
Pacific
Journal of
Mathematics

DISCS AND THE MORERA PROPERTY

Josip Globevnik and Edgar Lee Stout

Volume 192 No. 1 January 2000



PACIFIC JOURNAL OF MATHEMATICS
Vol. 192, No. 1, 2000

DISCS AND THE MORERA PROPERTY

Josip Globevnik and Edgar Lee Stout

In previous work, we have considered the problem of show-
ing that a continuous function on a real hypersurface Γ in CN

satisfies the tangential Cauchy-Riemann equations provided
that its slices satisfy conditions of Morera type. For instance,
these results imply that if Ω ⊂ CN is a bounded convex do-
main with smooth boundary, strictly convex at z0 ∈ bD, if L0

is a complex line tangent to bΩ at z0 and if f is a continuous
function on bΩ such that

∫
L∩bΩ

fω = 0 for all complex lines L
close to L0 which meet Ω and for all (1, 0) forms with constant
coefficients, then f is a CR function in a neighbourhood of z0.
This fails to hold if L0 is a complex line that meets Ω even
under much stronger assumption of holomorphic extendibility
along complex lines. Indeed, let B be the open unit ball in
C2, and define a function f on bB \ {z = 0} by f(z, w) = 1/z.
It is easy to verify that for each complex line L close to the
z-axis, f |L ∩ bB has a continuous extension to L ∩ B which is
holomorphic on L ∩ B, yet there is no open set in bB on which
f is a CR function. So to conclude that f is a CR function
one has to assume the holomorphic extension property for a
larger family of analytic discs.

1. Introduction and the main result.

Let ∆ be the open unit disc in C. An analytic disc attached to a manifold
M ⊂ CN is a continuous map ϕ : ∆ → CN , holomorphic on ∆ and such
that ϕ(b∆) ⊂ M . A.E. Tumanov proved that if f is a function of class C1

on a generic submanifold M of CN , and ϕ0 is an analytic disc attached to
M such that for all analytic discs ϕ, attached to M and close to ϕ0, the
function ζ → f(ϕ(ζ)) has a continuous extension from b∆ to ∆ which is
holomorphic on ∆, then f is a CR function in a neighbourhood of ϕ0(b∆)
[Tu1].

In the present paper we consider a similar problem with conditions of
Morera type for continuous functions on real hypersurfaces. Let Ω ⊂ CN be
a bounded domain with C2 boundary. A subsetD ⊂ Ω is called a transversely
embedded analytic disc if D = V ∩Ω where V is a one dimensional complex
submanifold of an open neighbourhood of Ω which intersects bΩ transversely
such that V ∩ Ω is biholomorphically equivalent to ∆. Then V ∩ bΩ is a
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simple closed curve which bounds D in V and which we denote by bD.
Clearly D = ϕ(∆) where ϕ : ∆ → CN is a one to one continuous map which
is holomorphic and regular on ∆. We say that ϕ parametrizes D. Let D0 be
a transversely embedded analytic disc and let ϕ0 be a parametrization of D0.
A family D of such discs is called a neighbourhood of D0 if there is an ε > 0
such that D contains each transversely embedded analytic disc D which can
be parametrized by a map ϕD satisfying |ϕD(ζ)− ϕ0(ζ)| < ε (ζ ∈ ∆).

As we shall see, the formulation of our principal result depends in an
essential way on the linear structure of CN so that it has no obvious analogue
in the setting of domains in complex manifolds. However, in the final part
of the paper we deduce from the principal result certain consequences that
do hold on domains in Stein manifolds.

In formulating our main results it is convenient to use the notation that
C1;0[dz] denotes the space of all (1, 0)−forms on CN with constant coeffi-
cients and C1;1[dz] the space of all (1, 0)−forms with coefficients that are
polynomials of degree not more than one. These spaces are invariant under
the action of the group of affine automorphisms of CN but under the action
of no larger subgroup of the group Aut(CN ).

The following is the principal result of the paper:

Theorem 1.1. Let Ω ⊂ CN be a bounded domain with boundary of class
C2. Let D0 ⊂ Ω be a transversely embedded analytic disc and let f be a
continuous function in a neighbourhood of bD0 in bΩ. Let w0 be a point of
D0, z0 a point of bD0. Assume that

(1.1)
∫
bD
fω = 0

for every ω ∈ C1;1[dz] and for every transversely embedded analytic disc D
belonging to a neighbourhood D of D0 such that w0 ∈ D. If Ω is strictly
pseudoconvex at z0 then the function f is a CR function in a neighbourhood
of z0. If Ω is strictly convex at z0, it suffices to assume the vanishing of the
integrals (1.1) only when ω ∈ C1;0[dz].

In the following N is a fixed positive integer at least two. By B we denote
the open unit ball in CN or in Rn, depending on the context. Similarly,
B(z, r) is the ball of radius r centered at the point z.

We describe the idea of the proof in the special case when Ω ⊂ C2 is a
convex domain and D0 = Λ0 ∩ bΩ where Λ0 is a complex line which meets
Ω. Let L0 be the complex line tangent to bΩ at z0. To prove that f is a
CR function in a neighbourhood of z0 it is, by [GlS, Th. 3.2.1], enough to
prove that

(1.2)
∫
L∩bΩ

fω = 0
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for all ω ∈ C1;0[dz] and for all complex lines L which meet Ω and belong
to a neighbourhood L of L0 in the space of complex lines. Fix such a line
L and let z ∈ L ∩ bΩ. By the strict convexity of Ω at z0, z is close to z0
provided that L is sufficiently small. Let Λ be the complex line passing
through w0 and z. If L is sufficiently small then Λ ∩ Ω belongs to D. For
convenience assume that z = 0. Let ` and h be linear functions on C2 such
that L = {z ∈ C2 : `(z) = 0}, Λ = {z ∈ C2 : h(z) = 0}. We show that
there are α ∈ R and τ > 0 such that if Vt = {z ∈ C2 : `(z)h(z) = t2eiα},
0 < t < τ , and if E is a unitary map such that |E− I| < τ then E(Vt)∩Ω is
a transversely embedded analytic disc which belongs to D provided that L
and τ are small enough. For each t, 0 < t < τ , we choose Et in such a way
that w0 ∈ Et(Vt) and that Et → I as t → 0. We show that if t → 0 then
Et(Vt) ∩ bΩ converges to [Λ ∩ bΩ] ∪ [L ∩ bΩ] in such a way that∫

Et(Vt)∩bΩ
fω →

∫
Λ∩bΩ

fω +
∫
L∩bΩ

fω

for each smooth 1-form ω on C2. Now, for each ω ∈ C1;0[dz] the terms on
the left and the first term on the right vanish by the assumption so (1.2)
holds.

In Section 2 we analyze carefully the intersections of the varieties Vt =
{(z, w) ∈ C2 : zw = t2, t > 0} with certain smooth perturbations of the
real hyperplane {(z, w) ∈ C2 : Re(z + w) = 0}. In Section 3 we use the
results of this analysis to show the existence of α and τ with the properties
above and then prove the theorem.

2. Intersections in C2.

To begin with, we study how certain small smooth perturbations of the real
hyperplane

H = {(z, w) ∈ C2 : Re(z + w) = 0}
intersect the variety V1 = {(z, w) ∈ C2 : zw = 1}.

The first step in this direction is to compute explicitly the intersection
V1 ∩H and to show that this intersection is transverse.

The transversality assertion goes as follows. Denote by Λ the (unique)
complex line in H that passes through the origin. Thus, Λ = {(z, w) ∈ C2 :
w = −z}. At a point (z, 1

z ) of V1, the tangent space to V1 is the complex line
{ζ(1,−1/z2) : ζ ∈ C}. This coincides with Λ if and only if z2 = 1, i.e., if and
only if z = ±1. It follows that V1 meets the real hyperplane H transversely.

The determination of V1∩H uses the identification of C2 with R4 obtained
by setting z = x+ iy and w = u+ iv. The point (z, w) lies in V1 ∩H if and
only if x+u = 0, xu− yv = 1, and uy+xv = 0. These equations imply that
u = 0, x = 0, and yv = −1. Thus

V1 ∩H = {(x+ iy, u+ iv) : x = u = 0, yv = −1},
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a hyperbola contained in the (real) (y, v)−plane in C2. When studying the
intersection of V1 with perturbations of H, it is useful to view this hyperbola
yv = −1 as the union of two graphs in a new coordinate system with the lines
y = ±v as the coordinate axes. For this purpose introduce new coordinates
in R4 by means of the real orthogonal transformation

X =
−x+ u√

2
, Y =

−y + v√
2

, U =
x+ u√

2
, V =

y + v√
2
.

The inverse of this is the orthogonal transformation given by

x =
−X + U√

2
, y =

−Y + V√
2

, u =
X + U√

2
, v =

Y + V√
2

.

With respect to the (X,Y, U, V )−coordinate system, the equation of H is
U = 0, and

V1 ∩H =
{

(0,
√
V 2 + 2, 0, V ) : V ∈ R

}
∪

{
(0,−

√
V 2 + 2, 0, V ) : V ∈ R

}
.

The perturbations of H that we need to consider are graphs Gr(ϕ) of the
form

Gr(ϕ) = {(X,Y, U, V ) : U = ϕ(X,Y, V ) : X,Y, V ∈ R}
where ϕ is a function of class C1 on R3 such that

(2.1) |ϕ(p)| < η (p ∈ R3, |p| < ρ) and |(Dϕ)(p)| < η (p ∈ R3)

with suitably chosen ρ and η. Note that in (2.1) the condition |ϕ(p)| < η
is assumed to hold only for p ∈ R3 in a fixed neighborhood of the origin; it
need not hold on large subsets of R3. Nevertheless, it turns out that if η is
small enough, then Gr(ϕ) ∩H is similar to V1 ∩H and, in particular, it is
a union of two graphs:

Lemma 2.1. There are η > 0, ρ < ∞, and M < ∞ such that whenever ϕ
is a function of class C1 on R3 that satisfies (2.1), then

(a) Gr(ϕ) is transverse to V1, whence Gr(ϕ) ∩ V1 is a closed submanifold
of R4 of class C1,

(b) Gr(ϕ)∩ V1 = Λ1 ∪Λ2 where Λ1 and Λ2 are disjoint curves of class C1

each of which is of the form

Λj = {(Xj(V ), Yj(V ), Uj(V ), V ) : V ∈ R}

where Xj , Yj , and Uj are C1 functions on R the first derivatives of
which are bounded by M , and

(c) Y1(V ) > 0 and Y2(V ) < 0 (V ∈ R).

