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For the equation of constant mean curvature with pre-
scribed constant contact angle boundary condition, using the
unique continuation of analytic function, we get a minimum
principle for a combination of the solution and its gradient.
Thus we get the endpoint case for P -function (Sperb, 1981)
and in fact answer an open question which appeared twenty
years ago in Payne & Philippin, 1977, 1979 and Sperb, 1981.
As an application, sharp size and shape estimetes for capillary
free surface without gravity are obtained.

1. Introduction and Results.

The capillary surface of a liquid contained in a vertical tube with arbitrary
cross section Ω in the outer space has the shape of surface of constant mean
curvature with constant contact angle θo against the wall of the tube. Let the
capillary surface be expressed non-parametrically as the graph of a function
u defined over the cross section Ω. How does the boundary geometry of Ω
and the contact angle θo influence the size and shape of the capillary free
surface?

For the convexity of the capillary free surface, in [2], Chen and Huang
have shown if Ω is a bounded convex domain in the plane and θo = 0, then
the corresponding capillary surface is also convex. Finn [3] provided an
example to show if θo 6= 0 the result is in general false.

In [1, 10], Chen and Sakaguchi showed if Ω be a bounded smooth convex
domain in R2, 0 < θo < π

2 , the capillary free surface over Ω has only one
minimal point. From the convexity of the surface as θo = 0, we know for
any θo (0 ≤ θo < π

2 ), the minimal point is unique.
In this paper we consider the influence of boundary geometry and the

contact angle θo (0 ≤ θo < π
2 ) on the size and shape for the capillary free

surface without gravity. Precisely, let Ω be a bounded convex domain in
R2 with smooth boundary ∂Ω. Give a positive constant H, consider the
following equations:

2∑
i=1

Di

(
ui√

1 + |Du|2

)
= 2H in Ω(1.1)
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un√
1 + |Du|2

= cos θo on ∂Ω.(1.2)

Where ui, i = 1, 2 are partial derivatives of u, n denotes the unit outer
normal to ∂Ω, un denotes the direction derivative of u along n, and θo

(0 ≤ θo < π
2 ) is the constant with 2H|Ω| = cos θo|∂Ω| (|Ω| is the area of

Ω and |∂Ω| is the length of ∂Ω). The graph of solution u to (1.1)-(1.2)
described a capillary free surface without gravity over the cross section Ω.

Let A ∈ ∂Ω be a point corresponding to a minimum boundary value of
u, B ∈ ∂Ω be a point corresponding to a maximum boundary value of u,
C ∈ Ω be the unique minimal (critical) point of u and k(x) be the curvature
of ∂Ω at x ∈ ∂Ω. Now we state our theorems:

Theorem 1. Let u ∈ C3(Ω̄) be a solution to (1.1)-(1.2), then the following
inequalities hold

1):

u(A)− u(C) ≤ 1− sin θo

H
(1.3)

k(A) ≤ H

cos θo
,(1.4)

2):

u(B)− u(C) ≥ 1− sin θo

H
(1.5)

k(B) ≥ H

cos θo
.(1.6)

If one of the equality signs of (1.3)-(1.6) holds then Ω is a disk of radius
cos θo

H
and

u(x)− u(C) ≡ 1− sin θo

H
on ∂Ω(1.7)

k(x) ≡ H

cos θo
on ∂Ω.(1.8)

Conversely, (1.7)-(1.8) holds on ∂Ω if Ω is a disk of radius
cos θo

H
.

The proof of Theorem 1 is based on Hopf maximum principle [9] and the
following minimum principle.

Theorem 2. Let u ∈ C3(Ω̄) be a solution to (1.1)-(1.2), then the function

P (x) = 2− 2(1 + |Du|2)−
1
2 − 2Hu

attains its minimum on the boundary ∂Ω, unless P (x) is a constant on Ω̄.
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In [7], Payne and Philippin had proved a similar maximum principle for
the above function P (x) that under the same condition it also attains its
maximum on ∂Ω unless P (x) is a constant in Ω.

