1 if t = e

0 otherwise.

However, if σ is semi-saturated, then

σ(t) = σ(x1)σ(x2) · · ·σ(xk),

whenever t = x1x2 · · ·xk is in reduced form. Therefore, the values of σ
on the generators end up characterizing σ completely. For this reason the
fact that σ is orthogonal often says little, unless one supposes that σ is
semi-saturated as well.

We shall denote by W the sub-semigroup of F generated by S, that is,
the set of all products of elements from S (as opposed to S ∪ S−1). By
convention, W also includes the identity group element. The elements of W
are called the positive elements and will usually be denoted by letters taken
from the beginning of the Greek alphabet. For each natural number k we
will denote by Wk the set of positive elements of length k.

Note that, if σ is a semi-saturated partial representation of F, and α, β ∈
W, then σ(α)σ(β) = σ(αβ), since |αβ| = |α| + |β|. This property will be
useful in many situations, below.
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Proposition 2.2. Let σ be an orthogonal, semi-saturated partial represen-
tation of F. Then σ(t) = 0 for all elements t in F which are not of the form
µν−1, with µ and ν positive.

Proof. Let t = x1x2 · · ·xk, with xi ∈ S ∪ S−1, be in reduced form. Then,
since σ is semi-saturated, σ(t) = σ(x1)σ(x2) · · ·σ(xk). Now, because σ is
orthogonal, if xi ∈ S−1 and xi+1 ∈ S then σ(xi)σ(xi+1) = 0. So, in order to
have σ(t) nonzero, all elements from S must be to the left of the elements
from S−1 in the decomposition of t. That is, t is of the form described in
the statement. ut

Proposition 2.3. Let σ be an orthogonal, semi-saturated partial represen-
tation of F, and let α, β ∈ W. If |α| = |β|, but α 6= β, then σ(α)∗σ(β) = 0.

Proof. Let m = |α| = |β|. If m = 1 then α and β are in S and the conclusion
is a consequence of the orthogonality assumption. If m > 1 write α = xα̃
and β = yβ̃ with α̃, β̃ ∈ W and x, y ∈ S.

Assume, by way of contradiction, that σ(α)∗σ(β) 6= 0. Then

0 6= σ(xα̃)∗σ(yβ̃) = σ(α̃)∗σ(x)∗σ(y)σ(β̃).

So, in particular, σ(x)∗σ(y) 6= 0, which implies that x = y.
We therefore have, using 1.2,

0 6= σ(α̃)∗σ(x)∗σ(x)σ(β̃) = σ(α̃)∗e(x−1)σ(β̃) = σ(α̃)∗σ(β̃)e(β̃−1x−1),

which implies that σ(α̃)∗σ(β̃) 6= 0, and hence, by induction, that α̃ = β̃. So
α = β. ut

The concept of orthogonality also applies to Fell bundles over free groups.

Definition 2.4. A Fell bundle B = {Bt}t∈F over F is said to be orthogonal
if B∗

xBy = {0} whenever x, y ∈ S are generators with x 6= y.

The parallel between this concept and its homonym 2.1 is illustrated by
our next:

Proposition 2.5. If σ is an orthogonal partial representation of F, then Bσ

is an orthogonal Fell bundle.

Proof. Left to the reader. ut

3. The finitely generated case.

We now start the main technical section of the present work. Here we
shall prove the approximation property for Fell bundles arising from certain
partial representations of free groups. Even though our long range objective
is to treat arbitrary free groups, we shall temporarily restrict our attention
to finitely generated free groups. So we make the following:
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Standing hypothesis 3.1. For the duration of this section, the set S, of
generators of F will be assumed to be finite and σ will be a fixed orthogonal,
semi-saturated partial representation of F.

Recall that e(t) denotes the final projection σ(t)σ(t)∗ of the partial isom-
etry σ(t). In addition to e(t), the following operators will play a crucial
role:

Pk =
∑

α∈Wk

e(α), k ≥ 1

Q0 = 1− P1,

f(t) = σ(t)Q0σ(t)∗, t ∈ F

Qk =
∑

α∈Wk

f(α), k ≥ 1.

The only place where the finiteness hypothesis in 3.1 will be explicitly
used is in the observation that these sums are finite sums.

Proposition 3.2. The following relations hold among the operators defined
above:

i) P1 and Q0 are projections.
ii) Each f(t) is a projection.
iii) If t, s ∈ F then σ(t)f(s) = f(ts)σ(t).
iv) For every t one has f(t) ≤ e(t).
v) If α, β ∈ W are such that |α| = |β| but α 6= β, then e(α) ⊥ e(β),

f(α) ⊥ f(β), and e(α) ⊥ f(β).
vi) For all k ≥ 1, both Pk and Qk are projections and Qk = Pk − Pk+1.
vii) For every n, we have that Q0 + Q1 + · · ·+ Qn−1 + Pn = 1.
viii) If α and β are distinct positive elements of F then, regardless of their

length, we have that f(α) ⊥ f(β).