Remark 1. If ϕ ≡ 0, then Gr(ϕ) = H, Uj = Xj = 0, and Y1, Y2 are the
functions V 7→ ±

√
V 2 + 2.
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Remark 2. Having proved (a), to prove (b) it is enough to prove that there
is a β > 0 such that for each s ∈ R, Gr(ϕ) ∩ V1 intersects the hyperplane

Es = {(X,Y, U, s) : X,Y, U ∈ R}
at precisely two points and, moreover, that if p ∈ Gr(ϕ) ∩ V1 ∩ Es, then
the angle between the hyperplane Es and the (tangent line to) the curve
Gr(ϕ) ∩ V1 at p is bounded below by β.

The proof of Lemma 2.1 requires some preliminaries.

Denote by L1 and L2 the z− and w−axes in C2, respectively. Far from the
origin, V1 is a slight perturbation of L1 ∪ L2, so to understand Gr(ϕ) ∩ V1

far from the origin, we first understand how Gr(ϕ) intersects L, a small
perturbation of L1 or L2.

Lemma 2.2. There are δ, β > 0 such that if ϕ is a C1 function on R3 with

(2.2) |(Dϕ)(p)| < δ (p ∈ R3)

and if f, g are functions of class C1 on R2 that satisfy

(2.3) ||f ||C1(R2) < δ, ‖g‖C1(R2) < δ

then with L = {(x, y, f(x, y), g(x, y)) : x, y ∈ R} we have that
(a) Gr(ϕ) is transverse to L,
(b) for each s, Gr(ϕ) ∩ L ∩ Es consists of a single point, and
(c) if p ∈ Gr(ϕ) ∩ Es, then the angle between Es and Gr(ϕ) ∩ L at p is

bounded below by β.

Proof. The z−axis L1 = {(x, y, 0, 0) : x, y ∈ R} intersects H transversely,
and the line L1 ∩ H intersects Es transversely at an angle that does not
depend on s. Further, (2.3) implies that at each point p of L, the tangent
space TpL is arbitrarily close to L1, uniformly with respect to p ∈ L provided
that δ is small enough, and (2.2) implies that each point p ∈ Gr(ϕ), TpGr(ϕ)
is arbitrarily close to H, uniformly with respect to p, provided that δ is small
enough. This shows that Gr(ϕ) is transverse to L if δ is small enough, which
proves (a). It also shows that the tangent line to L ∩Gr(ϕ) at a point p is
arbitrarily close to L1 ∩H when δ is small enough, which proves that there
is a β > 0 satisfying (c) when δ is small enough.

If s ∈ R, then L∩Es = {(x, y, f(x, y), g(x, y)) : y+ g(x, y) = s
√

2}. If δ is
small enough, then a simple one-variable argument shows that given s, x ∈
R, there is a unique y = y(x, s) = s

√
2+ψ(x, s) such that y+g(x, y) = s

√
2,

and, moreover, that ψ(x, s) is arbitrarily small, uniformly with respect to
x, s ∈ R when δ is sufficiently small. By the implicit mapping theorem ψ is
of class C1. By differentiating the equality ψ(x, s)+ g(x, s

√
2+ψ(x, s)) = 0,

we see that ∂ψ
∂x and ∂ψ

∂s are arbitrarily small, uniformly in x, s ∈ R when δ

is small. If we put t = −x/
√

2 and pass to X,Y, U, V−coordinates, we can



70 JOSIP GLOBEVNIK AND EDGAR LEE STOUT

write L∩Es = Fs(R) where Fs(t) = (t+A(t, s),−s+B(t, s),−t+A(t, s), s)
with ‖A‖C1 , ‖B‖C1 arbitrarily small provided that δ is small enough. The
set Es ∩ Gr(ϕ) has two (connected) components Ω−s = {(X,Y, U, s) : U <
ϕ(X,Y, s)} and Ω+

s = {(X,Y, U, s) : U > ϕ(X,Y, s)}. If p ∈ Gr(ϕ) ∩ Es, let
np be the unit normal vector to Gr(ϕ)∩Es at p that points in the direction
of Ω+

s . By (2.2), np is arbitrarily close to (0, 0, 1, 0), uniformly with respect
to p if δ is small enough. Further, for sufficiently small δ, Ḟ (t)/|Ḟ (t)| is
arbitrarily close to

(
1√
2
, 0,− 1√

2
, 0

)
, uniformly with respect to s and t. Thus,

granted that δ is small enough, if 〈, 〉 denotes the real inner product on R4,
then 〈

Ḟs(t)
|Ḟs(t)|

, np

〉
< 0 (t ∈ R, p ∈ Gr(ϕ) ∩ Es),

which shows that only way that Fs(t) can meet Gr(ϕ) as t increases is when
it passes from Ω+

s to Ω−s , which implies that Gr(ϕ)∩Es∩L contains at most
one point.

To see that Gr(ϕ) ∩ Es ∩ L 6= ∅ we must show that ϕ(t + A(t, s),−s +
B(t, s), s) = −t + A(t, s) for at least one t. For small δ this follows from
the one-variable fact that if p, q are two functions of class C1 on R such that
p′(t) < µ < ν < q′(t), t ∈ R, for two constants µ and ν, then their graphs
intersect.

Lemma 2.3. If R > 0, then the δ of Lemma 2.2 can be chosen so small
that if (2.2) and (2.3) are satisfied, and if, in addition, ϕ satisfies

(2.4) |ϕ(X,Y, V )| < δ (|X|, |Y |, |V | < 2R)

then |s| ≤ R and (X,Y, U, s) ∈ Gr(ϕ) ∩ L ∩ Es imply that |X| < R and
|Y | < 2R.

Proof. Choose ω ∈ (0,min{1, R}) such that 2ω/(1− ω) < R − ω. Let A,B
be as in the proof of Lemma 2.2. Choose δ < ω so small that Lemma 2.2
holds, that |A(t, s)| < ω, |B(t, s)| < ω (t, s ∈ R) , and that ϕ satisfies

(2.5)
∣∣∣∣ ddtϕ(t+A(t, s),−s+B(t, s), s)

∣∣∣∣ < ω (t, s ∈ R).

Assume also that ϕ satisfies (2.4). Recall that Gr(ϕ) ∩ L ∩ Es = {(λ +
A(λ, s),−s+B(λ, s),−λ+A(λ, s), s)} where −λ+A(λ, s) = ϕ(λ+A(λ, s),−s
+B(λ, s), s). It follows that

− λ+A(λ, s)

=
∫ λ

0

d

dt
ϕ(t+A(t, s),−s+B(t, s), s)dt+ ϕ(A(0, s),−s+B(0, s), s).

Since |A(0, s)|, |B(0, s)| < R, it follows by (2.4) that |s| ≤ R implies that

|ϕ(A(0, s),−s+B(0, s), s)| < δ < ω
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whence (2.5) implies that |λ| < 2ω/(1− ω) < R− ω so | − λ+A(λ, s)| < R.
Clearly | − s+B(t, s)| < R+R = 2R. This completes the proof.

To prove Lemma 2.1, we also need the following quantitative form of the
inverse function theorem:

Lemma 2.4. Let U be an open subset of Rn that contains the origin, and
let F : U → Rn be a map of class C1 such that F (0) = 0 and (DF )(0) is
nonsingular. If r > 0 is so small that

(2.6), |(DF )(x)− (DF )(0)| < 1
8|(DF )(0)−1|

(|x| < r),

then given a C1 map ϕ : U → Rn such that

(2.7) |(Dϕ)(x)| < 1
16|(DF )(0)−1|

(|x| < r)

and

(2.8) |ϕ(0)| < r

4|(DF )(0)−1|
,

there is a unique x with |x| < r such that F (x) + ϕ(x) = 0.

Remark 3. The assumptions imply that if |x| < r, then D(F + ϕ)(x) is
nonsingular. Indeed, if |x| < r, then DF (0)−1D(F + ϕ)(x) is invertible:

|DF (0)−1D(F + ϕ)(x)− I|
= |DF (0)−1{D(F + ϕ)(x)−DF (0)}|
≤ |DF (0)−1|{|DF (x)−DF (0)|+ |Dϕ(x)|}

≤ |DF (0)−1|
{

1
8

1
|DF (0)−1|

+
1
16

1
|DF (0)−1|

}
= 3/16 < 1.

The proof of Lemma 2.4 is in the Appendix to this section.

Proof of Lemma 2.1. For each t > 0, set Dt = {(X,Y, U, V ) : |V | < t}, and
let L1, L2 be the coordinate axes in C2. Sufficiently far away from the origin,
V1 is an arbitrarily small perturbation of L1 ∪ L2, so by Lemmas 2.2 and
2.3, there are R, 2 < R <∞, δ > 0, and γ > 0 such that if ϕ satisfies (2.2)
and (2.4), then:
(i) Gr(ϕ) is transverse to V1 at each point of C2 \DR,
(ii) for each s, |s| ≥ R, the set Gr(ϕ) ∩ V1 ∩ Es consists of precisely two
points and at each of these points the angle between (the tangent line to)
Gr(ϕ) ∩ V1 and Es is at least γ, and
(iii) if |s| ≤ R and if (X,Y, U, s) ∈ Gr(ϕ) ∩ V1, then |X| < R and |Y | < 2R.

