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The statistics of the digits of a continued fraction, also
known as partial quotients, have been studied at least since
the time of Gauss. The usual measure m on the open in-
terval (0, 1) gives a probability space U . Let ak, k ≥ 1 be
integer-valued random variables which take α ∈ (0, 1) to the
kth partial quotient or digit in the continued fraction expan-
sion α = 1/(a1 + 1/(a2 + · · · )). Let Sr = Sr(α) =

∑r
k=1 ak.

It is well known that although there is an average value for
log ak, each ak, let alone each Sr, has infinite expected value
or first moment.

The main result of this work is that there exists a stable probability
density function φ on R so that

lim
r→∞

sup
z∈R

∣∣∣∣∣m({x ∈ (0, 1) : Sr(x) ≤ z})−
∫ z log 2/r+γ−log(r/ log 2)

−∞
φ(x) dx

∣∣∣∣∣
= 0.

Explicit error bounds, and some interesting properties of φ, are given. This φ
occupies the boundary zone between distributions with support R and those
with support of the form [a,∞), and was enough of an anomaly that Lévy
classified it as only ‘quasi-stable’. Such distributions arise also in connection
with the behavior of the sum of independent, identically distributed random
variables of infinite expected value, and φ in particular is associated with
the sum X1 +X2 + · · ·+Xn where Xj is the reciprocal of a random variable
uniformly distributed on [0, 1]. Lévy considered this sum, and conjectured
that X1+X2+ · · ·+Xn < n(log n+log c− log log log n) infinitely often if and
only if c < 1. From the results obtained here, the triple logarithm should be
a double, and the cutoff is at c = e−γ . We give a quick proof that if c < e−γ

then almost surely X1 + X2 + · · · + Xn < n(log n + log c − log log n)occurs
but finitely often.

A stable probability distribution function F is infinitely divisible and has
the additional property that for all a1 > 0, a2 > 0 and for all real b1, b2

there exist a > 0 and b so that F (a1x + b1) ∗ F (a2x + b2) = F (ax + b). The
history of our understanding of such F is convoluted. In the 1950’s, Lapin
[10] claimed to have proved that the convolution of unimodal functions is
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unimodal, but there were counterexamples, as noted by Chung in the course
of translating the book ‘Limit distributions for sums of independent random
variables’ [4]. In 1971, Wolfe published a paper [14, 1] on the unimodality
of distributions in class L, a class which includes the stable distributions.
His result was that the class of ‘one-sided’ distributions in L is unimodal.
Later, Yamazato [15, 1] showed that from Wolfe’s theorem it follows that all
distributions in class L are unimodal. Stable F , then, have unimodal density
when the dust settles. Their characteristic functions (Fourier transforms)
have the form

f(t) = exp (iγt− c|t|α {1 + iβ(t/|t|)ω(t, α)})

where in general γ is an arbitrary real number, c is an arbitrary positive
number, 0 < α ≤ 2, −1 ≤ β ≤ 1, and ω(t, α) = tan(πα/2) if α 6= 1, while
if α = 1 (the case at hand!), ω(t, α) = (2/π) log |t| [4]. For the particular
stable density function φ, we have moreover:

(1) φ is positive on R.

(2) φ(x) ≈ 1√
2π

exp
(
|x| − 1− e|x|−1

)
as x→ −∞.

(3) φ(x) = x−2 + (2γ − 3 + 2 log x)x−3 + O(x−4 log2 x) as x→∞.

(4) φ extends to an entire function as the Laplace transform of t−t sinπt.

(6) φ̂(t) = exp(−(π/2)|t|+ it log |t|).

A computer-generated plot of φ, and a couple of computer-generated his-
tograms (10000 and 80000 values of S100 respectively), for the distribution
of Sr(X), are presented below. Some tricks are needed, and some corners
have to be cut, to get this many data points in reasonable time. See the
author’s home page on the Internet for details.
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Fig. 1. Fig. 2. Fig. 3.
The proof of the main result breaks into two main parts. The typical digit
sequence (ai) consists mostly of small digits, punctuated by occasional larger
digits. We choose the cutoff at R with R := [r1/2+ε], reserving the choice of ε
for later. (Eventually, ε is taken to be 1/12.) There will almost always be on
the close order of (log 2)−1r1/2−ε of these large digits, and they are effectively
statistically independent. The conditional expected value M of a small digit,
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(one bounded by R), is finite. The sum of the small digits normally turns out
to contribute rather more than half the grand total, and for most x is close
to rM . That is, while the shape of the distribution function is determined
by the large digits, the small digits move that distribution (of the sum of
the large digits) to the right by a nearly-deterministic rM . Proving this
involves some probabilistic approximation of the original ‘game’ with other,
more suitable games that assign very nearly the same probability to ‘most’ of
the possible digit sequences, followed by an appeal to known facts concerning
the functional analysis of continued fractions. The idea of approximating a
measure G with a similar but more tractable G∗ goes back to P. Lévy, who
used it in [11] to study continued fraction questions similar to ours.

