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In this article we construct number fields k which have a
trivial class group, but an infinite unramified extension.

1. Introduction.

Let k be a number field. A natural question is: Does k admit an infinite
unramified extension?

The answer is no, if the root discriminant of k is less than Odlyzko’s
bounds.

The answer is yes, if k fails the test of Golod-Shafarevic for a prime
number p. In that case, we know that there exists an infinite unramified
p-extension L over k.

But generally it is fairly difficult to determin whether k admits an infinite
unramified extension.

For this problem we introduce the following unramified extensions of k:
i) k∞ is the maximal unramified Galois extension of k.
ii) k(1) denotes the Hilbert field of k, i.e., the maximal unramified abelian

extension of k; its Galois group over k is isomorphic to the class group
of k via the Artin map. More generally, let k(i) be the Hilbert field of
k(i−1), i ≥ 1, where k(0) = k. Write kH = ∪k(i); kH is the Hilbert tower
of k. We say that the Hilbert tower is finite (or stops) if [kH/k] < ∞,
or infinite otherwise.

iii) For a prime number p, kp will be the p-Hilbert tower of k, that is to
say the maximal p-extension of k contained in kH .

We have the following inclusions:

k ⊂ kp ⊂ kH ⊂ k∞.

We recall two facts:
1) There exist fields k for which kH is different from k∞. For instance, the

field k = Q(
√

3.883) has a trivial class group, but there exists an unramified
A5-extension over k.

2) Yamamura [7] has shown that for all imaginary quadratic fields k with
a discriminant less than 420 (or 729 under GRH), k∞ = kH , and k∞/k is
finite (the tower stops at the first, second or third floor).
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Using some refinements of a theorem of Golod-Shafarevic or genus the-
ory, it is possible to obtain sufficient criteria for the existence of an infinite
unramified extension of a given number field k. However, these results gen-
erally imply that the Hilbert tower of the considered field k is infinite.

In Theorem 3.1 we give various examples of fields, such as the biquadratic
field Q(

√
17601097,

√
17380678572159893), with a trivial class group and an

infinite unramified Galois extension: For each field k of Theorem 3.1, kH/k
is finite and k∞/k is infinite.

Moreover, we prove that there exists infinitely many quadratic fields with
a finite 2-Hilbert tower, together with an infinite unramified extension of
degre 2∞ (an extension of degre 2∞ is an infinite extension which is the
compositum of extensions of degree a power of 2).

Note that the calculations were performed using PARI [1].

Acknowlegements. The author wishes to thank X. Roblot for providing
Example 4.1.2. He also thanks the referee for comments and for Example 3
in Remark 3.4.1.

2. Preliminaries.

In this section, we recall four propositions that will be used in the sequel.

Proposition 2.1 (Genus theory and theorem of Golod-Shafarevich, see [6]).
Let K/k be a cyclic extension of degree p, and ρ the number of places of k
which are ramified in this extension. Denote by EK (resp. Ek) the units
group of K (resp. k).

Suppose that
ρ ≥ 3 + 2

√
dpEK + 1 + dpEk,

then the p-Hilbert tower of K is infinite.

From then on, we shall write r = d3 + 2
√

dpEK + 1 + dpEke + δ, where
d.e is the ceiling function and where δ = 0 or 1 depending on whether
3 + 2

√
dpEK + 1 + dpEk is an integer or not.

Proposition 2.2 (Kummer theory). Let k/Q be a cyclic extension of de-
gree p unramified at p, and K/Q an extension of degree n. Suppose that for
all places Q of K, the ramification index of Q in K/Q divides the ramifica-
tion index of q = Q ∩Q in k/Q.

Then the extension Kk/k is unramified at the finite places. In particular,
if C is the Galois closure of K, then Ck/k is unramified at the finite places.

Note that in this case, a place Q of K which is unramified over Q will
ramifiy in Kk/K whenever Q ∩Q is ramified in k/Q.

A consequence of the above is the following well-known result (see [4]):
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Proposition 2.3. Let P be an irreducible real polynomial, with squarefree
discriminant D(P ). Denote by C the Galois closure of P . Then
C/Q(

√
Disc (P )) is unramified.