Proof. For x, y ∈ W1 = S, with x 6= y, we have, by the orthogonality
assumption, that e(x)e(y) = σ(x)σ(x)∗σ(y)σ(y)∗ = 0. Hence P1 is a sum of
pairwise orthogonal projections, and thus, itself a projection. Therefore Q0

is also a projection.
Speaking of (ii) we have

f(t)2 = σ(t)Q0σ(t)∗σ(t)Q0σ(t)∗ = σ(t)Q0e(t−1)Q0σ(t)∗.

Taking into account that the final and initial projections associated to the
partial isometries in a partial representation all commute with each other
[E2], we see that the above equals

σ(t)Q0σ(t)∗σ(t)σ(t)∗ = σ(t)Q0σ(t)∗ = f(t).
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To prove (iii), let t, s ∈ F. Then

σ(t)f(s) = σ(t)σ(s)Q0σ(s)∗ = σ(t)σ(s)σ(s)∗σ(s)Q0σ(s)∗

= σ(ts)e(s−1)Q0σ(s)∗ = σ(ts)σ(ts)∗σ(ts)Q0e(s−1)σ(s)∗

= σ(ts)Q0σ(ts)∗σ(ts)σ(s)∗ = σ(ts)Q0σ(ts)∗σ(t) = f(ts)σ(t).

As for (iv)
e(t)f(t) = σ(t)σ(t)∗σ(t)Q0σ(t)∗ = f(t).

Given α and β as in (v) we have, by 2.3, that

e(α)e(β) = σ(α)σ(α)∗σ(β)σ(β)∗ = 0

which, when combined with (iv) above, yields the other statements of (v).
That Pk is a projection follows from the fact that the summands in its

definition are pairwise orthogonal projections. The same reasoning applies
to Qk. Now

Qk =
∑

α∈Wk

σ(α)(1− P1)σ(α)∗

=
∑

α∈Wk

σ(α)σ(α)∗ −
∑

α∈Wk

∑
x∈S

σ(α)σ(x)σ(x)∗σ(α)∗

= Pk −
∑

α∈Wk

∑
x∈S

σ(αx)σ(αx)∗

= Pk −
∑

β∈Wk+1

σ(β)σ(β)∗ = Pk − Pk+1.

To prove (vii), we just note that

Q0 + Q1 + · · ·+ Qn−1 + Pn

= 1− P1 + P1 − P2 + · · ·+ Pn−1 − Pn + Pn = 1.

Finally, let α 6= β be positive and let k = |α| and l = |β|. If k = l then
we have already seen in (v), that f(α) ⊥ f(β). On the other hand, if k 6= l,
then

f(α) ≤ Qk ⊥ Ql ≥ f(β),

where the orthogonality of Qk and Ql follows from (vii). This implies, again,
that f(α) ⊥ f(β). ut

Recall that Bσ = {Bσ
t }t∈G denotes the Fell bundle associated to σ, and

consider, for each integer n ≥ 1, the map bn : W → Bσ
e given by

bn(α) =


f(α) if |α| < n

e(α) if |α| = n

0 if |α| > n.
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Lemma 3.3. For every n ≥ 1 we have
∑
α∈W

bn(α) = 1.

Proof. We have∑
α∈W

bn(α) =
n∑

k=0

∑
α∈Wk

bn(α) =
n−1∑
k=0

∑
α∈Wk

f(α)+
∑

α∈Wn

e(α) =
n−1∑
k=0

Qk+Pn = 1.

ut

The last relevant definition is that of another sequence of maps an : W →
Bσ

e , this time given by

an(α) =

(
1
n

n∑
k=1

bk(α)

) 1
2

.

Note that an(α) = 0 for |α| > n. We shall also think of the an as functions
defined on the whole of F, by setting an(t) = 0 when t is not positive.

Lemma 3.4. For every n ≥ 1 we have
∑
t∈F

an(t)∗an(t) = 1.

Proof. As already observed, an(t) vanishes unless t is positive. In addition,
an(α) is self-adjoint, so we must compute∑

α∈W
an(α)2 =

∑
α∈W

1
n

n∑
k=1

bk(α) =
1
n

n∑
k=1

∑
α∈W

bk(α) = 1,

where we have used 3.3 in order to conclude the last step above. ut

The square root appearing in the definition of an can be explicitly com-
puted if we note that, for |α| ≤ n, we have

n∑
k=1

bk(α) =

 n∑
k=|α|+1

f(α)

+ e(α) = (n− |α|)f(α) + e(α)

= (n− |α|+ 1)f(α) +
(
e(α)− f(α)

)
,

and that the expression above consists of a linear combination of orthogonal
projections, namely f(α) and e(α)− f(α) (see 3.2.iv). It follows that an(α)
is given, explicitly, by

an(α) =
(

n− |α|+ 1
n

) 1
2

f(α) +
(

1
n

) 1
2 (

e(α)− f(α)
)
.(3.5)

The following is the main technical point in showing the approximation
property for Bσ:

Lemma 3.6. For every t in F we have σ(t) = lim
n→∞

∑
r∈F

an(tr)∗σ(t)an(r).
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Proof. By 2.2 we may assume that t = µν−1, where µ and ν are in W. We
may also suppose that |t| = |µ| + |ν|, that is, no cancellation takes place
when µ and ν−1 are multiplied together.