The distribution of the sum of the large digits is effectively modeled by the
sum of N = [(log 2)−1r1/2−ε] independent, identically distributed random
variables, each with probability density function fR := R/x2 on the interval
(R,∞). The second main part of the proof is an analysis of this sum. For
all stable laws F with characteristic exponent α > 1, F extends from the
real line to an entire function, [4, 10]. In our case, α = 1 and so a particular
argument is needed. From the Fourier transform of φ we are able to work
back to the asymptotic behavior of φ(x) as x→∞ and as x→ −∞, by way
of classical complex analysis starting with the formula for the inverse Fourier
transform. The analysis of the sum of the large digits yields, en passant, the
asymptotic distribution of the sum of n independent identically distributed
random variables, each with the same probability density function (1/x2 for
x > 1 else 0) as 1/X: It too is a scaled and shifted copy of φ(x): As n→∞,

prob

[
n∑
1

1/Xk ≤ n(log n + 1− γ + Z)

]
→
∫ Z

−∞
φ(x) dx

uniformly over Z ∈ R.

2. Games with essentially equal probability measures. Here we introduce a
variety of countable probability spaces, described as games of chance. Apart
from the first ‘game’, in which a single number is chosen from the open
interval (0,1) with the usual measure, our games are Markov chains. The
states of such a chain can involve a positive integer, a real number in (0, 1),
or both, but there is no dependence on the past, as there is in the evolution
of the digits of the continued fraction expansion of a random real number.
Two probability measures µj and µk say, both on the same countable event
set, will be termed equivalent to within a given margin of error δ, if the set
of elements a for which µj(a) 6∈ (1±δ) µk(a), or vice-versa, has measure less
than δ in both spaces.

The original game is to pick a random number X ∈ (0, 1), extract the
first r partial quotients or digits in its continued fraction expansion, and
form their sum. The issue is to characterize the asymptotic behavior of
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the distribution function pr(z) := prob(Sr(X)) ≤ z. This game, call it G1,
is in some respects an unsatisfactory representation of random continued
fraction digits. There is some short-range correlation between one digit and
the previous ones in the continued fraction expansion of X; this game does
not amount to a Markov chain on the digits. The game G2 described below
provides a Markov chain (game) for which the probability of any digits string
is the same as in game 1.

Play proceeds through r stages, with one digit being chosen at each stage.
At the outset, a state parameter θ is set to zero. At stage k+1, the probabil-
ity of choosing ak+1 = n is (1+θ)/((n+θ)(n+θ+1)). Once ak+1 is chosen,
set θ ← 1/(θ + ak+1). The probability of a given sequence (a1, a2, . . . ar)
of continued fraction partial quotients is exactly the same in both games:
〈a1, a2, . . . ar〉−2(1+{a1, a2, . . . ar})−1, where {a1, a2, . . . ar} denotes the con-
tinued fraction 1/(ar + 1/(ar−1 + · · ·+ 1/a1) . . . ), and 〈a1, a2, . . . ar〉, its de-
nominator. This fraction is the value of θ after those r digits have been
chosen, incidentally. An equivalent characterisation of this game is that
after digits a1 · · · ak have been chosen, a real number Y in [0, 1] is chosen
according to the probability density function (1 + {a})/(1 + {a}t)2 where
{a} denotes the continued fraction [ak, ak−1, . . . a1]. The next digit is then
chosen to be the integer part of 1/Y . The other variants introduced below,
of the ‘game’ of choosing digits, can likewise be given this kind of formula-
tion. In every case, the conditional probability density function for Y is a
positive linear combination of functions of the form (1 + θ)/(1 + θt)2, with
0 ≤ θ ≤ 1.

Equivalentr−ε variants of this game change the probabilities, but rarely
by much. That is, the set of sequences a of r positive integers falls into two
subsets, ‘typical’ and ‘atypical’ say. The probabilities the two games assign
to elements of ‘typical’ differ by a factor of 1 ± O(r−ε). The probabilities
assigned to elements of ‘atypical’ may be quite different, but the whole of
‘atypical’ has probability O(r−ε) in both games. One such game is G3. In
this game, we round θ down to zero following any occurence of a large digit:
ak ≥ R⇒ θ ← 0. Again, the ‘state’ of this Markov chain is the current value
of θ. This game has the property that for all 1 ≤ j ≤ r and all sequences
a = (a1, a2, . . . ar) with aj ≥ R,

probG3
(a) = probG3

(a1 · · · aj)probG3
(aj+1 · · · ar).

To see that games 2 and 3 are nearly equivalent, and find the extent δ to
which they are not identical (in the probabilities assigned to digit sequences),
we begin with the observation that in both games, the conditional proba-
bility, given an arbitrary initial sequence (a1, a2, . . . ak) of digits, that the
next digit ak+1 will be large, is never more than 2/R. Therefore, in both
games the probability of having several large digits is small: If N denotes
the number of large digits, then both probG1

(N ≥ z) = probG2
(N ≥ z)
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and probG3
(N ≥ z), are less than the probability of z or more heads in

r independent tosses of a coin that shows heads with probability 2/R and
tails with probability 1− 2/R. Taking z := [3r1/2+ε] makes even this latter
probability � rε−1/2 on grounds of Cauchy’s inequality. Apart from se-
quences (a1, . . . , ar) with N(a) ≥ 3r1/2−ε, though, all digit sequences have
essentially the same probability in either game. First of all, the two games
assign exactly the same probability to any sequence a with no large digits.
Consider next a sequence with exactly one large digit, say ak.

The probability of a digit sequence (a1 · · · ak, ak+1 = b1 · · · ar = br−k) =
ab, say, is given in games 1 and 2 by

〈a〉−2〈b〉−2(1 + {a}[b])−2(1 + {ab})−1

while in game 3, and assuming ak ≥ R, it is

〈a〉−2〈b〉−2(1 + {a})−1(1 + {b})−1.