Proposition 2.4 (Class group of biquadratic fields). Let k1 = Q(
√

d1) and
k2 = Q(

√
d2) be two disctincts quadratic fields. Let k3 = Q(

√
d1.d2) and

F = k1k2. Assume that:
1) F/k3 is uramified at all places;
2) The class groups of k1 and k2 are trivial;
3) The class group of k3 is cyclic of order 2.

Then the Hilbert tower of k3 stops at F ; in particular, the class group of F
is trivial.

Proof. It is known that for p 6= 2 (see [5])

|clF (p)| = |clk1(p)||clk2(p)||clk3(p)| = 1,

where clM (p) denotes the p-primary component of the class group of a num-
ber field M .

Moreover, the 2-Hilbert tower of k3 is exactly F because clk3(2) is cyclic
of order 2. In addition |clF (2)| = 1, and |clF | = 1. �

3. Main result.

We propose to construct quadratic fields with a finite Hilbert tower, such that
they have an infinite unramified extension. Note that in all our examples
the tower will stop at the first floor. This point will be proved with the help
of Proposition 2.4.

3.1. Construction of infinite unramified extension. We consider the
following situation:

1) K is a totally real field of degree n over Q such that:
i) The discriminant of K is equal to a prime number l. Hence the

Galois group of the closure of K is Sn (see [4]). Let P be a defining
polynomial of K.

ii) There exist n− 2 unramified places above l in K/Q.
2) q1 and q2 are two primes different from l such that:

i) q1 ≡ q2 ≡ 3(4),
ii) q1 splits completely in K,
iii) there exist n− 1 places above q2 in K/Q.

3) We write k = Q(
√

l.q1.q2), and M = Kk.
Using Proposition 2.2, we have that all places above q1 and q2 plus n − 2
places above l are ramified in M/K. Therefore, in the notation of Proposi-
tion 2.1, in the extension M/K we have

ρ = n + (n− 1) + (n− 2).
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Applying Proposition 2.1 to M/K, we conclude that M has an infinite
2-Hilbert tower, denoted by M2, if n is at least 7.

We have from Proposition 2.2 that the extension M/k is everywhere un-
ramified. The above facts imply the following inclusions:

k = Q(
√

l.q1.q2) ⊂ M ⊂ M2,

where M2/k is an infinite unramified extension. Taking the Galois closure
of M2 over k, we obtain an infinite unramified Galois extension L over k. In
particular, k∞/k is infinite.
3.2. The finiteness of kH/k. Suppose that we have found primes l, q1,
q2 and a field K of degree n satisfying all the hypotheses of paragraph 3.1.
Let k1, k2, and k = k3 be the quadratic fields of discriminant l, l.q1, and
l.q1.q2, respectively, and put F = k1k2. Since l ≡ q1q2 ≡ 1 (mod 4), F/k3 is
unramified. If, in addition, k1, k2 have trivial class groups and k3 has class
number 2, then the Hilbert tower stops at F .

We remark that clF is trivial, and that the extension LF/F is an infinite
unramified Galois extension, because F/k is unramified.
3.3. Finding a good polynomial. We want to find a polynomial of degree
7 verifying condition 1.i and 1.ii of paragraph 3.1. Such a polynomial does
not exist in the PARI tables. Consequently, we use the following method:

Pick 7 reals around 0. Construct the monic polynomial P ′ of degree
7 whose roots are the considered reals, and take P ∈ Z[X] the nearest
polynomial to P ′. Then by choosing many families of 7 reals, we finally
hope to find a good polynomial, i.e., such that:

i) Disc (P ) = l;
ii) P ≡ (X − α1)2

∏
i=2,6

(X − αi) (mod l).

Indeed, we rapidly obtain the polynomial

P (X) = X7 − 3X6 − 13X5 + 28X4 + 42X3 − 47X2 − 31X + 12,

with
l = Disc (P ) = 17380678572159893.

Conditions 1.i and 1.ii of paragraph 3.1 are verified.
3.4. Examples. We find one potential prime q1 less than 300000 (q1 =
16747), and 17 potential primes q2 less than 100000.