Let the ρ of condition (2.1) satisfy ρ > 8R. To complete the proof, it
suffices to show that there are η, 0 < η < δ, and γ′ > 0 such that if ϕ
satisfies (2.1), then G(ϕ) is transverse to V1 at each point of DR and that
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for each s, |s| < R, the set {|X| < R, |Y | < 2R} ∩ V1 ∩Gr(ϕ) ∩ Es consists
of precisely two points at each of which the angle between (the tangent line
to) V1 ∩Gr(ϕ) and Es is at least γ′.

The equations of V1 in the (X,Y, U, V )-coordinates are −X2 +Y 2 +U2−
V 2 = 2 and XY − UV = 0, so given s ∈ R, we find Es ∩ V1 ∩ Gr(ϕ) by
solving F̃ (X,Y, U, V ) = (0, 0, 0, s) where

F̃ (X,Y, U, V ) = (−X2 + Y 2 + U2 − V 2 − 2, XY − UV,U − ϕ(X,Y, V ), V ).

Let

F (X,Y, U, V ) = (−X2 + Y 2 + U2 − V 2 − 2, XY − UV,U, V ).

Then F−1(0, 0, 0, s) = V1∩H ∩Es = {(0,
√

2 + s2, 0, s), (0,−
√

2 + s2, 0, s)}.
We have det[DF (0,±

√
2 + s2, 0, s)] = −2(2 + s2) (s ∈ R), so (DF )(p) is

invertible at each point of V1 ∩H. Clearly (DF )(p) and (DF )(p)−1 depend
continuously on p = (0,±

√
2 + s2, 0, s) on each branch of V1 ∩H, i.e., they

depend continuously on s. By compactness Lemma 2.4 now implies that

(A) there are r, 0 < r <
√
R2 + 2 − R and β > 0 such that whenever

p = (0,±
√
s2 + 2, 0, s) with |s| ≤ R and ϕ satisfies |ϕ| < β and |Dϕ| < β

on (p + rB) ∩H, then Gr(ϕ) ∩ V1 ∩ Es ∩ (p + rB) consists of precisely one
point, at which DF̃ is nonsingular.

The nonsingularity of DF̃ at p means that Gr(ϕ) is transverse to V1 at
p and that the angle between Gr(ϕ)∩ V1 and Es at p is positive. Since this
angle depends continuously on s, it follows that for |s| ≤ R it is bounded
below by a positive constant.

The equation of V1 ∩H is X = U = 0, Y = ±
√

2 + V 2. Since R > 2 and
r <

√
R2 + 2 − R, it follows that |X ′| < R and |Y ′| < 2R whenever |V | ≤

R, p = (X,Y, 0, V ) ∈ V1∩H, and p′ = (X ′, Y ′, U ′, V ) satisfies |p′−p| < r. Let
U = [DR∩V1∩H]+rB. By compactness there is some η, 0 < η < min{δ, β},
such that DR ∩ V1 ∩ {(X,Y, U, V ) : |X| < R, |Y | < 2R, |U | < η} ⊂ U . Since
ρ > 8R, it follows that if ϕ satisfies (2.1) then |ϕ| < β and |Dϕ| < β
on U ∩ H, which, by (A), implies that if |s| ≤ R, then the only points
(X,Y, U, V ) in Es ∩ V1 ∩Gr(ϕ) that satisfy |X| < R, |Y | < 2R are the two
described in (A).

It remains only to prove assertion (c). For this, note that V1 \ B(0, r)
is an arbitrarily small perturbation of (L1 ∪ L2) \ B(0, r) where the Li are
the coordinate axes, provided that r is large enough. In particular, if ρ in
Lemma 2.1 is large enough and η > 0 small enough then for, say, |V | > ρ/4,
the tangent line to Λi is arbitrarily close to either L1 ∩H = {X = U = V =
0} = {X = U = 0, V = −Y } or to L2 ∩H = {X = U = Y = 0} = {X =
U = 0, V = Y }. In particular, there are disjoint neighborhoods W1 of L1∩H
and W2 of L2 ∩H in the space of real lines passing through the origin such
that the tangent line to Λi for |V | > ρ/4 is either in W1 or in W2. With
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no loss of generality, assume that if {X = p1V, Y = p2V,U = p3V : V ∈ R}
belongs to W1, then p2 >

1
2 and if it belongs to W2, then p2 < −1

2 . On
the other hand, provided that η is small enough, {V1 ∩ Gr(ϕ) : |V | < ρ/2}
is an arbitrarily small perturbation of {V1 ∩ H : |V | < ρ/2} = {X = U =
0, Y = −

√
2 + V 2} ∪ {X = U = 0, Y =

√
2 + V 2}. It follows that one of the

functions Yi, say Y1, is positive on |V | ≤ ρ/2 and the other, Y2, is negative
there. By the preceding discussion Y ′1(ρ/2) > 1

2 , and Y ′1(ρ/2) < −1
2 , and

Y ′2(ρ/2) < −1
2 , and Y ′2(ρ/2) > 1

2 provided that η is small enough. Since for
|V | ≥ ρ/4, either Y ′i (V ) > 1

2 or Y ′i (V ) < −1
2 , it follows, by the continuity of

Y ′i that Y1 decreases on (−∞,−ρ/4) and increases on (ρ/4,∞) and that Y2

increases on (−∞, ρ/4) and decreases on (ρ/4,∞). This establishes (c) and
completes the proof of Lemma 2.1.

We now want to understand how a surface S passing through the origin
and almost tangent to H = {(z, w) : Re(z+w) = 0} intersects the varieties
Vt = {(z, w) : zw = t2} for small t > 0 in a neighborhood of the origin.
To do this, we consider a C1 function ψ on R3 that satisfies ψ(0) = 0 and
consider how S = Gr(ψ) intersects Vt.

The main fact we use is the homogeneity condition that Vt = tV1 when
t > 0. This implies that Vt∩Gr(ψ) = t(V1∩ 1

tGr(ψ)). Notice that 1
tGr(ψ) =

Gr(ϕ) if ϕ(X,Y, V ) = 1
tψ(tX, tY, tV ). Also (Dϕ)(X,Y, V ) = (Dψ)(tX, tY,

tV ), so |(Dϕ)(p)| < τ for all p ∈ R3 if and only |(Dψ)(p)| < τ for all p ∈ R3.

If η, ρ, and M are as in Lemma 2.1, then the conditions (2.1) for ϕ(p) =
1
tψ(tp) are

(2.9)
∣∣∣∣1t ψ(tp)

∣∣∣∣ < η (|p| < ρ) and |(Dψ)(p)| < η (p ∈ R3).

Lemma 2.5. There are τ > 0 and M < ∞ such that if the smooth real
function ψ on R3 satisfies

(2.10) ψ(0) = 0 and |(Dψ)(p)| < τ (p ∈ R3),

then for every t > 0

(a) Gr(ψ) is transverse to Vt, and
(b) Gr(ψ) ∩ Vt = Λ1 ∪ Λ2 where Λ1 and Λ2 are C1 curves of the form

Λj = {(Xj(V ), Yj(V ), Uj(V ), V ) : V ∈ R}

where the functions Xj , Yj, and Uj are of class C1 on R and where the
first derivative of each is bounded uniformly by M, and

(c) Y1(V ) > 0 and Y2(V ) < 0 (V ∈ R).
Moreover, given ε > 0, there is δ > 0 such that if

(2.11) W = {(X,Y, U, V ) : |V | < δ},
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then for all t > 0

length (W ∩ Vt ∩Gr(ψ)) < ε.

Proof. Let η, ρ and M be as in Lemma 2.1. This lemma and the preceding
discussion imply that to prove (a)-(c) it suffices to show that τ > 0 in
(2.10) can be chosen so small that (2.10) implies (2.9) for every t > 0. Let
τ = min{η, η/ρ}, and assume that ψ satisfies (2.10). The second inequality
in (2.9) is obviously satisfied. To prove the first inequality, let |p| < ρ. Then
(2.10) implies that∣∣∣∣1t ψ(tp)

∣∣∣∣ =
∣∣∣∣1t

∫ t

0
(Dψ)(λp) · pdλ

∣∣∣∣ ≤ 1
t
τ |p|t < η

ρ
ρ = η.

Finally, if δ > 0 is so small that δ
√

3M2 + 1 < ε, and if W is given by (2.11)
then

length (W ∩ Vt ∩Gr(ϕ)) =
2∑
j=1

∫ δ

−δ

√
X ′
j(t)2 + Y ′j (t)2 + U ′j(t)2 + 1 dt

≤ 4δ
√

3M2 + 1 < ε.

This completes the proof.

Appendix to Section 2.

The proof of Lemma 2.4 depends on the following standard result:

Lemma 2.A.1. Let U be a neighborhood of 0 ∈ Rn, and let F : U → Rn

be a C1 map with F (0) = 0 and (DF )(0) = I. If r > 0 is so small that
|(DF )(0)(x) − (DF )(0)| < 1

2 when |x| < r, then for each y, |y| < r
2 , there

is precisely one x, |x| < r, such that F (x) = y.

Proof. Let G(x) = F (x) − x. Then |(DG)(x)| < 1
2 when |x| < r. Thus, if

|x|, |y| < r, then |G(x)−G(y)| = |
∫ 1
0 (DG)(x+t(y−x))(y−x)dt| ≤ 1

2 |x−y|,
so 1

2 |x−y| ≥ |G(x)−G(y)| = |F (x)−F (y)−(x−y)| ≥ |x−y|−|F (x)−F (y)|,
and |F (x) − F (y)| ≥ 1

2 |x − y|, whence F is one-to-one on W = {|x| <
r}. Let |y| < r

2 and set x0 = 0, xn = y − G(xn−1), n = 1, 2, . . . . Then
|xn+1 − xn| = |G(xn)−G(xn−1)| ≤ 1

2 |xn − xn−1|. Note that xn, xn−1 do lie
in W : |x1| = |y| < r

2 , so |x1 − x0| < r
2 ≤

1
2 |x2 − x1| ≤ 1

2 |x1 − x0| ≤ 1
2
r
2 , etc.