Since our theorems concern only qualitative property of the solution, so
only under the hypothesis of the existence of the solution we prove theorems.
For the existence of solution and background details we refer the reader to
the sources [4].

According to the work Nirenberg [5] or [4] we conclude that u is an
analytic function in Ω, a feature which will be used in this paper.

In Section 2 we will give the the proof of Theorem 2 which is based on
the unique continuation of analytic function. Section 3 contains a proof of
Theorem 1 and a Corollary, which give the estimates of capillary free surface
area using the volume of a liquid, |Ω|, θo, u(A) and u(B).

We conclude the introduction with some notations and an identity for
Equation (1.1). Let Ω be a bounded convex smooth domain in the plane.
We introduce curvilinear coordinate system (r, s), where s represents arc
length along ∂Ω and r(x1, x2) is the distance from a point x = (x1, x2) in Ω
to ∂Ω. As in [11], we denotes n = (n1, n2) the unit outward normal to ∂Ω,
T = (T 1, T 2) is the unit tangent vector of ∂Ω. The summation convention
over repeated indices (from 1 to 2) will be employed. Assume that a function
u(x1, x2) is smooth in Ω̄, the following abbreviations will be adopted

u1 =
∂u

∂x1
, u2 =

∂u

∂x2
, uij =

∂2u

∂xi∂xj
, . . . , v = 1 + |Du|2.

Following [11], we define the normal derivative ∂u
∂n of u by

un = lim
r→0

1
r
(u(x)− u(x− rn)) = uin

i.

On ∂Ω we can also define a tagential derivative ∂u
∂s of u by

us = uiT
i.

Then we have the following formulas on ∂Ω

uss =
∂2u

∂s2
= uijT

iT j − kuin
i(1.9)

unn =
∂2u

∂n2
= uijn

inj

uns =
∂

∂s
(
∂u

∂n
) = uijn

iT j + kus

usn = uns − kus.

Using curvilinear coordinate system, Equation (1.1) implies the following
formula on ∂Ω

(1.10) unn(1 + u2
s) = 2Hv

3
2 − (uss + kun)v + (ussu

2
s + 2usununs − kunu2

s),
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which will be used in Section 3 to prove Theorem 1.

Remark. The formula (1.4) is implicit contained in [7].

2. A minimum principle.

We consider the boundary value problem (1.1)-(1.2) in a strict convex bound-
ed domain Ω in R2 with smooth boundary ∂Ω, and define the following
function:

(2.1) Pα(x) = 2− 2(1 + |Du|2)−
1
2 − 2αHu.

We know that Pα(x) takes its maximum value at the critical point for α ≥ 2
[6], and on the boundary ∂Ω for α ≤ 1 [7]. We concentrate now our attention
on α ∈ [1, 2], and state the following:

Lemma 2.1 ([7, 8]). The function Pα(x) defined in (2.1) satisfies the fol-
lowing elliptic differential equation:

(δij − uiujv
−1)Pα

ij − [2Hv−
1
2 ui + 2v−1|Du|−2ukuki(2.2)

+ 2(α− 2)Hv−
1
2 |Du|−2ui − 2v−2|Du|−2ukuluklui]Pα

i

= 4(α− 1)(α− 2)H2v−
1
2 ,

where δij is Kronecker symbol.

For the proof of Lemma 2.1, we make use of Definition (2.1) and of the
following identity (valid in R2 only):

uijuiuj |Du|2 ≡ |Du|2(∆u)2 + 2uiuijukukj − 2∆uuiujuij .

The details of the computations are omitted here since they had been given
in [7].