In addition, since an(r) = 0 unless r is positive and |r| ≤ n, each sum
above is actually a finite sum. In fact, the nonzero summands in it are
among those for which both r and tr are positive of length no bigger than
n.

Since tr = µν−1r, if both r and tr are to be positive, we must have r = νβ,
for some β ∈ W, and then |tr| = |µν−1νβ| = |µ|+ |β|.

Also, in order to have |r| and |tr| no larger than n, we will need |r| =
|ν|+ |β| ≤ n, as well as |µ|+ |β| ≤ n, which are equivalent to |β| ≤ m, where

m = min{n− |ν|, n− |µ|}.

Summarizing, for every n, we have∑
r∈F

an(tr)∗σ(t)an(r) =
∑
|β|≤m

an(µβ)σ(t)an(νβ),

where we have also taken into account that each an(t) is self-adjoint.
Substituting the expression for an, obtained in 3.5, in the above sum, we

conclude that each individual summand equals[(
n− |µβ|+ 1

n

) 1
2

f(µβ) +
(

1
n

) 1
2 (

e(µβ)− f(µβ)
)]

· σ(t)

[(
n− |νβ|+ 1

n

) 1
2

f(νβ) +
(

1
n

) 1
2 (

e(νβ)− f(νβ)
)]

=
(

n− |µβ|+ 1
n

) 1
2
(

n− |νβ|+ 1
n

) 1
2

f(µβ) σ(t) f(νβ)

+
(

n− |µβ|+ 1
n

) 1
2
(

1
n

) 1
2

f(µβ) σ(t)
(
e(νβ)− f(νβ)

)
+
(

1
n

) 1
2
(

n− |νβ|+ 1
n

) 1
2 (

e(µβ)− f(µβ)
)

σ(t) f(νβ)

+
(

1
n

) 1
2
(

1
n

) 1
2 (

e(µβ)− f(µβ)
)

σ(t)
(
e(νβ)− f(νβ)

)
.

Let us indicate the four summands after the last equal sign above by (i),
(ii), (iii), and (iv), in that order. In regards to (i), note that, employing
3.2.iii, we have

f(µβ)σ(t)f(νβ) = f(µβ)σ(µ)σ(ν−1)f(νβ)

= σ(µ)f(β)f(β)σ(ν−1) = σ(µ)f(β)σ(ν)∗.
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Referring to (ii) we have

f(µβ)σ(t)
(
e(νβ)− f(νβ)

)
= f(µβ)

(
e(µβ)− f(µβ)

)
σ(t) = 0,

because of 3.2.iv. Similarly one proves that (iii) vanishes as well. As for (iv)(
e(µβ)− f(µβ)

)
σ(t)

(
e(νβ)− f(νβ)

)
=
(
e(µβ)− f(µβ)

)
σ(µ)σ(ν−1)

(
e(νβ)− f(νβ)

)
= σ(µ)

(
e(β)− f(β)

)
σ(ν)∗.

So,

an(µβ)σ(t)an(νβ)

= σ(µ)
[(

n− |µβ|+ 1
n

) 1
2
(

n− |νβ|+ 1
n

) 1
2

f(β)

+
1
n

(
e(β)− f(β)

)]
σ(ν)∗,

and the conclusion will follow once we prove that the term between brackets
above, summed over |β| ≤ m, converges, in norm, to the identity operator,
as n → ∞. We now set to do precisely this. Speaking of the identity
operator, recall from 3.4 and 3.5 that,

1 =
∑
t∈F

am(t)2 =
∑
|β|≤m

m− |β|+ 1
m

f(β) +
1
m

(
e(β)− f(β)

)
.

Using this expression for the identity operator, we must then prove the
vanishing of the following limit

lim
n→∞

∥∥∥∥∥ ∑
|β|≤m

(
n− |µβ|+ 1

n

) 1
2
(

n− |νβ|+ 1
n

) 1
2

f(β)

+
1
n

(
e(β)− f(β)

)
− m− |β|+ 1

m
f(β)− 1

m

(
e(β)− f(β)

)∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥ ∑
|β|≤m

(
1
n

(n− |µβ|+ 1)
1
2 (n− |νβ|+ 1)

1
2 − m− |β|+ 1

m

)
f(β)

+
(

1
n
− 1

m

)(
e(β)− f(β)

)∥∥∥∥∥
≤ lim

n→∞

∥∥∥∥∥∥
∑
|β|≤m

(
1
n

(n− |µβ|+ 1)
1
2 (n− |νβ|+ 1)

1
2 − m− |β|+ 1

m

)
f(β)

∥∥∥∥∥∥
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+ lim
n→∞

∥∥∥∥∥∥
∑
|β|≤m

(
1
n
− 1

m

)(
e(β)− f(β)

)∥∥∥∥∥∥ .

The two limits will now be shown to equal zero. We should point out
that, with respect to the the first one, we are facing a linear combination of
pairwise orthogonal projections by 3.2.viii. The same, however, is not true
for the second.