Thus, xn → x, and x = y−F (x) + x, whence y = F (x). This completes the
proof of the Lemma.

Lemma 2.A.2. Let U be a neighborhood of the origin in Rn, and let F :
U → Rn be a C1 map with F (0) = 0 and (DF )(0) nonsingular. If r > 0 is
so small that

|(DF )(x)− (DF )(0)| < 1
2|(DF )(0)−1|

when |x| < r
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then for each z with |z| < r
2|(DF )(0)−1| there is a unique x, |x| < r, such that

F (x) = z.

Proof. Consider the map x 7→ (DF )(0)−1 ◦ F (x) = G(x). We have that
G(0) = 0 and that |(DG)(x)−(DG)(0)| = |DF (0)−1[(DF )(x)−(DF )(0)]| ≤
|(DF )(0)−1| · |(DF )(x) − (DF )(0)| < 1

2 when |x| < r. By Lemma 2.A.1,
given y, |y| < r

2 , there is a unique x, |x| < r, such that G(x) = y, i.e.,
F (x) = (DF )(0)(y). Consequently, for each z ∈ r

2(DF )(0)(B), there is a
unique x, |x| < r, such that F (x) = z. As 1

|(DF )(0)−1|B ⊂ (DF )(0)(B) it
follows that for each z, |z| < r

2
1

|DF (0)−1| there is precisely one x with |x| < r

such that F (x) = z. This completes the proof.

Proof of Lemma 2.4. Put G(x) = F (x) +ϕ(x)−ϕ(0) so that G(0) = 0, and
(DG)(x) = (DF )(x) + (Dϕ)(x). We have

(DG)(0)−1 = [(DF )(0) + (Dϕ)(0)]−1

= (DF )(0)−1
∞∑
k=0

[
−(DF )(0)−1Dϕ(0)

]k
.

By (2.7) |(DF )(0)−1Dϕ(0)| ≤ |(DF )(0)−1||(Dϕ)(0)| < 1
2 , so

(2.12) |(DG)(0)−1| ≤ 2|(DF )(0)|−1.

Further, if |x| < r, then by (2.7) and (2.8)

|(DG)(x)− (DG)(0)| ≤ |(DF )(x)− (DF )(0)|+ |(Dϕ)(0)|+ |(Dϕ)(x)|

<
1
8

1
|DF (0)−1|

+
1
8

1
|DF (0)−1|

<
1
4

1
|DF (0)−1|

≤ 1
2|DG(0)−1|

so by Lemma 2.A.2, for each |z| < r
2|DG(0)−1| there is a unique x, |x| < r, such

that G(x) = z. In particular, by (2.8) and (2.12), this holds for z = −ϕ(0).
Accordingly, there is a unique x, |x| < r, such that F (x) + ϕ(x) = 0. This
completes the proof of Lemma 2.4.

3. Proof of Theorem 1.1.

We begin with two lemmas of a general character, which will be used in the
main part of the proof of the theorem.

The proof of the first of these is quite short but is decidedly nontrivial, as it
depends essentially on some complicated results in the theory of polynomial
convexity.
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Lemma 3.1. If ϕ : ∆̄ → CN is a continuous map that is holomorphic on
∆, that is one-to-one on ∆̄ and that carries b∆ onto a rectifiable simple
closed curve, then the set X = ϕ(∆̄) is polynomially convex.

Proof. Let Σ be the image of b∆ under ϕ, and denote by Σ̂ the polynomially
convex hull of Σ. It is a result of Alexander [Al1] that Σ̂ \ Σ is a closed
analytic subvariety of the domain CN \ Σ. Moreover, by [Al2], this variety
is irreducible. As ϕ(∆) is a closed analytic subvariety of CN \ Σ that is
contained in Σ̂, it follows that, as claimed, X = Σ̂.

Lemma 3.2. Let P ⊂ C2 be a bounded domain. Let Vt = {(z, w) : zw =
t2}, t > 0, and suppose that Vt ∩ P 6= ∅ and that Vt ∩ bP = Γ is a simple
closed curve. Then Vt ∩ P is biholomorphically equivalent to a disc.

Proof. The projection π : C2 → C given by π(z, w) = z carries Vt biholo-
morphically onto C \ {0}. Let Q be the bounded component of C \ π(Γ).
Since P is bounded, it follows that if z ∈ C\ Q̄, z 6= 0, then (z, t

2

z ) ∈ C2 \ P̄ .
We show that 0 /∈ Q. Otherwise, there are points zn ∈ Q with zn → 0 such
that (zn, t

2

zn
) ∈ P for all n, contradicting the boundedness of P. Thus, 0 /∈ Q,

and {(z, t2z ) : z ∈ Q} = P ∩ Vt. As Q is biholomorphically equivalent to a
disc, the same is true of P ∩ Vt. This completes the proof.

We now begin the proof of Theorem 1.1 itself. Initially we work in C2.
We shall deal first with the case that Ω is strictly convex at zo.

By the assumption of convexity, there are a ball B(zo, r) centered at z0
and a function % on B(z0, r) with nonvanishing gradient and positive definite
Hessian such that B(z0, r)∩bΩ = {w ∈ B(z0, r) : %(w) = 0} and B(z0, r)∩Ω =
{w ∈ B(zo, r) : %(w) < 0}. Denote by Λ(z0, bΩ) the complex line passing
through z0 and tangent to bΩ at z0. There is a neighborhood L of Λ(z0, bΩ)
in the space of all complex lines in C2 such that if Λ ∈ L meets B(z0, r)∩Ω,
then Λ meets B(z0, r)∩bΩ transversely in a closed curve that bounds a convex
domain in Λ. We shall show, after passing to a smaller L if necessary, that

(3.1)
∫

Λ∩B(z0,r)∩bΩ
fω = 0 (Λ ∈ L)

for all ω ∈ C1;0[dz]. By [GlS, Th. 3.2.1] this implies that f is a CR-function
in a neighborhood of z0.

Given Λ ∈ L which meets B(0, r)∩Ω we shall show that the neighbourhood
D contains transversely embedded analytic discs Dn, n ∈ N, and D, such
that as n→∞, bDn converges to bD ∪ [Λ ∩ B(z0, r) ∩ bΩ] in the sense that
for every continuous 1-form γ on C2,

(3.2) lim
n→∞

∫
bDn

γ =
∫
bD
γ +

∫
Λ∩B(z0,r)∩bΩ

γ.
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If ω ∈ C1;0[dz], then by hypothesis
∫
bDn

fω = 0, (n ∈ N), and
∫
bD fω = 0.

Applying (3.2) with γ = fω gives (3.1).
To construct such sequences, first consider the following special case. We

again use the notation that Vt = {(z, w) ∈ C2 : zw = t2} (t > 0).

Lemma 3.3. Let Ω ⊂ C2 be a bounded domain with boundary of class C2.
Let 0 ∈ bΩ, and let Re(z + w) = 0 be the tangent plane to bΩ at 0. Denote
by L1 and L2 the coordinate axes of C2, which we assume to intersect bΩ
transversely and in such a way that Lj ∩ bΩ = Λj is a simple closed curve
that bounds a domain Dj ⊂ Lj , j = 1, 2. There is then τ > 0 such that if
0 < t ≤ τ and if E is a unitary map of C2 to itself with |E − I| < τ , then
E(Vt) is transverse to bΩ and DtE = E(Vt) ∩ Ω is a transversely embedded
analytic disc. Moreover, if δ > 0 is sufficiently small, then DtE \ δB is an
arbitrarily small perturbation of [D1 \ δB]∪ [D2 \ δB] provided that t > 0 and
|E − I| are sufficiently small.

Proof of Lemma 3.3.

Step 1. If r > 0 is sufficiently small, then b(rB) is transverse to Λ1 and
to Λ2, and each Λi intersects b(rB) at exactly two points. In addition,
b(rB) intersects bΩ transversely in a slight perturbation of H ∩ b(rB) where
H = {Re(z +w) = 0}. Both b(rB) and bΩ are transverse to L1 and L2. For
each i, Di \ rB is bounded by the union of an arc λi = Λi \ rB and a circular
arc γi contained in b(rB).

On any compact set missing the origin E(Vt) is an arbitrarily small per-
turbation of L1 ∪ L2 provided that t > 0 and |E − I| are small enough. In
this case, bΩ and b(rB) cut out of Vt two domains Di(t, E, r), and by the
transversality mentioned above, each Di(t, E, r) is a slight perturbation of
Di \ rB. It is bounded by two smooth arcs, one lying near λi, the other near
γi.

Suppose for the moment that we have proved that

(B) there is τ > 0 such that for each t, 0 < t ≤ τ , E(Vt) is transverse to
bΩ and E(Vt) ∩ bΩ is a simple closed curve ΛEt.

For 0 < t ≤ τ define DtE to be Ω ∩ E(Vt). By Lemma 3.2 each DtE is a
transversely embedded analytic disc.

Step 2. We first describe what we are going to do to prove (B). If
V0 = {zw = 0} = L1 ∪ L2, then V0 ∩ bΩ is a figure eight, a union of
two simple closed curves, Λ1 and Λ2, in C2 which meet only at the origin.
(Note that they are not tangent to each other there.) Fix a small ball B
centered at the origin. Outside B the variety Vt is a small perturbation of V0

when t > 0 is small enough. It follows that bΩ∩E(Vt)\B is, for small t > 0,
a small perturbation of (Λ1 \ B) ∪ (Λ2 \ B), which is a union to two disjoint
arcs. Now we use Lemma 2.5 to analyze what happens in B as we pass from
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t = 0 to a small positive t. A careful analysis will show that B∩V0, the cross
in the figure eight, gets replaced with two arcs that connect the endpoints
of the two arcs whose union is [bΩ∩E(Vt)] \B in such a way that the union
of all four arcs is a simple closed curve.