From Lemma 2.1 and Hopf maximum principle [9] we conclude that Pα(x)
takes its minimum value either on the boundary of ∂Ω, or at the unique
critical point C ∈ Ω for α ∈ [1, 2]. For α > 1, the second alternative had
been rejected by Philippin [7]. The purpose of this section is to show even
α = 1 the second alternative can also be rejected unless Pα(x) is a constant
in Ω. This can be achieved as a consequence of the following:

Theorem 2.2. Let u ∈ C3(Ω̄) is a solution to (1.1)-(1.2), if

P (x) = 2− 2v−
1
2 − 2Hu

attains its minimum at the unique critical point C ∈ Ω, then P (x) is a
constant on Ω̄.

For the proof of the Theorem 2.2, we use the strong unique continuation
of analytic function, so our program is to show all order derivatives of P (x)
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are vanishing at C ∈ Ω. To this end, we choose the origin of the coordinate
axes at the critical point C ∈ Ω, then

(2.3) u1(C) = u2(C) = 0,

and orient the axes x1 and x2 in such a way that

(2.4) u12(C) = 0.

From Chen , Huang [2] and Sakaguchi [10], we know

(2.5) u11(C) > 0, u22(C) > 0,

which will be used essential in the following proof.

Proof of Theorem 2.2. Our proof is divided four steps.
Step 1: We show the derivatives of P (x) up to order 2 are vanishing at

C.
First we compute the first derivaties of P (x) at C ∈ Ω. Since at any point

x ∈ Ω

P1 = v−
3
2 v1 − 2Hu1 = 2v−

3
2 uiui1 − 2Hu1,(2.6)

P2 = v−
3
2 v2 − 2Hu2 = 2v−

3
2 uiui2 − 2Hu2,(2.7)

then from (2.3), we have

(2.8) P1(C) = P2(C) = 0.

Now we compute the second derivatives of P (x) at C. From (2.3)-(2.6),
we have at C

P11 = −3
2
v−

5
2 v2

1 + v−
3
2 v11 − 2Hu11 = 2u2

11 − 2Hu11(2.9)

P12 = −3
2
v−

5
2 v1v2 + v−

3
2 v12 − 2Hu12 = 0(2.10)

P22 = −3
2
v−

5
2 v2

2 + v−
3
2 v22 − 2Hu22 = 2u2

22 − 2Hu22.(2.11)

Use the fact that P (x) attains its minimum at C, we have

(2.12) P11(C)P22(C)− P 2
12(C) ≥ 0.

From (2.5),(2.9) and (2.11) we know

u11(C) = u22(C) = H(2.13)

P11(C) = P22(C) = 0.(2.14)

Now we will use the induction to show that all order derivatives of P (x)
at C are vanishing.

Step 2: As a first step for induction, we will show the derivatives of P (x)
of order 3, 4 at C are vanishing.
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First we claim

(2.15)
∂3P

∂xk
1∂x3−k

2

(C) = 0, k = 0, 1, 2, 3.

Using (2.9)-(2.11), (2.4) and (2.13) we have

Px3
1
(C) = 4Hu3

x1
(C)(2.16)

Px2
1x2

(C) = 4Hux2
1x2

(C)(2.17)

Px1x2
2
(C) = 4Hux1x2

2
(C)(2.18)

Px3
2
(C) = 4Hux3

2
(C).(2.19)

Now, by differentiating (1.1), we obtain

ux3
1
(C) = −ux1x2

2
(C)(2.20)

ux2
1x2

(C) = −ux3
2
(C).(2.21)

To this end, use (2.8), (2.10), (2.14) and (2.20)-(2.21), we expand the func-
tion P (x) in a Taylor series in a neighborhood of C:

P (x1, x2)− P (C) =
r3

3!