Using this observation, we see that the norm, in the first case, equals

max
|β|≤m

∣∣∣∣ 1n(n− |µβ|+ 1)
1
2 (n− |νβ|+ 1)

1
2 − m− |β|+ 1

m

∣∣∣∣ .
In order to show that this goes to zero as n → ∞, let us assume, without
loss of generality, that |µ| ≥ |ν|, and hence that m = n− |µ|.

In addition, it is easy to see that, for every pair of positive reals x and y,
one has that |x− y| ≤ |x2 − y2|

1
2 . So, the task facing us can be replaced by

lim
n→∞

max
|β|≤m

∣∣∣∣(n− |µβ|+ 1)(n− |νβ|+ 1)
n2

− (n− |µβ|+ 1)2

(n− |µ|)2

∣∣∣∣ ?= 0.

The term between the single bars is no bigger than∣∣∣∣(n− |µβ|+ 1)(n− |νβ|+ 1)
n2

− (n− |µβ|+ 1)2

n2

∣∣∣∣
+ (n− |µβ|+ 1)2

∣∣∣∣ 1
n2
− 1

(n− |µ|)2

∣∣∣∣
≤ n− |µβ|+ 1

n2

∣∣∣|µ| − |ν|∣∣∣+ (n− |µβ|+ 1)2
∣∣∣∣−2n|µ|+ |µ|2

n2(n− |µ|)2

∣∣∣∣
≤ n + 1

n2

∣∣∣|µ| − |ν|∣∣∣+ (n + 1)2
∣∣∣∣−2n|µ|+ |µ|2

n2(n− |µ|)2

∣∣∣∣ ,
which is now easily seen to go to zero, uniformly on β, as n →∞.

To conclude, we need only show the vanishing of

lim
n→∞

∥∥∥∥∥∥
∑
|β|≤m

(
1
n
− 1

m

)(
e(β)− f(β)

)∥∥∥∥∥∥
= lim

n→∞

∣∣∣∣ 1n − 1
m

∣∣∣∣
∥∥∥∥∥∥

m∑
k=0

∑
β∈Wk

e(β)− f(β)

∥∥∥∥∥∥
= lim

n→∞

∣∣∣∣ 1n − 1
m

∣∣∣∣
∥∥∥∥∥

m∑
k=0

Pk −Qk

∥∥∥∥∥
= lim

n→∞

∣∣∣∣ 1n − 1
m

∣∣∣∣
∥∥∥∥∥

m∑
k=0

Pk+1

∥∥∥∥∥
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≤ lim
n→∞

∣∣∣∣ 1n − 1
m

∣∣∣∣ (m + 1).

Now, recalling our assumption that m = n− |µ|, the limit above equals

lim
n→∞

∣∣∣∣ 1n − 1
n− |µ|

∣∣∣∣ (n− |µ|+ 1) = lim
n→∞

|µ|(n− |µ|+ 1)
n(n− |µ|)

= 0.

ut

We are now prepared to face one of our main goals.

Theorem 3.7. Let σ be an orthogonal, semi-saturated partial representa-
tion of a finitely generated free group F. Then the Fell bundle Bσ satisfies
the approximation property and hence is amenable. Moreover, the constant
M referred to in 1.10 may be taken to be 1.

Proof. Let {an}n∈N be defined as above. Then
∥∥∑

t∈F an(t)∗an(t)
∥∥ = 1, for

all n, by 3.4, and employing 1.13.ii, it is now enough to show that

bt = lim
n→∞

∑
r∈F

an(tr)∗btan(r),

for all bt of the form bt = e(r1)e(r2) · · · e(rk)σ(t), where k ∈ N, and r1,
r2, . . . , rk are arbitrary elements of F. This is because the linear combina-
tions of the elements of this form are dense in Bσ

t , by Definition 1.4.
We have already observed that the projections associated to the partial

isometries in a partial representation form a commutative set. Since an(α)
is given by a linear combination of such projections, by 3.5 (and an(t) = 0
when t /∈ W), it is clear that an(t) commutes with the e(rj). Therefore, by
3.6,

lim
n→∞

∑
r∈F

an(tr)∗btan(r)

= e(r1)e(r2) · · · e(rk) lim
n→∞

∑
r∈F

an(tr)∗σ(t)an(r)

= e(r1)e(r2) · · · e(rk)σ(t) = bt.

This concludes the proof of the approximation property and hence of the
amenability of Bσ, by 1.11. ut

4. Arbitrary free groups.

We will now extend the results of the previous section, by dropping the
finiteness hypothesis of 3.1, and hence including infinitely generated free
groups in our study. The strategy will be to adapt the work done above to
the general case using an inductive limit argument.
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Let, therefore, F be the free group on a set S, no longer assumed to be
finite, or even countable. Also let σ be an orthogonal, semi-saturated partial
representation of F, considered fixed throughout this section.