Finally, eight of these primes q2 are such that (l, q1 = 16747, q2) satisfies
the conditions of Proposition 2.4 (or paragraph 3.2).

Hence we have:

Theorem 3.1. For the quadratic fields Q(
√

17380678572159893.16747.q2),
with q2 = 1051, 11863, 24659, 31583, 74527, 77339, 86579, 93491, one has:

i) kH/k is finite;
ii) k∞/k is infinite.
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3.4.1. Remarks.
1) If we choose q2 such that P is totally decomposed modulo q2, then q2 is

totally decomposed in the Galois closure of P , and so q2 is decomposed in the
extension Q(

√
l)/Q. Consequently the class group of Q(

√
l.q1.q2) contains

the cyclic group (4) [2]. In particular, the Hilbert field of this field is not a
biquadratic field so it would be more difficult to control its class group.

2) For each field of Theorem 3.1, there exists an unramified infinite ex-
tension L over F with Galois group G such that we have the extension
sequence:

1 −→ H −→ G −→ A7 −→ 1,

where H is a non-analytic pro-2-group [3]. Note that G = [G, G].
As a result, the 2-rank of the class group of any nested sequence of ex-

tensions M of F contained in L tends to infinity (see [3]). One shall bear in
mind that clF = (1).

3) It would be interesting to find the field of smallest discriminant satisfy-
ing the hypotheses of Theorem 3.1. The referee gives the following example:

P (X) = X7 + 9X6 + 13X5 − 57X4 − 86X3 + 120X2 − 1,

with q1 = 20411 and q2 = 787.
This example has the desired properties and the biquadratic field F has

slighty smaller discrimant than the field in the introduction.

4. A remark.

One may try to apply Proposition 2.3 in order to find fields satisfying the
conditions of Theorem 3.1.

More precisely, let P be an irreducible totally real polynomial with degree
n such that the discriminant of P is equal to l1.l2.l3 with l1 ≡ 1(4), and
l2 ≡ l3 ≡ 3(4), where l1, l2, l3 are primes.

Let K = Q(θ), where θ is a root of P , k = Q(
√

l1.l2.l3), and M =
Kk. Assume that l1, l2 and l3 are sufficiently decomposed in K/Q. Then
for larger n, using Propositions 2.1 and 2.3 we obtain that the field k =
Q(
√

l1.l2.l3) has an infinite unramified Galois extension.
To show that the Hilbert tower of this field stops we can use an argument

similar to the one involved in the previous section.
Yet, the problem becomes: How to find a polynomial satisfying the hy-

potheses above.
4.1. A method. Let l1 ≡ 1(4) and l2 ≡ 3(4) be two primes, and put

P (X) = X2
n−2∏
i=1

(X − αi) +
− l1.l2,

where αi are different integers. Changing αi, l1, and l2, we hope to find
some polynomials P such that:
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1) P is irreducible;
2) P is totally real;
3) Disc (P ) = l1.l2.l3, for some prime l3;
4) P is sufficiently decomposed modulo l3;

5) For i = 2 or 3,
(

l1
li

)
= −1.

Note that the last condition is necessary to get clk3 = (2) [2].

4.1.1. Case n = 17; r = 32.
For the definition of r, see the paragraph of following Proposition 2.1. In

that case, we should have at least two places above l3.
We have produced one polynomial:

P (X) = X17 − 8X16 − 140X15 + 1120X14 + 7472X13 − 59696X12

− 191620X11 + 1532960X10 + 2475473X9 − 19803784X8

− 15291640X7 + 122333120X6 + 38402064X5

− 307216512X4 − 25401600X3 + 203212800X2 − 4819

with Disc (P ) = l1.l2.l3, where l1 = 61, l2 = 79 and
l3 = 66382900552793321010851526783904690431649057036670997212644
289798588293426436298810789013190435989241744842371595711118731
34668406985800955450434299964685089696459.