{
∂3P

∂x3
1

(C)× [cos3 ϕ− 3 cos ϕ sin2 ϕ]

(2.22)

+
∂3P

∂x2
1∂x2

(C)× [3 cos2 ϕ sinϕ− sin3 ϕ]
}

+ O(r4),

where (r, ϕ) are polar coordinates: x1 = r cos ϕ, x2 = r sinϕ. Suppose√
P 2

x3
1
(C) + P 2

x2
1x2

(C) 6= 0,

then P (x) is not a constant, so we are lead to the following representation
of P (x) in a neighborhood of the point C:

(2.23) P (x)− P (C) = A3 cos[3ϕ− β3]r3 + O(r4),

with

A3 =

√
P 2

x3
1
(C) + P 2

x2
1x2

(C)

3!
,

cos β3 =
Px3

1
(C)√

P 2
x3
1
(C) + P 2

x2
1x2

(C)
,

and

sinβ3 =
Px2

1x2
(C)√

P 2
x3
1
(C) + P 2

x2
1x2

(C)
.
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From (2.23) we conclude that P (x) has at least 3 nodal lines forming equal
angles at the point C, using Lemma 2.1 we know that P (x) attains its
minimum only on ∂Ω or at the critical point C, which is a contradiction.
Thus A3(C) = 0 or

(2.24)
∂3P

∂xk
1∂x3−k

2

(C) = 0 and
∂3u

∂xk
1∂x3−k

2

(C) = 0, k = 0, 1, 2, 3.

Use the similar argument we can show

(2.25)
∂4P

∂xk
1∂x4−k

2

(C) = 0, k = 0, 1, 2, 3, 4

and

ux4
1
(C) = ux4

2
(C) = 3H3(2.26)

ux2
1x2

2
(C) = H3(2.27)

ux3
1x2

(C) = ux1x3
2
(C) = 0.(2.28)

Step 3: Now we assume all order derivatives of P (x) up to n are vanishing
at C, where n ≥ 5. Use similar argument as in Step 2 we have the following
relations.

If n = 2l, l ≥ 3. Then

uxm
1 xk−m

2
(C) = uxk−m

1 xm
2

(C)(2.29)

for any m = 0, 1, 2, . . . , k, if k = 5, 6, . . . , 2l,

uxm
1 xk−m

2
(C) = 0(2.30)

for any m = 0, 1, 2, . . . , k, if k = 5, 7, 9, . . . , 2l − 1,

u
xm
1 x2p−m

2
(C) = 0(2.31)

for any m = 1, 3, 5, . . . , 2p− 1, if p = 3, 4, 5, . . . , l,

u
x2p
1

(C) = u
x2p
2

(C) = (2p− 1)[(2p− 3)(2p− 5) . . . 1]2H2p−1(2.32)

for any p = 3, 4, . . . , l.

When l is even, we obtain for any p = 4, 6, . . . l

u
x2p
1

(C)÷ u
x2p−2
1 x2

2
(C) = (2p− 1)÷ 1(2.33)

u
x2p−2
1 x2

2
(C)÷ u

x2p−4
1 x4

2
(C) = (2p− 3)÷ 3(2.34)

...

u
xp+2
1 xp−2

2
(C)÷ uxp

1xp
2
(C) = (p + 1)÷ (p− 1),(2.35)

and for any p = 3, 5, 7, . . . l − 1, we have

u
x2p
1

(C)÷ u
x2p−2
1 x2

2
(C) = (2p− 1)÷ 1(2.36)
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u
x2p−2
1 x2

2
(C)÷ u

x2p−4
1 x4

2
(C) = (2p− 3)÷ 3(2.37)

...

u
xp+3
1 xp−3

2
(C)÷ u

xp+1
1 xp−1

2
(C) = (p + 2)÷ (p− 2).(2.38)

When l is odd, we have the similar relations (2.36)-(2.38).
If n = 2l + 1, l ≥ 2, a similar argument show (2.29)-(2.38) and

(2.39) uxm
1 x2l+1−m

2
(C) = 0, for any m = 0, 1, 2, . . . , 2l + 1

hold.
Step 4: Now we show the derivatives of P (x) of order n + 1 are vanishing

at C. We divided it two parts according to whether n is odd or even.
Part A: If n = 2l + 1, l ≥ 2, so n + 1 = 2(l + 1) is even, we first look

for the relations among Pxm
1 xn+1−m

2
(C), where m = 0, 2, 4, . . . n + 1.