For each finite subset X of S, let FX denote the subgroup of F generated
by X. It is quite obvious that FX is again a free group, and that F is
the union of the increasing net {FX}X . The length functions we’ve been
considering are compatible in the sense that the one for F restricts to the
one for FX . Therefore the restriction of σ to FX is also semi-saturated, and
obviously also orthogonal. Let BX denote the Fell bundle for σ|FX

, as in 1.4.
It is clear that, for each t in F, one has that Bσ

t is the closure of the union
of the BX

t , as X ranges in the collection of finite subsets X ⊆ S, such that
t ∈ FX .

Theorem 4.1. Let σ be an orthogonal, semi-saturated partial representa-
tion of an arbitrary free group F. Then the Fell bundle Bσ satisfies the
approximation property and hence is amenable.

Proof. For each t in F, let Dt be the union of the BX
t , as described above,

which is dense in Bσ
t . We will now prove 1.13.iii, with respect to this

choice of Dt. Let M = 1. Then, given a finite set {bt1 , bt2 , . . . , btn}, with
btk ∈ Dtk , and any ε > 0, there clearly exists a single finite X ⊆ S, such
that every btk ∈ BX

tk
. Now, by 3.7 we conclude that a finitely supported

map a : FX → BX
e ⊆ Bσ

e exists, satisfying
∥∥∥∑t∈FX

a(t)∗a(t)
∥∥∥ ≤ 1, and∥∥∥btk −

∑
r∈FX

a(tkr)∗btka(r)
∥∥∥ < ε, for all k = 1, . . . , n. If we extend a to

the whole of F by declaring it zero outside FX , then these two sums may
be taken for t ∈ F, as opposed to t ∈ FX , without changing the result. We
conclude that 1.13.iii holds, and hence that Bσ satisfies the approximation
property . ut

5. Stable Fell bundles.

We shall now treat Fell bundles over arbitrary free groups, which are not
necessarily presented in terms of a partial representation. This section does
not yet contain our strongest result, because we shall be working under
the assumption that the unit fiber algebra of B, that is Be, is a stable C∗-
algebra, in the sense that it is isomorphic to Be⊗K, where K is the algebra
of compact operators on a separable, infinite dimensional Hilbert space. In
the next and final section we will then remove this stability hypothesis.

The method we shall adopt here will be to construct a partial represen-
tation which is closely related to B. In fact this method is, essentially, the
one we have used in [E1] to obtain the classification of Fell bundles in terms
of twisted partial actions (see [E1, 7.3]). However, we will refrain from uti-
lizing the full machinery of [E1] for two reasons. First, by proceeding more
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or less from scratch, and using the special features of the free group, we will
be able to make the presentation somewhat more elementary and self con-
tained. Secondly, the classification theorem mentioned includes a 2-cocycle,
which will not show up here, again because of the special properties of the
group we are dealing with.

We begin with some simple facts about partial isometries and projections
on a Hilbert space H.

Lemma 5.1. Let p be an operator on H, such that p2 = p and ‖p‖ ≤ 1.
Then p = p∗.

Proof. Let ξ ∈ p(H)⊥. Then, for every λ ∈ R we have ‖p(ξ+λp(ξ))‖ ≤ ‖ξ+
λp(ξ)‖, which implies, after a short calculation, that (1+2λ)‖p(ξ)‖2 ≤ ‖ξ‖2,
and hence that p(ξ) = 0. This says that p vanishes on p(H)⊥ and, since p is
the identity on p(H), then it must be the orthogonal projection onto p(H).
Hence p = p∗. ut

Lemma 5.2. Let p and q be projections (self-adjoint idempotents) in B(H).
Then pq is idempotent if and only if p and q commute.

Proof. If pq is idempotent, then, since ‖pq‖ ≤ 1, we have, by 5.1, that
pq = (pq)∗ = qp. The converse is trivial. ut

Lemma 5.3. Let u and v be partial isometries in B(H). Then uv is a
partial isometry if and only if u∗u and vv∗ commute (see also [S]).

Proof. We have that uv is a partial isometry, if and only if

uv(uv)∗uv = uv ⇐⇒ uvv∗u∗uv = uv

⇐⇒ u∗uvv∗u∗uvv∗ = u∗uvv∗ ⇐⇒ (u∗uvv∗)2 = u∗uvv∗,

which, by 5.2, is equivalent to the commutativity of u∗u and vv∗. ut

Proposition 5.4. Let U = {ux}x∈S be a family of partial isometries on
a Hilbert space H and let I be the multiplicative sub-semigroup of B(H)
generated by U ∪ U∗. Denote by F the free group on S. Then, the following
are equivalent:

i) There exists a semi-saturated partial representation σ of F such that
σ(x) = ux for every x ∈ S.

ii) There exists a partial representation σ of F such that σ(x) = ux for
every x ∈ S.

iii) Every u in I is a partial isometry.
iv) For any u, v ∈ I we have that uu∗ and vv∗ commute.