Note that log(l3)/ log(10) ≈ 163, and that

P (X) = X2(X − 1)(X − 2)(X − 3)(X − 4)(X − 5)(X − 6)

· (X − 7)(X − 8)(X + 1)(X + 2)(X + 3)(X + 4)(X + 5)

· (X + 6)(X + 7)− 61.79

There are 5 places above l3 which are ramified in K/k. So ρ = 15+15+5 =
35 > r.

4.1.2. Case n = 11; r = 24.
X. Roblot comes up with the polynomial:

P (X) = X11 − 45X10 + 870X9 − 9450X8 + 63273X7 − 269325X6 +
723680X5 − 1172700X4 + 1026576X3 − 362880X2 + 2483
with Disc (P ) = l1.l2.l3, where l1 = 13, l2 = 191 and

l3 = 1975697671490152075520432855935517362161188018903.
Here ρ = 9 + 9 + 7 = 25 > r.

4.1.3. Case n = 9; r = 21.
We found three polynomials ; for all these cases ρ = 7 + 7 + 7 = 21 ≥ r.
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• X9 − 16X8 − 122X7 + 1100X6 + 3709X5 − 20524X4 − 28068X3 +
95760X2 − 18467
with l1 = 313, l2 = 59, and
l3 = 26255115680330741686041335538501141687236954384684227.

• X9 + 35X8 + 51X7 − 1535X6 − 2476X5 + 18660X4 + 17424X3 −
69120X2 + 13067
with l1 = 73, l2 = 179, and
l3 = 7154637362578369142642781505295690026075933100681339.

• X9 + 41X8 + 69X7 − 1805X6 − 3046X5 + 22044X4 + 21096X3 −
82080X2 + 18511
with l1 = 173, l2 = 107, and
l3 = 95384503977834605133365739257008489233297152056661447.

The problem is to calculate the class group of the fields Q(
√

l1) and
Q(
√

l1.l2.l3).

5. Infinite non Galois unramified extension.

In this section, we prove:

Theorem 5.1. There exists infinitely many quadratic fields (imaginary and
real) with a finite 2-Hilbert tower, but with an infinite unramified extension
of degre 2∞.

Proof (only for the real case) and examples.
Let K be a totally real extension over Q of degree 8, such that Disc (K) = l

where l is prime number. Let q1 and q2 be two primes, satisfying:
1) q1 ≡ q2 ≡ 3(4);
2) q1 and q2 are totally decomposed in K/Q.

Put N = KQ(
√

l).
Then q1 and q2 are totally decomposed in the Galois closure of P , in

particular in N/Q. This extension is of degree 16.
Using Proposition 2.1 applied to the extension N(

√
q1.q2)/N , we conclude

that E = N(
√

q1.q2) has an infinite 2-Hilbert tower, noted E2.
Thus, we have the following inclusions:

Q(
√

l.q1.q2) ⊂ Q(
√

l,
√

q1.q2) ⊂ E ⊂ E2,

where all extensions are unramified 2-extensions. Accordingly, E2/Q(
√

l.q1.q2)
is an unramified extension of degree 2∞.

Moreover, the choice of q1 and q2 implies that the 2-part of class group of
Q(
√

l.q1.q2) is cyclic. As consequence the 2-Hilbert tower stops at the first
floor.

If K/Q exists, Cebotarev’s density criterion asserts that there exist infin-
itely many such fields Q(

√
l.q1.q2).
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For the imaginary quadratic case, one may start with the same K and
q1 as above and take q2 = −1. Then Q(

√
l.q1.q2) is an imaginary quadratic

field with the desired properties.

5.1. Examples. Consider the following polynomial, found in the PARI ta-
bles (E-mail: megrez.math.u-bordeaux.fr, directory pub/numberfields):

P (X) = X8 −X7 − 7X6 + 5X5 + 14X4 − 6X3 − 9X2 + X + 1,

where
Disc(P ) = 1318279381.

Then the fields

Q
(√

1302839.4503991.1318279381
)

and

Q
(√
−643.1318279381

)
satisfy the conditions of Theorem 5.1.
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351, Cours de la Libération
33405 Talence Cedex
France
E-mail address: maire@math.u-bordeaux.fr

mailto:maire@math.u-bordeaux.fr