Now let us give the details of the proof of (B). Let δ > 0 be smaller than τ
in Lemma 2.2. Since Re (z+w) = 0 is tangent to bΩ at 0, it follows that there
are r > 0 and a smooth function ψ on R3 such that ψ(0) = 0, |(Dψ)(p)| <
δ
2 (p ∈ R3) and such that B(0, r) ∩ Gr(ψ) = B(0, r) ∩ bΩ. There is a ν > 0
such that if E is a unitary map with |E − I| < ν, then E(bΩ) is transverse
to both L1 and L2, and there is a unique function ψE , smooth on R3 with
ψE(0) = 0, |(DψE)(p)| < δ (p ∈ R3) and such that E(Gr(ψ)) = Gr(ψE).

Provided that δ has been chosen small enough Lemma 2.2 shows that
Gr(ψE) ∩ Li = {(ΦiE(V ), V ) : V ∈ R} where ΦiE = (XiE , YiE , UiE) is
smooth on R and Φ′1E(V ) is arbitrarily close to (0,−1, 0), and Φ′2E(V ) is
arbitrarily close to (0, 1, 0) uniformly in V ∈ R provided that δ and γ are
small enough. In particular, we may assume that for V ∈ R
(3.3)

|X ′
iE(V )| < 1

2
, |U ′iE(V )| < 1

2
, −3

2
< Y ′1E(V ) < −1

2
,

1
2
< Y ′2E(V ) <

3
2
.

Thus, Y1E is strictly decreasing, Y2E is strictly increasing, and since YiE(0) =
0 it follows that Y1E(V ) > 0 and Y2E(V ) < 0 when V < 0 while Y1E(V ) < 0
and Y2E(V ) > 0 when V > 0.

Step 3. We have to take into account that Gr(ψE) coincides with E(Ω)
only within B(0, r). With M as in Lemma 2.5, choose ω > 0 so small that if

A = {|X|, |Y |, |U | < (M + 2)ω and |V | < ω}

then A ⊂ B(0, R). The bounds (3.3) imply that

(3.4) |XiE(±ω)| < 1
2
ω, |UiE(±ω)| < 1

2
ω, and |YiE(±ω)| < 3

2
ω.

As δ is smaller than the τ of Lemma 2.5, this lemma implies that for each
t > 0,

Gr(ψE) ∩ Vt = {(Φ1Et(V ), V ) : V ∈ R} ∪ {(Φ2Et(V ), V ) : V ∈ R}

where ΦiEt = (XiEt, YiEt, UiEt) is smooth on R and Y1Et(V ) > 0, and
Y2Et(V ) < 0 for all V ∈ R.

If t0 > 0 and γ > 0 are sufficiently small, then by transversality, the set
{Φ1Et(ω), Φ2Et (ω)} is a small perturbation of the set {Φ1I(ω),Φ2I(ω)} and
the set {Φ1Et(−ω),Φ2Et(−ω)} is a small perturbation of the set {Φ1I(−ω),
Φ2I(−ω)} whenever 0 < t ≤ t0 and |E − I| < γ. In particular by (3.4) we
may suppose that

(3.5) |XiEt(±ω)| < ω, |UiEt(±ω)| < ω and |YiEt(±ω)| < 2ω.
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Since by Lemma 2.5 |X ′
iEt|, |Y ′iEt|, |U ′iEt| < M on R, (3.5) implies that for

|V | < ω,

|XiEt(V )| < (M + 1)ω, |UiEt(V )| < (M + 1)ω, and |YiEt(V )| < (M + 2)ω

so, provided that t0 and γ are small enough (XiEt(V ), YiEt, UiEt(V ), V ) ∈ A
when |V | < ω. Since A ⊂ B(0, r) where Gr(ψE) coincides with E(bΩ), it
follows that B(0, r)∩Gr(ψE)∩Vt∩{|V | < ω} = B(0, r)∩E(bΩ)∩Vt∩{|V | <
ω}.

To see that E(Vt) ∩ bΩ is a simple closed curve if t > 0 and |E − I| are
small is equivalent to seeing that Vt∩E(bΩ) is a simple closed curve provided
that t > 0 and |E − I| are small.

To see that Vt∩E(bΩ) is a simple closed curve, observe first that Λi = ΛiI
consists of a short arc Λsi = {(ΦiI(V ), V ) : |V | < ω} and a long arc Λ`i , which
joins the points (ΦiI(ω), ω) and (ΦiI(−ω),−ω). If ω > 0 is small enough then
the long arc Λ`E meets A only at its endpoints at which it is transverse to the
hyperplanes V = ω and V = −ω, respectively. This transversality, together
with the transversality of L1 and L2 to bΩ implies that when t = 0 changes
to t, 0 < t ≤ t0 and I changes to E, |E − I| < γ, then, provided that t0
and γ are small enough, the long arc Λ`i will change arbitrarily little to an
arc Λ`iEt with endpoints (T+

iEt, ω) close to (ΦiI(ω), ω) and (T−iEt,−ω) close to
(ΦiI(−ω),−ω), which will still meet A only at its endpoints. In particular,

(C) the Y−coordinates of T−1Et and T+
2Et will be positive, and the Y -

coordinates of T+
1Et and T−2Et will be negative.

We have Λ`1Et ∪ Λ`2Et = [Vt ∩ E(bΩ)] \ A.
On the other hand, provided that t0 > 0 and γ are small enough, for

every E, |E − I| < γ, and for every t, 0 < t ≤ t0, A ∩ E(bΩ) ∩ Vt = A ∩
Gr(ψE) ∩ Vt = {(Φ1Et(V ), V ) : |V | < ω} ∪ {(Φ2Et(V ), V ) : |V | < ω} where
Y1Et(V ) > 0, andY2Et(V ) < 0 for all V ∈ R. Now Vt intersects E(bΩ) \ A
transversely provided that γ and t0 are small enough, and by Lemma 2.5, Vt
meets E(bΩ)∩A transversely. Thus E(Vt) intersects bΩ transversely, which
implies that E(Vt) ∩ bΩ is a closed, one-dimensional submanifold of C2. As
Vt ∩ E(bΩ) \ A = Λ`1Et ∪ Λ`2Et and Vt ∩ (bΩ) ∩ A = {(Φ1Et(V ), V ) : |V | <
ω} ∪ {(Φ2Et(V ), V ) : |V | < ω}, it follows that

(3.6) E(bΩ) ∩ Vt = Λ`1Et ∪ Λ`2Et ∪ {(Φ1Et(V ), V ) : |V | < ω}
∪ {(Φ2Et(V ), V ) : |V | < ω}.

The last two arcs are contained in A, and the first two miss A. As Λ`1∩Λ`2 =
∅, it follows that Λ`1Et ∩ Λ`2Et = ∅ if t0 and γ are small enough. The last
two arcs in (3.6) are also disjoint since Y1Et(V ) > 0 and Y2Et(V ) < 0 for all
V ∈ R. This, together with (C), implies that the only way for the right side
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of (3.6) to be a closed submanifold of C2 is for

Φ1Et(−ω) = T−1Et Φ1Et = T+
2Et

and

Φ2Et(−ω) = T−2Et Φ2Et(ω) = T+
1Et.

Thus, E(bΩ)∩Vt consists of the long arc Λ`1Et joining (T+
1 , ω) with (T−1 ,−ω)

followed by the arc {(Φ1Et(V ), V ) : |V | < ω} joining (T−1 ,−ω) with (T+
2 , ω)

followed by the long arc Λ`2Et joining (T+
2 , ω) with (T−2 ,−ω) followed finally

by the arc {(ΦEt(V ), V ) : |V | < ω} joining (T−2 ,−ω) with (T+
1 , ω). This

proves that E(bΩ) ∩ Vt is a simple closed curve provided that t > 0 and
|E − I| are small enough.

This completes the proof of Lemma 3.3.

Discussion 1. Given ε > 0, the ω in the proof of Lemma 3.3 can be
chosen so small that 4ω

√
3M2 + 1 < ε. This implies that the length of

E(bΩ)∩A∩Vt does not exceed ε. Indeed, length(E(bΩ)∩A∩Vt) = length(Vt∩
Gr(ψE) ∩ A) =

∫ ω
−ω[

∑2
j=1[X

′
jEt(v)

2 + Y ′jEt(v)
2 + V ′jEt(v)

2 + 1]]
1
2dv, and

since |X ′
jEt(v)|, |Y ′jEt(v)|, |V ′jEt(v)| are all bounded by M , it follows that

length(E(bΩ) ∩ A ∩ Vt) ≤ 4ω
√

3M2 + 1 < ε.

Discussion 2. The implicit mapping theorem implies that given an interior
point w of the long arc Λ`i , there are a neighborhood W (w) of w, a ν(w) > 0,
and a t0(w) > 0 such that |E − I| < ν(w) and 0 < t ≤ t0(w) imply that
Λ`iEt ∩ W (w) is a smooth graph over Λ`i ∩ W (w). These graphs depend
smoothly on E and t. The same is true at the endpoints of Λ`i . Since we
want the endpoints of Λ`iEt to belong to |V | = ω, we have to write, e.g., in
a sufficiently small neighborhood W (w) of w = (ΦiI(ω), ω), ΛiI ∩W (w) =
{(ΦiI(t), t) : ω ≤ t < ω + γ} for some small γ > 0, and then Λ`iEt ∩W (w) =
{(ΦiEt(t), t) : ω ≤ t < ω + γ}. A partition of unity argument together with
the compactness of Λ`i shows that given a smooth 1-form α on C2, we have

(3.7) lim
E→I, t→0

∫
Λ`

iEt

α =
∫

Λ`
i

α.

Similar reasoning applies to show that if t0 and ν are small enough, then the
lengths of Λ`iEt, |E−I| < ν, 0 < t ≤ t0, are uniformly bounded. We already
know that the lengths of E(bΩ) ∩ Vt ∩A are uniformly bounded. Thus, the
lengths of E(bΩ)∩Vt are uniformly bounded provided that |E− I| < ν, 0 <
t ≤ t0.