Now {a} ≤ 1/R, and {b} = (1+O(1/R)){ab}. The ratio here is (1+O(1/R)).
For a sequence a with N large digits, the same calculation shows that the
ratio of probabilities assigned to a by games 2 and 3 is (1 + O(1/R))N ,
and with N � r1/2−ε that’s 1 + O(r−2ε). So we have equivalence δ with
δ = O(r−2ε).

For some purposes we need yet more statistical independence in our model
of digit-choosing. In game 4, large and small digits are chosen independently.
This game is played exactly like game 3 except on those occasions when a
large digit happens to be chosen. In this case, instead of simply using it and
resetting the auxiliary θ to zero, we discard the large digit chosen, and draw
again from the “urn of large digits”, this time with prob4(n) := R/(n(n+1))
for n ≥ R, and zero otherwise. We then set θ to zero as before. The
new probability differs by a factor of (1 + O(1/R)) from the conditional
probability in game 3 that digit ak = n given the history a1 · · · ak−1 (i.e.
given θ), and given that ak ≥ R. Since the probabilities in games 3 and 4 are
changed only by reshuffling the mass allotted to the individual large digits,
the probabilities for N are unchanged and this game, too, is equivalentδ to
the others, still with δ = O(r−2ε). Consequently, insofar as Theorem 1 is
concerned, all these games are equivalent.

The point of game 4 is that we can partition the event space according
to the subset T ⊂ {1, 2, . . . , r} of places at which ak is large (≥ R). For
fixed T , we consider the conditional games G4(T ) described below. Given
a set T ⊂ {1, 2, . . . , R}, and a sequence a = (b0n1b1 · · ·nNbN ) in which
the bj represent strings or sequences of kj := (tj+1 − tj − 1) integers all
between 1 and R − 1, and the nj are integers ≥ R, (that is, a sequence
of r positive integers for which T is the set of positions at which ‘large’
integers are found), game G4(T ) assigns probability prob4(a)/prob4(T ) to
a. Equivalently, with N = N(T ) = the cardinality of T , and with b’s, k’s
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and n’s defined in terms of a as above, we have

prob4,T (a)

=

∏N−1
j=0 〈bj〉−2

(
R

R+{bj}

)∏N
j=1 n−1

j (nj + 1)−1 · 〈bN 〉−2(1 + {bN})−1∏N−1
j=0

∑
b∈VR(kj)

〈b〉−2(R + {b})−1 ·
∑

b∈VR(kN )〈b〉−2(1 + {b})−1
.

For most T , (including all T with N(T ) ≤ 4r1/2−ε), this conditional proba-
bility agrees, to within a factor of (1±O(r−2ε)) with∏N−1

j=0 〈bj〉−2
∏N

j=1 Rn−1
j (nj + 1)−1 · 〈bN 〉−2(1 + {bN})−1∏N−1

j=0

∑
b∈VR(kj)

〈b〉−2 ·
∑

b∈VR(kN )〈b〉−2(1 + {b})−1
.

As mentioned earlier, the sum of the small digits is a random variable with
relatively little dispersion. Specifically, we shall see that N(T ) ≥ 3r1/2−ε

with probability O(r−2ε) (actually, far less), and that for all other T , the
conditional probability in game 4 (T ) that the sum of the small digits falls
outside r

log 2

(
(1
2 + ε) log r − 1

)
+ O

(
r(3/4)+2ε

)
is O(r−ε). From the perspec-

tive of the theorem, this may as well say that the sum of the small digits
is always r

log 2

(
(1
2 + ε) log r − 1

)
. There is a deep and fruitful connection

[7, 8, 12] between the metric theory of continued fractions and the linear
operator

G : f(t)→
∞∑

k=1

(k + t)−2f(1/(k + t)).

This operator, and a variant L in which the upper limit of summation is
R − 1, will be at the center of the calculations ahead. At this point it will
be convenient to introduce some more terminology.

Recall that 〈b〉 = 〈(b1, b2, . . . , bm)〉 represents the denominator of 1/(b1 +
1/(b2 + 1/(· · · + 1/bm) . . . )), that [b] represents the fraction itself, and {b},
the fraction corresponding to the sequence (bm, bm−1 · · · b1). Let V (k) denote
the Cartesian product of k copies of Z+, and Vm(k) the Cartesian product
of k copies of {1, 2, . . . , m}. Let ‖b‖ denote

∑k
j=1 bj for b ∈ V (k). Let

Lm be the operator carrying f (a function from C to C) to the function
t →

∑m
j=1(j + t)−2f(1/(j + t)), also defined on C. For our purposes the

important thing will be the action of powers of LR−1 on constant functions,
and on functions of the form t→ (1 + θt)−2.

The basis of the connection between this operator and questions of con-
tinued fractions is the fact that

Lk
m(1) =

∑
b∈Vm(k)

〈b〉−2(1 + {b}t)−2
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and that g = g∞ = 1/(log 2(1 + t)) is the leading eigenvalue of L∞. More
generally,

Lk
m(1 + θt)−2 =

∑
b∈Vm(k)

〈θ + b〉−2(1 + {θ + b}t)−2

where θ + b denotes the sequence (θ + b1, b2, . . . bk) and where 0 ≤ θ ≤ 1.
We quote a result [7, Lemma 2.1 etc.], adapted and specialized to the case
at hand:

Lemma 1. There is a sequence of probability density functions gm : [0, 1]→
R+, and numbers λm ∈ (0, 1), so that

Lmgm = λmgm(a)

gm =
1

log 2
1

1 + t

(
1 + O(m−1/2)

)
(b)

λm = 1− 6
π2m

+ O(m−2 log m)(c)

Lk
m(1 + θt)−2 =

λk
mg(t)
1 + θ

(
1 + O(m−1/2) + O(3−k)

)
(d)

The functions gm have the form
∫ 1
0 (1 + θ)(1 + θt)−2dµm(θ) where µm is a

probability measure on [0, 1].