Proof. (i) ⇒ (ii): Obvious.
(ii) ⇒ (iii): Recall that an operator u is a partial isometry, if and only if

uu∗u = u. So, let u = u1 · · ·un, with ui ∈ U ∪ U∗, and take ti ∈ S ∪ S−1
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such that σ(ti) = ui. Then u = σ(ti) · · ·σ(tn) and, by induction on n,

uu∗u = σ(t1) · · ·σ(tn−1)e(tn)σ(tn−1)∗ · · ·σ(t1)∗σ(t1) · · ·σ(tn)

= e(t1 · · · tn)σ(t1) · · ·σ(tn−1)σ(tn−1)∗ · · ·σ(t1)∗σ(t1) · · ·σ(tn)

= e(t1 · · · tn)σ(t1) · · ·σ(tn−1)σ(tn)

= σ(t1) · · ·σ(tn−1)e(tn)σ(tn) = σ(t1) · · ·σ(tn−1)σ(tn) = u.

(iii) ⇒ (iv): If u, v ∈ I, then u∗v ∈ I and, by (iii), it is a partial isometry.
Hence, using 5.3, we have that uu∗ and vv∗ commute.

(iv) ⇒ (i): Define, for all x ∈ S, σ(x) = ux and σ(x−1) = u∗x. Now, if t =
x1 · · ·xn, with xi ∈ S∪S−1, is in reduced form, put σ(t) = σ(x1) · · ·σ(xn). It
is then obvious that σ(t)σ(s) = σ(ts) whenever t and s satisfy |ts| = |t|+ |s|.

We claim that σ is a partial representation of F. The crucial point is
to prove that σ(t)σ(s)σ(s)∗ = σ(ts)σ(s)∗ for t, s ∈ F. To do this we use
induction on |t|+ |s|. If either |t| or |s| is zero, there is nothing to prove. So,
write t = t̃x and s = ys̃ , where x, y ∈ S ∪ S−1 and, moreover, |t| = |t̃| + 1
and |s| = |s̃|+ 1.

In case x−1 6= y we have |ts| = |t|+ |s| and hence σ(ts) = σ(t)σ(s). If, on
the other hand, x−1 = y, we have

σ(t)σ(s)σ(s)∗ = σ(t̃x)σ(x−1s̃)σ(s̃−1x) = σ(t̃)σ(x)σ(x)∗σ(s̃)σ(s̃)∗σ(x).

By (iv) and the induction hypothesis we conclude that the above equals

σ(t̃)σ(s̃)σ(s̃)∗σ(x)σ(x)∗σ(x) = σ(t̃s̃)σ(s̃)∗σ(x)

= σ(ts)σ(s̃−1x) = σ(ts)σ(s)∗.

ut

It would be interesting to find a condition about a set U of partial isome-
tries, which is equivalent to the ones above, but which refers exclusively to
the ux’s, themselves, rather than to arbitrary products of them. A related
observation is that the Cuntz-Krieger [CK] relations were shown to imply
the conditions above [E3, 5.2].

In our next result, we will use two important concepts from [E1], which we
briefly summarize here. By definition, a TRO (for ternary ring of operators),
is a closed linear subspace E ⊆ B(H), such that EE∗E ⊆ E (see also [Z]).
We adopt the convention that the product of two or more sets, as above, is
supposed to mean the closed linear span of the set of products.

Given a TRO E, we say that a partial isometry u is associated to E [E1,
5.4], and write u ∼ E, if u∗E = E∗E and uE∗ = EE∗. If, in addition,
the range of the final projection uu∗ coincides with EH (equivalently, if the
range of the initial projection u∗u coincides with E∗H), then we say that u

is strictly associated to E [E1, 5.5], and write u
s∼ E.

It is a consequence of [BGR, 3.3 and 3.4], that whenever E is separable
and stable, in the sense that E∗E and EE∗ are stable C∗-algebras [E1,
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4.11], then a partial isometry strictly associated to E always exists (see also
[E1, 5.3 and 5.2]).

The reason why TROs are relevant here is that any fiber of a Fell bundle is
a TRO, as one may easily see. But, because of the separability requirement,
we shall now restrict to the case of separable bundles, according to the
following:

Definition 5.5. A Fell bundle B, over a discrete group G, is said to be
separable if each Bt is a separable Banach space.

Theorem 5.6. Let B = {Bt}t∈F be a semi-saturated, separable Fell bundle
over the arbitrary free group F, represented on a Hilbert space H. Suppose
that Be is stable. Then, there exists a semi-saturated partial representation
σ of F on H, such that σ(t) s∼ Bt. In addition, if B is orthogonal, then σ is
necessarily orthogonal, as well.

Proof. By [E1, 4.12], each Bt is stable and hence, by [E1, 5.2], there exists
a partial isometry ut

s∼ Bt. Let U = {ux}x∈S , where, as before, S is
the set of generators of F. We claim that U satisfies 5.4.iii. In fact, we
shall prove that, given x1, . . . , xn in S ∪ S∗, then Bx1 · · ·Bxn is a TRO and
that ux1 · · ·uxn is a partial isometry strictly associated to it. Proceeding
by induction, we may assume that E = Bx1 · · ·Bxn−1 is a TRO and that
u = ux1 · · ·uxn−1

s∼ E. Now, observe that E∗E and BxnB∗
xn

are ideals in
Be, and hence they commute, as sets, that is, E∗EBxnB∗

xn
= BxnB∗

xn
E∗E.