Discussion 3. Let π1(z, w) = z, π2(z, w) = w be the coordinate projections
in C2. For each t, 0 < t < τ , let Di

tE = πi(E−1(DtE)), i = 1, 2. Since the
E−1(DtE) are discs in Vt, 0 < t < τ , the Di

tE are Jordan domains in C,
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bounded by simple closed curves πi(E(Vt) ∩ bΩ), which, when t → 0, E →
I, by the last statement of Lemma 3.3, converge to Di in the following
sense: Given ε > 0 there is a δ, 0 < δ < τ , such that if 0 < t < δ and
|E − I| < δ then there is a homeomorphism ψitE : bDi → bDi

tE such that
|ψitE(w) − w| < ε (w ∈ bDi), i = 1, 2. This implies [Po, p. 26] that given
a conformal map ϕ1 : ∆ → D1 and ε > 0 there is a δ, 0 < δ < τ , such that
whenever 0 < t < δ and |E − I| < δ, there is a conformal map ϕ1

tE : ∆ →
D1
tE such that |ϕ1

tE − ϕ1| < ε on ∆ which further implies that there is a
parametrization ζ 7→ (ϕ1

tE(ζ), t2/ϕ1
tE(ζ)) = ΦtE(ζ) of E−1(DtE) such that

|ΦtE(ζ)−Φ1(ζ)| < 2ε+ diam(D2) (ζ ∈ ∆) whenever 0 < t < δ, |E − I| < δ
where Φ1(ζ) = (ϕ1(ζ), 0) is a parametrization of D1. In particular, given
a neighbourhood D of D1 in the space of transversely embedded analytic
discs, DtE ∈ D (0 < t < δ, |E − I| < δ) provided that diam(D2) and δ are
small enough.

Let α be a continuous 1-form on C2 with compact support. Given ε > 0,
there is a δ > 0 such that for every smooth compact curve Σ in C2, we have∣∣∣∣∣

∫
E(Σ)

α−
∫

Σ
α

∣∣∣∣∣ =
∣∣∣∣∫

Σ
E∗α− α

∣∣∣∣ < ε.length(Σ)

whenever E is a unitary map with |E − I| < δ.

Lemma 3.4. Let Ω,Λ1,Λ2 and Vt, t > 0, be as in Lemma 3.3. If α is a
continuous 1-form on C2, then

(3.8) lim
E→I, t→0

∫
bΩ∩E(Vt)

α =
∫

Λ1∪Λ2

α =
∫
bΩ∩V0

α.

Proof. With no loss of generality we suppose that α has compact support.
Suppose that we have proved that

(3.9) lim
E→I,t→0

∫
E(bΩ)∩Vt

α =
∫

Λ1∪Λ2

α.

Since the lengths of E(bΩ) ∩ Vt, |E − I| < δ, 0 < t < t0, are uniformly
bounded, the preceding discussion implies that given ε > 0 there is a δ > 0
such that ∣∣∣∣∣

∫
Ẽ(E(bΩ)∩Vt)

α−
∫
E(bΩ)∩Vt

α

∣∣∣∣∣ < ε

whenever |Ẽ − I| < δ, |E − I| < γ, and 0 < t < t0. In particular, taking
Ẽ = E−1 yields ∣∣∣∣∣

∫
bΩ∩E−1(Vt)

α−
∫
E(bΩ)∩Vt

α

∣∣∣∣∣ < ε
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whenever |E−1 − I| < δ, |E − I| < γ, 0 < t < t0. Now E → I is equivalent
to E−1 → I, so

lim
E−1→I,t→0

∫
bΩ∩E−1(Vt)

α = lim
E→I,t→0

∫
E(bΩ)∩Vt

α

provided that the limit on the right exists. Thus (3.9) implies (3.8). It
remains to prove (3.9).

Let ε > 0, and let L be a uniform bound for the coefficients of α. By the
Discussion 1 above, one can choose ω > 0, to > 0, and ν > 0 such that

length(E(bΩ) ∩ A ∩ (Λ1 ∪ Λ2)) <
ε

16L

and

length(E(bΩ) ∩ A ∩ Vt) <
ε

16L
whenever |E − I| < ν and 0 < t < t0. It follows that when 0 < t < t0 and
|E − I| < ν,

(3.10)

∣∣∣∣∣
∫
E(bΩ)∩A∩Vt

α

∣∣∣∣∣ < ε

4
and

∣∣∣∣∣
∫
E(bΩ)∩A∩(Λ1∪Λ2)

α

∣∣∣∣∣ < ε

4
.

Further, by (3.7), we can pass to smaller ν > 0 and t0 > 0 if necessarily to
get

(3.11)

∣∣∣∣∣
∫

Λ`
iEt

α−
∫

Λ`
i

α

∣∣∣∣∣ < ε

4
(0 < t < to, |E − I| < ν, i = 1, 2).

Thus, if 0 < t < t0 and |E − I| < ν, then (3.10) and (3.11) imply that∣∣∣∣∣
∫
E(bΩ)∩Vt

α−
∫

Λ1∪Λ2

α

∣∣∣∣∣ ≤
2∑
i=1

∣∣∣∣∣
∫

Λ`
iEt

α−
∫

Λ`
i

α

∣∣∣∣∣ +

∣∣∣∣∣
∫
E(bΩ)∩A∩Vt

α

∣∣∣∣∣
+

∣∣∣∣∣
∫
E(bΩ)∩A∩(Λ1∪Λ2)

α

∣∣∣∣∣ ≤ ε.

This proves (3.9). The proof of Lemma 3.4 is complete.

Lemma 3.5. Let Ω ⊂ C2 be a bounded domain with 0 ∈ bΩ. Assume that
bΩ is of class C2 in a neighborhood U of (L1∪L2)∩bΩ, L1, L2 the coordinate
axes, and that L1, L2 intersect bΩ transversely so that Dj = Lj ∩ Ω are
transversely embedded analytic discs, j = 1, 2. Let w1 ∈ D1. There is then
a sequence {An}n=1,2,... ⊂ Ω of transversely embedded analytic discs such
that w1 ∈ An, bAn ⊂ U (n ∈ N) and such that for each continuous 1-form
α on C2

(3.12) lim
n→∞

∫
bAn

α =
∫
bD1

α+
∫
bD2

α.
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Proof. Suppose to begin with that bΩ is of class C2.
Assume first that Re(z + w) = 0 is the tangent space to bΩ at 0. By

Lemma 3.3 there is τ > 0 such that bΩ ∩ E(Vt) is a simple closed curve
contained in U that bounds the analytic disc E(Vt) ∩ Ω transverse to bΩ
provided that |E − I| and t are small enough. Since on a compact set
missing 0, Vt is an arbitrarily small perturbation of L1 ∪L2 provided that t
is small enough, it follows that given τn (τn < τ), there are tn, 0 < tn < τn
and En, |En − I| < τn, such that w1 ∈ En(Vtn). Put An = En(Vtn) ∩ Ω.
Then the An are transversely embedded analytic discs and by Lemma 3.4,
(3.12) holds for every continuous 1-form on C2.

In the general case, let Re(pz + qw) = 0 be the equation of the tangent
space to bΩ at 0. Since L1, L2 are transverse to bΩ it follows that p 6= 0, q 6=
0, so F (z, w) = ( zp ,

w
q ) is an isomorphism of C2 with F (0) = 0, F (Li) =

Li, i = 1, 2, and Re(z +w) = 0 is the tangent space to bΩ̃ if Ω̃ = F (Ω). We
are now in the situation above with Ω replaced by Ω̃ and with Dj replaced
by D̃j = Lj∩Ω̃. Thus, there is a sequence Ãn ⊂ Ω̃ of transversely embedded
analytic discs such that bÃn ⊂ F (U), F (w1) ∈ Ãn and such that

lim
n→∞

∫
bÃn

β =
∫
bD̃1

β +
∫
bD̃2

β

for every continuous 1-form β on C2. In particular given a continuous 1-form
α on C2 it follows that if β = (F−1∗)α then

lim
n→∞

∫
bAn

F ∗(F−1∗)α =
∫
bD1

F ∗(F−1∗)α+
∫
bD2

F ∗(F−1∗)α

where An = F−1(Ãn), which implies (3.12).
If the boundary bΩ is of class C2 only in a neighborhood of the intersection

(L1 ∪ L2) ∩ bΩ, then a small modification of the argument just given is
required. The set U can be taken to lie in the subset of bΩ that is a manifold
of class C2. Then, in the proof of Lemma 3.3 it is enough to assume that bΩ
is of class C2 only in a neighborhood of (L1 ∪ L2) ∩ bΩ, since we are there
intersecting bΩ with varieties that are small perturbations of L1 ∪ L2.

Lemma 3.5 is proved.

Discussion. Again, as in Discussion 3 after Lemma 3.3, given a neigh-
bourhood D of D1 in the space of transversely embedded analytic discs, An
can be chosen to belong to D provided that diam(D2) is small enough.

We now continue the proof of Theorem 1.1, but no longer under the
restriction to domains in C2. We are dealing with the case that Ω is strictly
convex at z0.

Lemma 3.6. Let Ω be a bounded domain in CN with bΩ of class C2. Suppose
that D0 ⊂ Ω is a transversely embedded analytic disc. Let w0 ∈ D0 and z0 ∈
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bD0, and suppose that Ω is strictly convex at z0. Let D be a neighbourhood
of D0 in the space of transversely embedded analytic discs. Denote by Λ(z0)
a complex line that is tangent to bΩ at z0. There are an open ball B centered
at z0 and a neighborhood L of Λ(z0) in the space of all complex lines in CN

such that for each L ∈ L that meets Ω ∩B
(a) L ∩B ∩ bΩ is a compact convex curve, and
(b) there are A ∈ D and a sequence {An}n=1,2,... ⊂ D such that w0 ∈

A,w0 ∈ An (n ∈ N) and such that for each smooth 1-form α on C2

(3.13) lim
n→∞

∫
bAn

α =
∫
bA
α +

∫
L∩Q∩bΩ

α.