With this machinery we now set about getting estimates for the quantities∑
b∈Vm(k)

〈b〉−2,
∑

b∈Vm(k)

〈b〉−2(1 + {b})−1

∑
b∈Vm(k)

〈b〉−2‖b‖, and
∑

b∈Vm(k)

〈b〉−2(1 + {b})−1‖b‖

with particular emphasis on the case m = R − 1, k ∈ [rε, r1/2+2ε]. Apart
from a negligible fraction (no more than O(r−ε)) of the mass of a’s, weighted
according to the probabilities in any of the games G1 . . . G4, every interval kj

between consecutive large digits is of length at least rε. Indeed, prob[∃ gap <

rε] ≤
∑r

j=1

∑rε

k=1 prob[both aj and aj+k ≥ R−1]. A long run of small digits
is also unlikely: As we have seen, the conditional probability, in all games
and for all antecedent digit strings a, that the next digit is large is always
between 1/R and 2/R. Thus in games 3 and 4, the probability of a string
of k or more consecutive small digits in positions j . . . j + k − 1 say, is
≤ (1 − 1/R)k and so the probability of any such string is ≤ r(1 − 1/R)k.
Setting k = [R1/2+2ε] gives the claimed inequality.

The estimates from Lemma 1, applied in this case, lead to∑
b∈Vm(k)

〈b〉−2(1 + {b}t)−2 = (1 + O(exp(−rε)))λk
mgm(t),(i)
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b∈Vm(k)

〈b〉−2 = (1 + O(exp(−rε)))λk
mgm(0),(ii)

∑
b∈Vm(k)

〈b〉−2(1 + {b})−1 = (1 + O(exp(−rε)))λk
m.(iii)

For the next sum ∑
b∈Vm(k)

〈b〉−2(1 + {b})−1‖b‖

we start with the observation that this is
k∑

j=1

∑
c∈Vm(j−1)

∑
d∈Vm(k−j)

m∑
n=1

n〈cnd〉−2(1 + {cnd})−1

where the juxtaposition cnd denotes the concatenation of the sequences c
and d with the single entry n between them. Now {cnd} = (1+O(ρk−j)){d}
where ρ = 2/(1 +

√
5). The sum here thus simplifies to

k∑
j=1

(1 + O(ρk−j))
∑

c∈Vm(j−1)

m∑
n=1

〈c〉−2 n

(n + {c})2

times an inner sum of∫ 1

0

∑
d∈Vm(k−j)

〈d〉−2 (1 + θ[d])−2 (1 + {θ + d}t)−2 dt

where θ = 1/(n + {c}). From the identities above, this inner sum is∫ 1
0 Lk−j

m (1 + θt)−2 dt. But by Lemma 1, this inner sum is λk−j
m (1 + 1/(n +

{c}))−1(1 + O(m−1/2) + O(3j−k)) so that∑
b∈Vm(k)

〈b〉−2(1 + {b})−1‖b‖

=
k∑

j=1

(1 + O(m−1/2) + O(ρk−j))λk−j
m

·
∑

c∈Vm(j−1)

m∑
n=1

〈c〉−2 n

(n + {c})(n + 1 + {c})
.

The inner double sum can be simplified; with h = j − 1 it is∑
c∈Vm(h)

〈c〉−2
m∑

n=1

n

∫ 1/n

1/(n+1)
Lh

m(1)(t) dt

= λh
m(log 2)−1

m∑
n=1

n log
(

(n + 1)2

n(n + 2)

)
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+ O(3−hλh
m log m) + O

(
λh

m log m/
√

m
)

= λh
m

(
log m− 1

log 2
+ O

(
log m/

√
m
)

+ O(3−h log m)
)

.

and so ∑
b∈Vm(k)

〈b〉−2(1 + {b})−1‖b‖

= kλk−1
m

(
log m− 1

log 2

)
(1 + O(m−1/2) + O(k−1)).

In the same way we have∑
b∈Vm(k)

〈b〉−2‖b‖ = kλk−1
m

(
log m− 1

log2 2

)
(1 + O(m−1/2) + O(k−1)).

Now given a fixed set T of positions at which large digits are to occur, with
N(T ) � r1/2−ε and all gaps between consecutive elements of T at least
rε, the expected value in game 4(T ) of the sum of the jth sequence of kj

consecutive small digits (bordered by large digits on both ends or, in the last
case, just on the left), is (1 + O(R−1/2) + O(k−1

j ))kj(log m − 1)/ log 2 and
summing this over all N gaps gives an expected value for the sum of the small
digits of (1 + O(R−1/2))r(log R− 1)/ log 2. Since this is the same, to within
that margin of error, for all relevant values of T , the conditional expected
value of the sum of the small digits, given that T satisifies the constraints
N(T ) � r1/2−ε ,with all gaps ≥ rε, is (1 + O(r−1/4))r(log R − 1)/ log 2.
We turn now to the question of the dispersion of the value of ‖b‖ about this
mean, and as one might expect, by way of an estimate of the second moment
of ‖b‖. For fixed T the events ‖b0‖, ‖b1‖ . . . ‖bN‖ are independent. Thus

Var
N∑

j=0

‖bj‖ =
N∑

j=0

Var‖bj‖ ≤
N∑

j=0

E[‖bj‖2].