Through calculating, we have

Pxn+1
1

(C) = 2nH
{

uxn+1
1

(C)− (2l + 1)[(2l − 1)(2l − 3) . . . 1]2H2l+1
}(2.40)

Pxn−1
1 x2

2
(C) = 2nH

{
uxn−1

1 x2
2
(C)− [(2l − 1)(2l − 3) . . . 1]2H2l+1

}
.

(2.41)

Now, by differentiating (1.1), we obtain

(2.42)
∂

∂xn−1
1

(∆u− uiujuijv
−1)(C) =

∂

∂xn−1
1

(2Hv
1
2 )(C),

and using the values of derivatives of u up to order n at C, this lead to

(2.43) uxn+1
1

(C) + uxn−1
1 x2

2
(C) = (n + 1)[(2l − 1)(2l − 3) . . . 1]2H2l+1.

From (2.40)-(2.41) and (2.43) we obtain

(2.44) Pxn+1
1

(C) = −Pxn−1
1 x2

2
(C).

A similar argument, it follows that

(2.45) Pxn−1
1 x2

2
(C) = −Pxn−3

1 x4
2
(C) = . . . = (−1)lPxn+1

2
(C).

Now we will find the similar relations (2.44)-(2.45) among

Pxm
1 xn+1−m

2
(C), where m = 1, 3, 5, . . . n.

Using the same argument, we have

(2.46) Pxn+1−m
1 xm

2
(C) = 2nHuxn+1−m

1 xm
2

(C), where m = 1, 3, 5, . . . , n.

Now, by differentiating (1.1), we obtain as in (2.43) the following relations

(2.47) uxn+1−m
1 xm

2
(C) = −uxn−1−m

1 xm+2
2

(C), for m = 1, 3, 5, . . . , n− 2.
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From (2.46)-(2.47), it follows that

(2.48) Pxn
1 x2(C) = −Pxn−2

1 x3
2
(C) = · · · = (−1)lPx1xn

2
(C).

Up to now we are able to show the derivatives of P (x) of order n + 1 are
vanishing at C as Step 2. Using the induction assumption, (2.44)-(2.45) and
(2.48), we expand P (x) in a Tayor’s series in a neighborhood of the point
C:

P (x)− P (C)

(2.49)

=
rn+1

(n + 1)!

{
Pxn+1

1
(C)×

[(
n + 1

0

)
cosn+1 ϕ

−
(

n + 1
2

)
cosn−1 ϕ sin2 ϕ + · · ·+ (−1)l+1

(
n + 1
n + 1

)
sinn+1 ϕ

]
+ Pxn−1

1 x2
(C)×

[(
n + 1

1

)
cosn ϕ sinϕ−

(
n + 1

3

)
cosn−1 ϕ sin3 ϕ

+ · · ·+ (−1)l

(
n + 1

n

)
cos ϕ sinn ϕ

]}
+ O(rn+2).

As in Step 2, we can show the derivatives of P (x) of order n+1 are vanishing
at C.

Part B: If n = 2l, l ≥ 3, a similar argument as in Part A, we have

(2.50) Pxn+1−m
1 xm

2
(C) = 2nHuxn+1−m

1 xm
2

(C)

for m = 0, 1, 2, 3, . . . , n + 1. The same analysis as in Part A leads to imply
the derivatives of P (x) of order n + 1 are vanishing at C.

According to the unique continuation of analytic function, we know if the
function P (x) attains its minimum at C, then it must be a constant, this
establishes Theorem 2.2. �

Combination of Theorem 2.2 and Lemma 2.1 implies Theorem 2.

3. The proof of Theorem 1.

From Section 2, we know if u ∈ C3(Ω̄) is a solution to Equations (1.1)-(1.2),
then the function

P (x) = 2− 2(1 + |Du|2)−
1
2 − 2Hu

attains its maximum [7] and minimum on ∂Ω unless P (x) is a constant
in Ω̄. As an application of these maximum and minimum principle of the
function P (x), in this section we get the size estimates of capillary free
surface without gravity to complete the proof Theorem 1 and a Corollary.
The proof of Theorem 1 will be divided two parts to show the different
applications for maximum (minimum) principle.
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Proof of Theorem 1. Part A: Use the fact that the function P (x) attains its
maximum on ∂Ω, we first prove (1.3)-(1.4).