So, by [E1, 6.4], it follows that EBxn is a TRO, and that uuxn

s∼ EBxn .
This proves our claim. So, let σ be a semi-saturated partial representation
of F satisfying 5.4.i. It remains to show that σ(t) s∼ Bt, but this follows
from the conclusion just above, once we write t = x1 . . . xn in reduced form.

Assume, now, that B is orthogonal. Then, given x 6= y, in S, we have,
again by [E1, 6.4], that σ(x)∗σ(y) s∼ B∗

xBy = {0}. Therefore σ(x)∗σ(y) =
0. ut

Theorem 5.7. Let B be an orthogonal, semi-saturated, separable Fell bun-
dle over F, and suppose that Be is stable. Then B is amenable (see below
for the non-stable case).

Proof. Let H be the space where B acts, and let σ be the orthogonal, semi-
saturated partial representation of F on H, provided by 5.6. As usual, we
denote by e(t) the final projection of σ(t).

Let Bσ be the Fell bundle associated to σ as in 1.4. By 4.1, we know that
Bσ satisfies the approximation property. Let, therefore, {ai}i∈I be a net of
maps satisfying the conditions of 1.10, with respect to Bσ.

We claim that e(t) commutes with Be. In fact, because σ(t) s∼ Bt, we
have that e(t) is the orthogonal projection onto BtH. Now, observing that
Be leaves the latter invariant, we obtain the conclusion. It follows that
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the C∗-algebra generated by all the e(t), namely Bσ
e , is contained in the

commutant of Be.
Let t ∈ F and pick bt ∈ Bt. Define ct = btσ(t)∗. Then ct ∈ Btσ(t)∗ =

BtB
∗
t ⊆ Be. On the other hand, note that, since the range of b∗t is contained

in Bt−1H, which is also the range of e(t−1), we have that e(t−1)b∗t = b∗t , or
simply bte(t−1) = bt. This implies that ctσ(t) = btσ(t)∗σ(t) = bte(t−1) = bt.

Since each ai(r) ∈ Bσ
e , we have that it commutes with ct and hence

lim
i→∞

∑
r∈F

ai(tr)∗btai(r) = ct lim
i→∞

∑
r∈F

ai(tr)∗σ(t)ai(r) = ctσ(t) = bt.

We therefore see that the net {ai} satisfies the properties of 1.10 with
respect to B, except that there is no reason to expect that the values of the
maps ai lie in Be. Therefore this falls short of proving the approximation
property for B and hence we cannot use 1.11 to conclude the amenability of
B.

Fortunately, what we do have is enough to fit the hypothesis of a slight
generalization of the results of [E3] leading to 1.11, which goes as follows:
Let C∗(B) be faithfully represented on a Hilbert space K. Since C∗(B)
contains

⊕
t∈G Bt, we may then identify each Bt with its image under that

representation, and then think of Bt as a space of operators on K. In other
words, this provides a faithful representation of B as operators on K, and
hence we might as well assume that H = K, which we do, from now on.
Under this assumption we have that the sub-C∗-algebra of B(H) generated
by
⋃

t Bt is isomorphic to C∗(B).
For each t, consider the space Ct of operators on H ⊗ l2(F), given by

Ct = Bt⊗λt, where λ is the left regular representation of F. It is easy to see
that the Ct form a Fell bundle, which is again isomorphic to B. However,
the C∗-algebra generated by

⋃
t Ct is now isomorphic to C∗

r (B), a fact that
follows from [E3, 3.7].

Recall that the reasoning at the beginning of the present proof provided a
net {ai}i∈I of maps ai : G → B(H), such that supi

∥∥∑
t∈G ai(t)∗ai(t)

∥∥ < ∞,
and that bt = limi→∞

∑
r∈G ai(tr)∗btai(r), for all bt in each Bt. Following

the argument used in [E3, 4.3], let, for each i,

Vi : H → H ⊗ l2(F),

be given by the formula Vi(ξ) =
∑

t∈F ai(t)ξ⊗ δt, where {δt} is the standard
orthonormal base of l2(F). One then proves, as in [E3, 4.3], that ‖Vi‖ ≤
‖
∑

t∈F ai(t)∗ai(t)‖1/2, and hence that the Vi are uniformly bounded.
Now, define the completely positive maps

Ψi : B(H ⊗ l2(F)) → B(H)
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by Ψi(T ) = V ∗
i TVi, for each T in B(H ⊗ l2(F)). Again as in [E3, 4.3], one

has that, for every bt in Bt,

Ψi(bt ⊗ λt) =
∑
r∈F

ai(tr)∗btai(r).

The somewhat annoying fact that ai(t) may not belong to Be forbids us
to say that Ψi is a map from C∗

r (B) into C∗(B), as stated in [E3, 4.3]. This,
however, is not a cause for despair.