For a string of k consecutive small digits, we can estimate E[‖b‖2]. The
idea of the estimate is this: We break the dependence of the digits of b by
assuming at each new digit the worst: θ = 1, or what is roughly equivalent,
the previous two digits were a large one followed by 1. This will skew to the
right the distribution of ‖b‖ and increase its second moment, which latter
second moment is easily calculated because we finally have independent
random digits. The technicalities of the next few paragraphs are devoted to
justifying the claim that changing the odds in this fashion really does shift
the distribution of ‖b‖ right. In this calculation we are concerned with the
conditional probability, (in any of games 2 through 4) that ‖b‖ = t, given
an initial value for θ, and given that for (at least) the next k digits, no digit
as large as R occurs. With these conditions, the probability of a sequence
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b is the product of the conditional probabilities for the consecutive digits of
b, when those are given by the formulae

p(θ, n) :=

∫ 1/n
s=1/(n+1)(1 + θs)−2 ds∫ 1

s=1/R(1 + θs)−2 ds
, p(b) :=

k∏
j=1

p({b1, b2, . . . , bj−1}, bj).

If we use instead the worst-case odds, we have a different probability:

q(n) :=

∫ 1/n
s=1/(n+1)(1 + s)−2 ds∫ 1

s=1/R(1 + s)−2 ds
, q(b) :=

k∏
j=1

q(bj)

in which the digits of b are independent. Now let pk(t) := probp(‖b‖ =
t) =

∑
b∈VR−1(k) p(b), and qk(t) := probq(‖b‖ = t) =

∑
b∈VR−1(k) q(b). The

sequences pk(t), (t ≥ 1) and qk(t), (t ≥ 1) are sequences of finitely many
positive numbers followed by zeros, and with sum 1. The claim above about
skewed distributions comes to this: (pk(t)) is more peaked than (qk(t)).
Equivalently,

∑t
j=1 pk(j) ≥

∑t
j=1 qk(j) for all t ≥ 1 and all k ≥ 1. For

k = 1, this claim boils down to the readily verified proposition that for t ≥ 1
and 0 ≤ θ ≤ 1, ∫ 1

1/(t+1)(1 + θs)−2 ds∫ 1
1/R(1 + θs)−2

≥

∫ 1
1/(t+1)(1 + s)−2 ds∫ 1

1/R(1 + s)−2
.

Assuming this peakedness inequality for k = K, we now consider the case
k = K + 1. We have

t∑
j=1

pK+1(j)

=
t∑

n=1

∑
(a∈VR−1(K)

‖a‖=t−n
)

〈a〉−2(1 + {a})−1

∫
max[1/(n+1),1/R](1 + s{a})−2 ds∫ 1

1/R(1 + s{a})−2 ds

≥
t∑

n=1

∑
(a∈VR−1(K)

‖a‖=t−n
)

〈a〉−2(1 + {a})−1

∫
max[1/(n+1),1/R](1 + s)−2 ds∫ 1

1/R(1 + s)−2 ds

=
t∑

n=1

∑
(a∈VR−1(K)

‖a‖=t−n
)

〈a〉−2(1 + {a})−1
n∑

j=1

q1(j) =
t∑

n=1

Q1(n)pk(t− n)

say, where Q1(n) :=
∑n

j=1 q1(j). On the other hand,

QK+1(t) =
t∑

j=1

qK+1(j) =
t∑

n=1

Q1(n)qK(t− n).
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We are now in a position to use a simple peakedness lemma. The proof is
an exercise in summation by parts and is left to the reader.

Lemma 2. If (cn) is a positive, non-decreasing sequence, and if (dn) and
(en) are sequences of positive numbers with (dn) more peaked than (en), then
for all t ≥ 1,

∑t−1
n=1 cndt−n ≥

∑t−1
n=1 cnet−n. From this lemma, then, for all

t ≥ 1 we have
∑t

j=1 pK(j) ≥
∑t

j=1 qK(j) as claimed, which completes the
induction.

Choosing k small digits for b according to the probabilities q is a game
of k independent trials. The mean or expected value of a single digit’s con-
tribution to ‖b‖ is Eq(k) =

∑R−1
n=1

2n(R+1)
(R−1)(n+1)(n+2) ≈ log R, and the variance

is Varq(k) =
∑R−1

n=1
2(R+1)(n−Eq(k))2

(R−1)(n+1)(n+2) � R. Hence for ‖b‖ itself, the variance
is dominated by kR. Therefore the second moment, with q probabilities, of
‖b‖ is dominated by kR + (k log R)2, so that also for ‖b‖ with the original
conditional probabilities p, conditional probabilities the second moment is
dominated by kR + (k log R)2. That is, we have shown that

λ−k
R−1

∑
b∈VR−1

‖b‖2〈b〉−2(1 + {b})−1 � kR + (k log R)2.

Now in game 4, the various sequences of small digits, punctuated by digits
≥ R, are themselves independent. Thus for all T ⊂ {1, 2, . . . , r} with maxi-
mum gap kj ≤ 2r1/2+ε, the conditional expected second moment, given that
large digits are found at all positions corresponding to T and only there, is

N(T )∑
j=0

∑
b0∈VR−1(k0),...bN(T )∈VR−1(kN(T ))

‖bj‖2prob(b0 ∧ b1 · · · ∧ bN(T ))

�
[
r1/2+εR + r1+2ε log2 r

]
· r1/2+ε � r3/2+ε log2 r.