Assume P (x) attains its maximum at xo ∈ ∂Ω. We must have at xo:

1
2
Ps =

1
2
(−2)

(
−1

2

)
v−

3
2 (u2

n + u2
s + 1)s −Hus(3.1)

= v−
3
2 (ununs + ususs)−Hus = 0,

from boundary condition (1.2), we have

sin2 θou
2
n = cos2 θo + cos2 θou

2
s,

it follows that

(3.2) ununs = cot2 θoususs,

we conclude from (3.2) and (3.1) that

(3.3)
1
2
Ps = v−

3
2 (cot2 θoususs + ususs)−Hus = us

[
uss

sin2 θov
3
2

−H

]
= 0.

According to Hopf maximum principle [9], we also have at xo:

(3.4)
1
2
Pn = v−

3
2 [ununn + ususn]−Hun > 0,

unless P (x) is a constant on Ω̄.
If us(xo) 6= 0, then from (3.3)

(3.5) uss(xo) = H sin2 θov
3
2 (xo).

Now we shall use (1.2), (1.9), (1.10), (3.4) and (3.5) to lead

(3.6) −kun|Du|2 > 0, at xo,

which is contradiction to the strictly convexity of ∂Ω. The proof of (3.6) is
a long calculation. Using (3.5), at xo, we shall rewrite (1.10) as
(3.7)
unn(1+u2

s) = 2Hv
3
2 +ussu

2
s+2 cot2 θou

2
suss−kunu2

s−(uss+kun)(1+u2
n+u2

s).

Using (1.9) and (3.4) we have at xo

ununn + us(uns − kus)−Hunv
3
2 > 0,

thus

(3.8) u2
n(1+u2

s)unn+unus(1+u2
s)(uns−kus)−Hu2

n(1+u2
s)v

3
2 > 0, at xo.

Combining (3.7) with (3.8) yields at xo

u2
n

[
2Hv

3
2 + ussu

2
s + 2 cot2 θou

2
suss − kunu2

s − uss(1 + u2
n + u2

s)− kunv
](3.9)

+ unus(1 + u2
s)uns − kunu2

s(1 + u2
s)−Hu2

n(1 + u2
s)v

3
2 > 0.
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From (3.2), (3.9) can be rewritten as[
Hu2

nv
3
2 + uss(cot2 θou

2
su

2
n − u2

n − u4
n)
]

(3.10)

+
[
ussu

2
s cot2 θo(1 + u2

n + u2
s)−Hu2

nu2
sv

3
2

]
− kun

[
u2

nu2
s + u2

nv + u2
s + u4

s

]
> 0.

Now we calculate (3.10), from (1.2) and (3.5), it follows that at xo

Hu2
nv

3
2 + ussu

2
n(cot2 θou

2
s − 1− u2

n)(3.11)

= Hu2
nv

3
2 −H sin2 θov

3
2 u2

n sin2 θo = 0,

and

ussu
2
s cot2 θo(1 + u2

n + u2
s)−Hu2

nu2
sv

3
2(3.12)

= H sin2 θov
3
2 cot2 θou

2
sv −Hu2

nu2
sv

3
2

= Hu2
sv

3
2 (cos2 θov − u2

n) = 0,

similarly we have

(3.13) −kun(u2
nu2

s + u2
s + u4

s + u2
nv) = −kun(u2

sv + u2
nv) = −kun|Du|2v.

Insertion (3.11)-(3.13) into (3.10) yields

−kun|Du|2v > 0, at xo,

now we complete the proof (3.6).
Thus we must have us(xo) = 0, from the expression for P (x), xo must be

a point A where u attains its minimum on ∂Ω and we may use the fact that
Pss(A) ≤ 0 also. It follows that

(3.14) 0 ≤ uss(A) ≤ H sin2 θov
3
2 (A).