Consider the canonical map Λ : C∗(B) → C∗
r (B), described in section

1. Under the current representation of C∗
r (B) on H ⊗ l2(F), we have that

Λ(bt) = bt ⊗ λt for all bt. Now, consider the composition of maps

C∗(B) Λ−→ C∗
r (B) Ψi−→ B(H).

For bt in Bt, we have

lim
i

Ψi(Λ(bt)) = lim
i

Ψi(bt ⊗ λt) = lim
i

∑
r∈F

ai(tr)∗btai(r) = bt.

Now, by the uniform boundedness of these maps we then conclude that
limi Ψi(Λ(x)) = x for all x ∈ C∗(B). This implies that Λ is injective and
hence that B is amenable, as required. ut

6. The general case.

In this section we will prove our most general result, which is the amenability
of orthogonal, semi-saturated, separable bundles. This amounts to dropping
the stability hypothesis of the previous section, which we do by a “stabi-
lization argument”. Ideally one should develop the whole theory of tensor
products for Fell bundles but we feel this is not the place to do it. Instead,
we perform our tensor products in a way which is enough for our purposes,
albeit in a somewhat crude manner.

Let B be any Fell bundle over a discrete group G, acting on the Hilbert
space H. As in the proof of 5.7, we may assume that the sub-C∗-algebra of
B(H) generated by

⋃
t Bt is isomorphic to C∗(B).

For each t ∈ G, consider the the subset of B(H ⊗ l2) (where l2 is the
usual infinite dimensional separable Hilbert space), denoted by Bt⊗K, and
defined by

Bt ⊗K = span{bt ⊗ k : bt ∈ Bt, k ∈ K}.
Here K is the algebra of compact operators on l2. It is elementary to show
that B⊗K, as defined by B⊗K = {Bt ⊗K}t∈G, is a Fell bundle in its own
right. We shall say that B⊗K is the stabilization of B.

Proposition 6.1. Let B be a Fell bundle. Then C∗(B ⊗ K) is isomorphic
to C∗(B)⊗K.
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Proof. Let us temporarily use the notation B̃ for B⊗K and B̃t for Bt ⊗K.
Observe that K may be viewed, in a canonical way, as a subalgebra of the
multiplier algebra M(B̃e), which, in turn, may be viewed as a subalgebra of
M(C∗(B̃)) [FD, VIII.5.8 and 1.15]. Since one clearly has KC∗(B̃) = C∗(B̃),
one may now show that C∗(B̃) is isomorphic to A⊗K, where A = pC∗(B̃)p,
and p is any minimal projection in K.

Using the universal property [FD, VIII.16.12] of cross-sectional C∗-alge-
bras, one may show that the assignment bt ∈ Bt 7→ bt ⊗ p ∈ C∗(B̃) extends
to a surjective *-homomorphism φ : C∗(B) → A.

We claim that φ is injective. In fact, let H be the space where B acts, so
that B̃ sits inside of B(H ⊗ l2). The universal property, this time applied to
B̃, implies that there exists a *-representation

π : C∗(B̃) → B(H ⊗ l2)

which, restricted to each B̃t, coincides with the inclusion of B̃t in B(H⊗ l2).
It is then easy to see that πφ maps C∗(B) onto the closed linear span of⋃

t Bt ⊗ p, within B(H ⊗ l2), which is isomorphic to C∗(B) ⊗ p (see the
second paragraph of this section).

Since πφ sends each bt to bt ⊗ p, we see that πφ is the canonical isomor-
phism between C∗(B) and C∗(B) ⊗ p. This shows that φ is injective and
hence an isomorphism onto A, concluding the proof. ut

Proposition 6.2. If B is a Fell bundle such that B ⊗ K is amenable, then
B, itself, is amenable.

Proof. Consider the diagram

C∗(B)
φ→ C∗(B⊗K)

E ↓ ↓ Ẽ

Be → Be ⊗K

where φ is the injective map described in the proof of 6.1, the vertical ar-
rows represent the corresponding conditional expectations, and the unla-
beled horizontal arrow maps each be to be⊗ p. It is easy to see that this is a
commutative diagram. Recall that a Fell bundle is amenable if and only if
the conditional expectation on its cross-sectional algebra is faithful, as seen
in 1.9. So, let us show that B possesses this property. If x ∈ C∗(B) is such
that E(x∗x) = 0, then we have that Ẽ(φ(x∗x)) = 0, whence φ(x∗x) = 0
and, finally, x = 0 because φ is injective. ut
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The following is our main result:

Theorem 6.3. Let B be an orthogonal, semi-saturated, separable Fell bun-
dle over F. Then B is amenable.

Proof. All of the properties assumed on B are clearly inherited by B⊗K. In
addition, the latter possesses a stable unit fiber algebra and hence, by 5.7,
it is amenable. The conclusion then follows from 6.2. ut

Some of the most useful facts about amenable Fell bundles (see e.g. [E3,
4.10]) require not only that the bundle be amenable, but that the approxi-
mation property holds. This leads one to ask whether the result above could
be strengthened by replacing amenability with the approximation property.
We do not have a satisfactory answer to this question but then, again, we do
not know of any example of an amenable Fell bundle which does not satisfy
the approximation property.
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