Therefore, in all but intervals of aggregate length O(r−ε) in [0, 1], the sum
of the small digits amongst the first r digits is (r/ log 2)((1/2+ε) log r−1)+
O(r3/4+2ε).

This brings us to the question of the statistics of the large digits. While
the small digits do contribute to the determination of the set-point of the
distribution of ‖a‖, they have essentially nothing to do with its shape. The
sum of the large digits is the chancy part; the big plays decide the game.

3. The number of large digits. For fixed T , and assuming that N(T ) ≤
r1/2−ε, the sequence of large digits in game 4 (T ) is a sequence of N(T )
independent, identically distributed random variables. The probability of
a given digit taking value n ≥ R is R/(n(n + 1)); these probabilities sum
to 1. We begin the analysis of the distribution of the sum of these digits
by observing that the distribution will be essentially the same if we use the



114 DOUG HENSLEY

continuous probability density function Rt−2 on the interval [R,∞) in place
of the original discrete measure: the effect is the same as if, after choosing
a digit n, we add a random fractional quantity with probability density
n(n + 1)(n + t)−2 on [n, n + 1]. There is enough leeway in the statement of
the main result that this change cannot affect the conclusion.

Let Yj , 1 ≤ j ≤ N be a sequence of N independent random variables with
probability density function fR(t) := Rt−2 on [R,∞) (and 0 otherwise).
The random variable LDSumN :=

∑N
j=1 Yj has a probability density func-

tion ρR,N (x) which is the N -fold convolution of fR. Before getting deeply
involved in the estimation of ρ̂ and eventually ρ itself, we need to pin down
N more tightly.

In game 4, the probability of an initial run of exactly m consecutive small
digits is∑

b∈VR(m)

〈b〉−2

∫ 1/R

0
(1 + {b}t)−2 dt =

∫ 1/R

0
(Lm1)(t) dt

= (1 + O(R−1/2) + O(3−m))
λm

R

(R log 2)
.

This is also the conditional probability of such a run immediately following
a large digit. Thus the conditional probability of a run ending with the very
next digit, given that there have been exactly k small digits since the most
recent large digit or since the beginning, is (1+O(3−k)+O(R−1/2))/(R log 2).

In game 4, prob[N(T ) ≥ 4r1/2−ε] � r−ε, and prob[min[kj ] ≤ rε] � r−ε.
For any other T , we have

prob4[large digits occur exactly for indices in T ]

=
N(T )∏
j=0

kj∏
i=1

(
1− (1 + O(3−i))/R log 2

)
·

N(T )∏
j=1

1
R log 2

(
1 + O(3−kj )

)
= (1 + O(r−ε))(R log 2)−N(T ) (1− 1/R log 2)r−N(T ) .

Apart from the error factor in front, this last is the probability of getting
heads at exactly the tosses corresponding to elements in T , on r Bernoulli
trials of a coin with probability of heads equal to 1/R log 2 and tails, 1 −
1/R log 2. Elementary calculations give probBernoulli[#heads 6∈ r

R log 2 ±
O(r1/4)] � r−ε and in view of the previous estimates, the same holds for
prob4[N(T ) 6∈ r

R log 2 ±O(r1/4)]. This brings us to the main issue of the next
section: what do we get when we convolve N copies of the function fR(x) =
Rx−2 for x ≥ R, and zero otherwise? The precise value of N , between
(r1/2−ε/ log 2± Cr1/4), is immaterial to our purposes since the convolution
of Cr1/4 copies of fR is, as we shall see, a probability density function with
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all but O(r−ε) of its mass concentrated into the (sufficiently narrow) interval
[0, r(3/4)+2ε].

4. The sum of the reciprocals of random numbers in (0, 1). To study the
convolution powers of fR, it will suffice to investigate the convolution powers
of u(x) := 1/x2(x ≥ 1), 0(x < 1), as f∗nR = (1/R)u∗n(x/R). Note that u∗n(x)
is the probability density function of the sum of n independent, identically
distributed random variables 1/Xj when Xj has uniform distribution on
(0, 1). (Hence the title of this section.)

The distribution function corresponding to the density u is of course
U(x) := 1 − 1/x (x ≥ 1). According to a theorem of Gnedenko [4, The-
orem 5, p. 182], U belongs to the ‘domain of attraction’ of a stable law
with α = 1. We need to know how fast this attraction works. With
ˆ:= f → (t→

∫∞
−∞ f(z)e−izt dz), we have

v(t) := û(t) =
∫ ∞

1
z−2e−izt dz

= 1 + it log |t| − 1
2
π|t|+ it(γ − 1)−

∞∑
k=2

(−it)n

(n− 1)n!

which is the known function Ei(2, t). The series part of the expansion ex-
tends to an entire function, but the logarithmic term requires a branch cut,
which we take along the negative real axis. This gives an extension of v(t)
to the rest of C. For completeness we extend v to all of C by taking limits
from above the branch cut. Conversely, u(z) := v̆(z) = 1

2π

∫∞
−∞ v(t)e+itz dt.