As in the two-dimensional analysis, this implies that
∫
L∩Q∩bΩ fω = 0.

Granted this lemma, Theorem 1.1, in the case of convexity, now follows
from the following lemma.

Lemma 3.7. Let D be a bounded convex domain with bD of class C2 and
strictly convex at z0 ∈ bD. Let L be an open set of complex lines in CN that
contains a line tangent to bD at z0. If f is a continuous function on bD that
with the property that

∫
L∩bD fα = 0 whenever L ∈ L meets D and whenever

α ∈ C1;0[dz], then f is a CR-function on a neighborhood of z0 in bD.

Proof. As L contains L0, a complex line tangent to bD at z0 and is open,
the result follows, in the case that N = 2, from a result in [Gl2]. In the
case of arbitrary N , a different analysis is necessary.

Thus, consider the case of general N . Let H0 be the real hyperplane
tangent to bD at z0, and let T0 ⊂ H0 be the complex hyperplane in CN that
goes through z0. We shall show that if T is a complex hyperplane in CN

that is near T0 and that meets D, then
∫
T∩bD fϑ = 0 for all (N,N−2)-forms

ϑ on CN with constant coefficients. Granted this, the result we want is a
consequence of Theorem 3.2.1 of [GlS].

The complex hyperplane T0 is a disjoint union of complex lines parallel
to L0. Continuity and the openness of L imply the existence of an open set
T in the space of complex hyperplanes in CN such that T0 ∈ T and such
that each T ∈ T is a union of complex lines L each of which is parallel to
an element of L and each of which is either disjoint from D, meets D in a
single point, or else meets bD in a small convex curve lying near z0. If T is
small enough, then as L is open, each T ∈ T is a union of lines {Lλ}λ∈Λ(T )

parallel to an element of L with the additional property that if Lλ meets
bD, then Lλ ∈ L.

By hypothesis, for a given T ∈ T ,
∫
Lλ∩bD fω = 0 for every λ ∈ Λ(T ).

Lemma 2.2.1 of [GlS] implies that for each T ∈ T ,
∫
T∩bD fϑ = 0 for each

ϑ, an (N,N − 2)−form on CN with constant coefficients. The lemma is
proved.
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The proof of Lemma 3.6 depends on the following simple observation.

Lemma 3.8. Let δ > 0, and let V be a closed one-dimensional complex
submanifold of an open set in CN such that for each ζ, |ζ| < δ, V intersects
the hyperplane Hζ = {z : z1 = ζ} at one point and transversely. Assume
that V meets H0 at the origin. There is a biholomorphic map Φ of {z ∈ CN :
|z1| < δ} onto itself that fixes H0 and has the property that Φ(V ∩ {|z1| <
δ}) = {(ζ, 0, . . . , 0) : |ζ| < δ}.

Proof. Let V ∩ Hζ = ϕ(ζ) = (ζ, ϕ2(ζ), . . . , ϕN (ζ)), |ζ| < δ. The map
ϕ : δ∆ → CN is holomorphic by the transversality. As it satisfies ϕ(0) = 0
the map Φ given by

Φ(z1, . . . , zN ) = (z1, z2 − ϕ2(z1), . . . , zN − ϕN (z1))

has the desired properties.

Proof of Lemma 3.6. The idea is very simple; we describe it in a special
case. Since Ω is strictly convex at z0 there are an open ball B centered at
z0 and a neighbourhood L of Λ(z0) in the space of complex lines in CN such
that if L ∈ L and L ∩ B meets Ω then L ∩ B meets bΩ transversely in a
compact convex curve. Moreover, given a neighbourhood E of z0 in CN ,
L∩B∩Ω ⊂ E provided that L is small enough. Let V be a one dimensional
submanifold of an open neighbourhood of Ω such that V ∩Ω = D0. We find
a biholomorphic map G from a neighbourhood Q of D0 in CN to a domain
G(Q) in such a way that G(z0) = 0 and that G maps Q∩V into the z1-axis.
Shrink L if necessary so that L ∩ B ∩ Ω ⊂ Q whenever L ∈ L and assume
that L ∈ L and that z0 ∈ L. We modify G so that, in addition, it maps
L∩B∩Q into the z2-axis. Then we intersect G(Q) with the two-dimensional
subspace M spanned by z1- and z2-axes. This gives a domain in the copy M
of C2 to which Lemma 3.5 applies to yield a sequence {Ãn} of transversely
embedded analytic discs whose boundaries bÃn, in the sense of that lemma,
converge to G(bD0) ∪ G(L ∩ B ∩ Ω). Then An = G−1(Ãn), and A0 = D0

will do the job. Of course, we must be more careful when L does not pass
through z0.

Step 1. Let V be a closed one-dimensional submanifold of an open neigh-
borhood of Ω that intersects bΩ transversely so that D0 = V ∩Ω, bD0 = V ∩
bΩ. By Lemma 3.1 above, D0 is polynomially convex, so it has a Stein neigh-
borhood basis. Thus, there are arbitrarily small neighborhoods Q of D0 in
CN that are biholomorphically equivalent, say under F, to a domain P in CN

and in such a way that F (V ∩Q) = {(z1, . . . , zN ) ∈ P : z2 = · · · = zN = 0},
i.e., that F (V ∩ Q) is the intersection of P with the z1-axis. This follows
from a result of Docquier and Grauert on the existence of holomorphic tubu-
lar neighborhoods -see [GR, pp. 256-257]- and the holomorphic triviality
of holomorphic vector bundles over discs. The strict convexity of Ω at z0



86 JOSIP GLOBEVNIK AND EDGAR LEE STOUT

implies that there are an open ball B centered at z0 and a neighbourhood
L of Λ(z0) in the space of complex lines such that

(D) if L ∈ L and L ∩ B meets Ω then L ∩ B meets bΩ transversely in a
small compact convex curve. Moreover, given a neighbourhood E of z0, L
can be chosen so small that B ∩ L ∩ Ω ⊂ E for every L ∈ L.

Passing to smaller P,Q if necessary we may assume that there are a
neighbourhood T of the z1-axis in the space of all complex lines passing
through w̃0 = F (w0) and a δ > 0 such that whenever a complex line T ′

is parallel to a line T ∈ T , dist(T, T ′) < δ then T ′ intersects F (Q ∩ bΩ)
transversely in a simple closed curve that bounds the domain D(T ′) = T ′ ∩
F (Q ∩ Ω).

Step 2. Since V is transverse to bΩ at z0 it follows that Λ(z0) is not tangent
to V at z0 so the complex tangent line to F (Λ(z0)∩B∩Q) at z̃0 = F (z0) does
not coincide with the z1-axis. Thus, after composing F with a unitary map
that fixes the z1-axis we may, after passing to a smaller L and δ, assume
that there are a small open ball E ⊂ B ∩ Q such that (D) holds, and a
neighbourhood H of {z2 = 0} in the space of complex hyperplanes passing
through w̃0 such that

(E) for each L ∈ L, F (E ∩ L) intersects each H ′, a complex hyperplane
parallel to an H ∈ H, dist(H,H ′) < 2δ, at precisely one point and trans-
versely.

By passing to a smaller T we can suppose that for each T ∈ T there is
an H ∈ H such that T ⊂ H.

For each T ∈ T let

D(T, δ) = ∪{D(T ′) : T ′ parallel to T, dist(T, T ′) < δ}

and
P (T, δ) = ∪{T ′ ∩ P : T ′parallel to T, dist(T, T ′) < δ}.

Note that D(T, δ) = P (T, δ)∩F (Ω∩Q) is a connected component of P (T, δ)\
S where S = F (bΩ ∩ Q). Choose a neighbourhood P of z̃0 in Q so small
that

(F) if z ∈ P and if T is the complex line passing through z and w̃0 then
T ∈ T and P ⊂⊂ P (T, δ).

By (D) we can pass to a smaller L such that

(3.14) L ∩B ∩ Ω ⊂ Q, F (L ∩B ∩ Ω) ⊂ P (L ∈ L).

Fix L ∈ L that meets Ω ∩ B. By (D) and by (3.14), L meets B ∩ bΩ
transversely in a compact convex curve that bounds the convex domain
L ∩B ∩ Ω ⊂⊂ Q. Moreover, by (3.14) we have
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(G) F (L∩B∩Ω) = F (L∩B)∩F (Ω∩Q) ⊂ P is a domain in F (L∩B∩Q)
bounded by the simple closed curve F (L∩B∩ bΩ) = F (L∩B∩Q)∩F (bΩ∩
Q) ⊂ P.

Recall that

P (T, δ) ∩ bD(T, δ) = P (T, δ) ∩ F (bΩ ∩Q)

and
P (T, δ) ∩ F (Q ∩ Ω) = D(T, δ).

By (G) and by the fact that P ⊂⊂ P (T, δ) it follows that F (L∩B∩Q)∩F (Ω∩
Q) ⊂ D(T, δ)∩P and F (L∩B∩Q)∩F (bΩ∩Q) ⊂ bD(T, δ)∩P ⊂ S∩P (T, δ)
which implies that

(3.15) F (B ∩ L ∩Q) ∩ D(T, δ) = F (B ∩ L ∩Q) ∩ F (Ω ∩Q)

and

(3.16) F (B ∩L∩Q)∩ bD(T, δ) = F (B ∩L∩Q)∩F (bΩ∩Q) ⊂ S ∩P (T, δ).

Clearly, F (B ∩ L ∩Q) intersects S transversely.

Step 3. Choose p ∈ F (L ∩B ∩Q) ∩ F (bΩ ∩Q). By (3.14) and by (F) the
complex line T passing through p and w̃0 belongs to T and is contained in
some H ∈ H so by (E), F (L∩B∩Q) intersects each complex hyperplane H ′

parallel to H with dist(H,H ′) < 2δ at precisely one point and transversely.
Lemma 3.8 now implies that there is a biholomorphic map Φ from H + 2δB
onto itself that fixes H and maps F (B ∩L∩Q)∩ (H + 2δB) onto p+ 2δ∆q
where q is a unit vector orthogonal to H. Note that P (T, δ) ⊂⊂ H + 2δB.