Using the similar calculation to get (3.6), we conclude from (1.10), (1.2),
(1.9) and (3.4) that

(3.15) k(A) cos θo < H − uss(A).

Insert (3.14) into (3.15) to find

(3.16) k(A) <
H

cos θo
.

Moreover from the maximum principle we have P (A) > P (C), it yields

(3.17) u(A)− u(C) <
1− sin θo

H
.

If P (x) is a constant on Ω̄ then a similar argument as (3.15) we have

k(x) ≡ H

cos θo
, for any x ∈ ∂Ω,(3.18)
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u(x)− u(C) ≡ 1− sin θo

H
, for any x ∈ ∂Ω.(3.19)

Which imply if P (x) is a constant on Ω̄ then Ω is a disk with radius
cos θo

H
.

Until now we complete the proof of (1.3)-(1.4).

Conversely, if at A ∈ ∂Ω we have u(A) − u(C) =
1− sin θo

H
or k(A) =

H

cos θo
, from strong maximum principle it follows that P (x) must be a con-

stant on Ω̄, so (1.7)-(1.8) hold.
Part B: Similar to Part A, use the fact that P (x) attains its minimum on

∂Ω, we will prove (1.5)-(1.6).
From the boundary condition (1.2), we can see that the minimum of P (x)

on ∂Ω must be a point B ∈ ∂Ω where u itself is a maximum. It follows that

(3.20) us(B) = 0, uss(B) ≤ 0.

A similar argument as in Part A, we have

u(B)− u(C) ≥ 1− sin θo

H
,

k(B) ≥ H

cos θo
,

this is (1.5)-(1.6).

Conversely if u(B)−u(C) =
1− sin θo

H
or k(B) =

H

cos θo
, then from strong

maximum and Theorem 2.2 P (x) must be a constant on Ω̄, as in Part A

(1.7)-(1.8) holds and Ω is a disk with radius
cos θo

H
.

When Ω is a disk of radius
cos θo

H
, (1.7)-(1.8) hold obviousily. Thus we

have proved Theorem 1. �

As an another application of the minimum principle of Section 2, we prove
the following Corollary for the capillary free surface area S defined as

S =
∫

Ω

√
1 + |Du|2 dx.

Corollary. Let A and B as in Theorem 1, V =
∫
Ω u dx is the volume of

a liquid in a vertical tube, then S satisfies the inequalities:

(3.21) [sin θo + 3Hu(A)]|Ω| − 3HV ≤ S ≤ [sin θo + 3Hu(B)]|Ω| − 3HV.

Proof. From the fact that P (x) attains its maximum at A ∈ ∂Ω. We must
have

P (x) ≤ P (A) for any x ∈ Ω.
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So we are actually have

(3.22)
1√

1 + |Du|2
≥ sin θo + H[u(A)− u].

Since
1√

1 + |Du|2
= (1 + |Du|2)

1
2 − |Du|2√

1 + |Du|2
,

we obtain from (3.22)

(3.23) H[u(A)− u] + sin θo ≤
√

1 + |Du|2 − |Du|2√
1 + |Du|2

.

Using the fact that
|Du|2√

1 + |Du|2
=

uiui√
1 + |Du|2

and the divergence theorem

in conjuction with (1.1)-(1.2), we find from (3.23) after an intergration over
Ω that

(3.24) S ≥ [3Hu(A) + sin θo]|Ω| − 3HV.

Similar using the fact that P (x) attains its minimum at B ∈ ∂Ω, we know
that

(3.25) S ≤ [3Hu(B) + sin θo]|Ω| − 3HV.

Inequalities (3.24)-(3.25) are optimal in the sense that the equality signs

in (3.24)-(3.25) holds if and only if Ω is a disk with radius
cos θo

H
. This

establishes the Corollary. �
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