Let u1(z) := u(z), and for n ≥ 1, let un := u∗un−1. Then ûn(z) = (v(t))n.
From the series expansion of v(t), for n > 1 we have

vn(t) = exp
(
−π

2
n|t|+ int log |t|+ int(γ − 1) + O(nt2(1 + log2 |t|))

)
uniformly in |t| ≤ 1/(

√
n log n). Now let

φ(z) :=
1
2π

∫ ∞

−∞
exp

(
−π

2
|s|+ is log |s|+ isz

)
ds

so that φ̂(t) = exp
(
−π

2
|t|+ it log |t|

)
.

Note that for z ∈ R, |φ(z)| ≤ 1 and
∫∞
−∞ φ(z) dz = 1 , while for t ∈

R, |φ̂(t)| ≤ 1, with φ̂(0) = 1. Another observation is that the Fourier
transforms of suitably shifted and scaled versions of φ are quite close to
vn(t):

̂[
1
n

φ
( z

n
− log n + γ − 1

)]
(t) = e−int(log n+γ−1)φ̂(nt)
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= exp
(
−π

2
n|t|+ int log |t|+ int(γ − 1)

)
.

Thus for n > 1 and uniformly over t ∈ R with |t| ≤ 1/(
√

n log2 n),

vn(t) =
̂[

1
n

φ
( z

n
− log n + γ − 1

)]
(t) ·

(
1 + O(nt2(1 + log2 |t|))

)
.

We now claim that uniformly for z ∈ R,∣∣∣∣∫ z

−∞
un(x)− 1

n
φ
(x

n
− log n + γ − 1

)
dx

∣∣∣∣� log n√
n

and∣∣∣∣∫ z

−∞
(fR(x))∗n − 1

nR
φ
( x

nR
− log n + γ − 1

)
dx

∣∣∣∣� log n√
n

.

Proof. According to the Berry-Esseen inequality [3], ‘If F (x) and G(x)
are probability distribution functions with Fourier transforms f(t) and g(t)
respectively, then for all T > 0,

sup
x∈R
|F (x)−G(x)|

≤ c1

{
sup
y∈R

1
2
T

∫ 1/T

0
(G(y + u)−G(y − u)) du +

∫ T

−T

∣∣∣∣f(t)− g(t)
t

∣∣∣∣ dt

}
where c1 > 0 is an effectively computable constant.’ (Remark: The constant
may be computed directly from the proof given in [3]; I get c1 = 24.69....)

We take G(x) := 1
n

∫ x
−∞ φ

(
z
n − log n + γ − 1

)
dz and F (x) := un(x), so

that f(t) = vn(t) and g(t) = exp
(
−π

2 n|t|+ int log |t|+ int(γ − 1)
)
. We then

take T = 1/(
√

n log n). Since |φ| ≤ 1 on R, the first term in the Berry-Esseen
bound is no more than 1/2nT = log n/2

√
n. For the second term, when

|t| ≤ T we have |(f(t)−g(t))/t| � n|t|e−πn|t|/2. Thus
∫ T
−T |(f(t)−g(t))/t| �

n
∫∞
0 t exp(−πnt/2) dt = 4/π2n. Both claims now follow. From the first

claim our (much) earlier assertion that prob[
∑n

1 1/Xk ≤ n(log n + 1 − γ +
Z)] →

∫ Z
−∞ φ(x) dx is immediate, and with an error bound of O(log n/

√
n)

which is uniform in Z.
In view of our estimate for the sum of the small digits, it now follows that

probG1

[
r∑

k=1

ak ≤ z

]
= O(r−ε log2 r) +

∫ z−h(r)

−∞
R−1un(x/R) dx

where h(r) := (r/ log 2)((1/2 + ε) log r − 1) + O(r3/4+2ε), and where n =
[r1/2−ε/ log 2]. Routine calculus with ρ := r/ log 2, ε := 1/12, and taking
into account the fact that φ(x) ≤ 1 on R, reduces this to

probG1

[
r∑

k=1

ak ≤ z

]
=
∫ z−ρ(log ρ+γ)

−∞
ρ−1φ(s/ρ) dρ + O(E)
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=
∫ z/ρ−log ρ+γ

−∞
φ(s) ds + O(E)

where E = r−1/12 log2 r. This, apart from the characterisation of φ, is our
main theorem.

Remark on Lévy’s conjecture about this sum: For arbitrary positive
λ, and Y ∈ R, prob [

∑n
k=1 Xk < Y ] <

∫ Y
−∞ u∗n(z) exp(λ(Y − z)) dz. The

Fourier transform of u(z) exp(−λz) is

1 + (λ + it)(log(λ + it) + γ − 1)−
∞∑

k=2

(−1)k(λ + it)k

(k − 1)k!
.

Setting t = 0 and using the inequality (1 − a)n < exp(−na) for 0 < a < 1
we have

prob

[
n∑

k=1

Xk < Y

]
< exp (λY + nλ log λ + n(γ − 1)) .

Setting Y = n log n + nθ − n log log n and λ = n−1e−γ−θ log n gives prob <
exp(−e−γ−θ log n). The sum over n of this upper bound is finite if and only if
θ < −γ, or equivalently, c < e−γ . The bounds obtained with this technique
are usually quite good. The conjecture should thus be that the sum of the
reciprocals of n [0, 1] uniform random variables is infinitely often less than
n log n + log c− log log n if and only if c < e−γ .