Let U = Φ(D(T, δ)) and Σ = Φ(P (T, δ) ∩ S) = Φ(bD(T, δ) ∩ P (T, δ)).
Now (3.15) and (3.16) imply that Φ(F (B ∩L∩Q))∩ (H + 2δB) = p+ 2δ∆q
meets U in a domain bounded by a simple closed curve contained in Σ ⊂ bU ,
and the intersection is transverse. Moreover, since Φ fixes H ⊃ T we have
p ∈ Σ ∩ T and T meets U in a domain bounded by a simple closed curve
Σ ∩ T = S ∩ T obtained as a transverse intersection of T with Σ ⊂ bU .

With no loss of generality, assume that p = 0. Let M be the two-
dimensional complex subspace spanned by T and Cq. Recall that Cq meets
U in a domain bounded by a simple closed curve which is a transverse inter-
section of Cq with Σ ⊂ bU and that T intersects U in a domain bounded by
a simple closed curve which is the transverse intersection of T with Σ ⊂ bU .
Since both T ∩ bU and Cq ∩ bU are contained in Σ, an open subset of bU
which is smooth, it follows that near (T ∪ bU) ∪ (Cq ∩ bU), bU is smooth
and transverse to M . Thus Ũ = U ∩M is a bounded open set in M which
has smooth boundary near (T ∩ bU) ∩ (Cq ∩ bU). The component Ũ0 of
U containing (T ∩ U) ∪ (Cq ∩ U) is a bounded domain in M which has
smooth boundary near (T ∩ bŨ0) ∪ (Cq ∩ bŨ0) and which T and Cq meet
in domains bounded by simple closed curves, which are transverse inter-
sections of T and Cq with bŨ0. Now apply Lemma 3.5 to get a sequence
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Ãn ⊂ Ũ0 of transversely embedded analytic discs whose boundaries bÃn, in
the sense of that lemma, converge to (T ∩ bŨ0)∪ (Cq ∩ bŨ0). It is now clear
that by pulling back to bΩ ∩ Q with (Φ ◦ F )−1 that An = (Φ ◦ F )−1(Ãn),
A = (Φ ◦ F )−1(T ∩ U0), and L ∩ B ∩ Q ∩ bΩ = (Φ ◦ F )−1(Cq ∩ bŨ) satisfy
(3.13) and w0 ∈ A, w0 ∈ An(n ∈ N).

It remains to show that everything can be done in such a way that An (n ∈
N) and A belong toD. By transversality, for each T ∈ T the disc T∩F (Q∩Ω)
is arbitrarily small perturbation of the intersection of F (Q∩Ω) with z1-axis
provided that T is small enough. Further, our construction implies that
the maps Φ are uniformly close to the identity provided that H and δ are
small enough. Since P can be chosen arbitrarily small the reasoning from
Discussion 3 following Lemma 3.3 applies to show that the discs Ãn belong
to an arbitrarily small neighbourhood of T ∩ F (Q ∩ Ω) provided that P is
small enough. It follows that An, n ∈ N, and A can be chosen to belong to
D.

Theorem 1.1 is thus proved in the case of convexity. It remains to prove
it in the strictly pseudoconvex case.

To this end, observe first that in the proof of Lemma 3.6 we never used
the fact that the elements of L are complex lines. What we needed was the
following:
(a) There is an open neighborhood W of z0 such that all L ∈ L0 are one-
dimensional complex submanifolds of W,
(b) the initial Λ(z0) ∈ L0 is tangent to W ∩ bΩ,
(c) if L ∈ L0 is sufficiently close to Λ(z0) in the C1−sense and if L meets
W ∩Ω, then L meets bΩ transversely in a simple closed curve bounding the
domain Ω ∩ L, and
(d) given a neighborhood V of z0, we have L ∩Ω ⊂ V provided that L ∈ L0

is sufficiently close to Λ(z0) in the C1-sense.
Now the following lemma is proved in exactly the same way as Lemma

3.6.

Lemma 3.9. Let Ω be a bounded domain in CN with bΩ of class C2. Suppose
that D0 ⊂ Ω is a transversely embedded analytic disc. Let w0 ∈ D0 and
z0 ∈ bD0. Let W,Λ(z0) and L0 be as above. Let D be a neighbourhood of D0

in the space of transversely embedded analytic discs. There is an L ⊂ L0, a
C1-neighbourhood of Λ(z0) in L0, such that for each L ∈ L that meets Ω∩W

(a) L ∩ bΩ is a compact convex curve, and
(b) there are A ∈ D and a sequence {An}n=1,2,... ⊂ D such that w0 ∈

A,w0 ∈ An (n ∈ N) and such that for each smooth 1-form α on C2

(3.17) lim
n→∞

∫
bAn

α =
∫
bA
α +

∫
L∩bΩ

α.
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To conclude the proof, we suppose that bΩ is strictly pseudoconvex at z0.
There exist a neighborhood W of z0 and a biholomorphic map Ψ : W →
W̃, W a neighborhood of 0 = Ψ(z0) such that Ψ is a polynomial map of
degree two and such that Ψ(Ω∩W) is strictly convex. Let L̃0 be the complex
tangent line to bΨ(Ω∩W) at 0. Let L̃0 be a neighborhood of L̃0 in the space
of complex lines, and for each L̃ ∈ L̃0 let L = Φ−1(L̃∩W̃). If W and L̃0 are
sufficiently small then L0 = {L : L̃ ∈ L̃0} has the properties (a)-(d). Recall
that by our assumptions,

∫
bD fω = 0 for every form ω ∈ C1;1[dz] and for

each transversely embedded analytic disc D ∈ D. By Lemma 3.9 it follows
that there is a neighborhood L̃ ⊂ L̃0 of L̃0 in the space of complex lines
and a neighborhood Q of z0 such that for each L ∈ L = {L : L̃ ∈ L̃} which
meets Ω ∩W,

(3.18)
∫
L∩bΩ

fω = 0

for each ω ∈ C1;1[dz]. Since Ψ is a polynomial map of degree two, it follows
that for all α ∈ C1;0[dz] the form Ψ∗α lies in C1;1[dz].

If L̃ ∈ L̃, then given a form α ∈ C1,0[dz] (3.18) implies that∫
L̃∩Ψ(bΩ∩W)

(f ◦Ψ−1)α =
∫

Ψ(L∩bΩ)
(f ◦Ψ−1)α =

∫
L∩bΩ

(f ◦Ψ−1 ◦Ψ)Ψ∗α = 0.

By [GlS, Th. 3.2.1] it follows that f◦Ψ−1 is a CR-function in a neighborhood
of 0 in Ψ(bΩ∩W), which implies that f is a CR-function in a neighborhood
of z0.

Theorem 1.1 is finally proved.

4. Concluding Remarks.

In this final section we note a consequence of the main theorem.

Let Ω be as in Theorem 1.1 and let D ⊂ Ω be a transversely embedded
analytic disc. If a continuous function f on bD has a continuous extension
to D which is holomorphic on D then

∫
bD fω = 0 for all (1, 0)-forms with

linear coefficients. The holomorphic extendibility is invariant with respect
to biholomorphic maps. Accordingly the following theorem holds in Stein
manifolds, which we view as closed complex submanifolds of CM .

Theorem 4.1. Let Ω be a relatively compact domain in a closed complex
submanifold M, dimM ≥ 2 of CM that has C2 boundary. Let D0 ⊂ Ω
be a transversely embedded analytic disc, and let Ω be strictly pseudoconvex
at z0 ∈ bD0. Let D be a neighbourhood of D0 in the space of transversely
embedded analytic discs D ⊂ Ω. Suppose that f is a continuous function on
a neighbourhood of bD0 in bΩ such that for each D ∈ D satisfying w0 ∈ D,

(4.1) f |bD has a continous extension to D which is holomorphic on D.
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Then f is a CR function in a neighbourhood of z0. If (4.1) holds for all
D ∈ D then there are a neighbourhood W of D0 in M and a continuous
function f̃ on W ∩ Ω such that f̃ = f on W ∩ bΩ.

Proof. Let dimM = N . The set D ⊂M is a compact, polynomially convex
set in CM and thus has a Stein neighborhood basis in CM . The intersec-
tions of the elements of this basis with M form a Stein neighborhood basis
of D in M. Thus, by the result of Docquier and Grauert and the holo-
morphic triviality of holomorphic vector bundles on discs as used above and
by the fact that the extendibility assumptions we make are invariant under
biholomorhic maps, we can assume that Ω is a domain in CN and that D
is the intersection of Ω with the z1−axis. The preceding theorem now im-
plies that f is a CR-function in a neighborhood of z0 in bΩ. This proves
the first part of the theorem. As bΩ is strictly pseudoconvex at z0, there
are a neighborhood P of z0 and a continuous function ˜̃

f on P ∩ Ω that is
holomorphic on P ∩Ω and that satisfies ˜̃

f = f on P ∩ bΩ. Our assumptions
imply that there is δ > 0 such that if T denotes the set of all complex lines
parallel to the z1−axis and at distance not exceeding δ from it, then each
T ∈ T meets P ∩ bΩ transversely (and thus also meets P ∩ Ω), T meets bΩ
in a simple closed curve bounding T ∩ Ω, and f |(T ∩ bΩ) has a continuous
extension fT to T ∩Ω that is holomorphic in T ∩Ω. Since T ∩bΩ∩P contains
an arc, fT coincides with ˜̃

f |T near bΩ ∩ P. Thus, by Hartogs’s lemma, the
function f̃ defined by f̃ |(T ∩ Ω) = fT has all the required properties on
W = ∪{T : T ∈ T }.

This completes the proof.
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