5. Properties of φ(x). Recall that φ is defined as the inverse Fourier trans-
form of exp

(
−π

2 |t|+ it log |t|
)
. We now put φθ(x) := θ−1φ(x/θ − log θ) for

θ > 0. Then φ̂θ(t) = (φ̂(t))θ. Thus (φ ∗ φθ )̂(t) = φ̂(t)φ̂θ = (φ̂(t))1+θ, so that
φ ∗ φθ = φ1+θ. In particular, and in contrast to the way the best-known
stable function exp(−x2) behaves, (φ ∗ φ)(x) = 1

2φ(x/2− log 2).
The factor exp(−(π/2)|t|) in the definition of φ ensures that φ extends to

a function analytic at least in a strip |=(z)| < π/2. Thus

φ(n)(z) =
1
2π

in
∫ ∞

−∞
sn exp

(
−π

2
|s|+ is log |s|+ isx

)
ds

so that |φ(n)(x)| ≤ n!2nπ−n−2.

Because φ is the limit of shifted and scaled versions of un’s, it is non-negative
on R. But since it is analytic on a strip including R, it is positive a.e. on
R. Finally, since φ ∗ φ(x) = φ(x/2− log 2), φ is strictly positive on all of R.

Remark. Not all stable probability density functions are positive on the
entire real line. Those with α < 1 and |β| = 1 have support an interval of the
form [c,∞) or (−∞, c]. From this one might say that φ barely escapes this
fate. The rapid decay of φ to zero on the left fits in with this observation.
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The asymptotic analysis of φ begins with the observation that for x real,

φ(x) =
1
π
<
[∫ ∞

0
e−πs/2 exp(i(s log s + xs)) ds

]
.

We take an arbitrarily large M and deform the path of integration so that
it runs in straight segments from 0 to Mi to M(1 + i) to M , and then to
∞ along R. The contributions from all but the first leg of this path tend to
zero as M →∞, so (with y = is),

φ(x) =
1
π

∫ ∞

0
sin(πy)e−y log y−xy dy.

From this formula it is clear that φ actually extends to an entire function.
Our immediate interest, though, is in the behavior as x→ +∞. We have

φ(x) =
1
π

∫ 1/
√

x

0
(πy + O(y3))e−y log y−xy dy + O

(∫ ∞

1/
√

x
e−xy+(1/2)y log x dy

)

=
∫ 1/

√
x

0
ye−xy(1− y log y + O(y2 log2 x)) dy + O(x−4)

= x−2 + O(x−3 log x).

Remark. The analysis may be carried to more terms, most conveniently
with the aid of a computer algebra system. Mathematica gives x−2 −
2x−3 log x + (3− 2γ)x−3 + O(x−4 log2 x) and higher-order expansions. The
series does not appear to be convergent and x must be rather large before
even the third term improves matters.

For x → −∞, we take α := e|x|−1 and deform the path [0,∞) to run
instead from 0 to −αi and thence to −αi + M to M and on to ∞. Now if
s = σ − it with 0 ≤ t ≤ α and σ > 0, then the log of the integrand is

− 1
2
πσ +

1
2
σ log(σ2 + t2) + tx + σ tan−1(t/σ)

− it tan−1(t/σ) +
1
2
iσ log(σ2 + t2) + ixσ +

1
2
iπt.

The real part of this tends to −∞ uniformly in 0 ≤ t ≤ α which justifies
omitting the return to the real axis, and instead proceeding to −iα+∞ after
the initial down-leg. The contribution of that down-leg, though, to the real
part of the integral, is zero. Now the series expansion of −πs/2+is log s+isx
about −iα, is

−α +
∞∑

n=2

(−i)n

n(n− 1)
e−α(n−1)(s + iα)n.
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Thus for x < 0,

φ(x) =
1
π

e−α <

[∫ ∞

σ=0
exp

(
α

∞∑
n=2

(−i)nσn

n(n− 1)

)
dσ

]

=
α

π
e−α <

[∫ ∞

σ=0
exp

(
−α

∫ σ

0
tan−1 ν dν +

iα

2

∫ σ

0
log(1 + ν2) dν

)
dσ

]
.

The contribution to the double integral from σ≥1 is� exp(−α
∫ 1
0 tan−1 ν dν)

� e−απ/8. For the interval α−2/5 ≤ σ ≤ 1, the series expansion above shows
that the contribution is O(exp(−1

3α1/5)). For 0 < σ ≤ α−2/5, though,
the series for the integrand reduces to (1 + O(α−1/5)) exp(−1

2ασ2). Thus
φ(x) =

√
α
2πe−α

(
1 + O(α−1/5)

)
. This proves our second decay-rate claim

for φ(x).
Directly from the integrals that define φ it is a relatively simple matter

to compute and plot φ and its first two derivatives. The resulting plots are
shown below, and they fit in nicely with Wolfe’s theorem. (Our φ is one of
the functions covered by his special case of Yamazato’s theorem to the effect
that all distributions in class L are unimodal.) From the graphs, it looks
as though more might be true. Does the nth derivative of φ have exactly n
zeros?
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120 DOUG HENSLEY

[6] S. Hartman, Quelques propriétés ergodiques des fractions continues, Studia Math.,
12 (1951), 271-278.

[7] D. Hensley, The number of steps in the Euclidean algorithm, J. of Number Theory,
49 (1994), 142-182.

[8] , Continued fraction Cantor sets, Hausdorff dimension, and functional analy-
sis, J. of Number Theory, 40 (1992), 336-358.

[9] A.Ya. Khinchin, Continued Fractions, U. of Chicago Press, Chicago, 1964.

[10] A.I. Lapin, On some properties of stable laws, Dissertation, 1947.
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