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If S is the graph of a minimal surface, then when given
parametrically by the Weierstrass representation, the first two
coordinate functions give a univalent harmonic mapping. In
this paper, the starting point is a univalent harmonic map-
ping f of the unit disk U. A height function is defined on
an appropriate Riemann surface over the range of f which
satisfies the minimal surface equation away from the branch
points. This height function is then used to obtain function
theoretic information about f.

1. Introduction.

Let f be a univalent harmonic mapping of the unit disk U. By this it
is meant not only that f is 1 — 1 and harmonic, but also that f is sense
preserving.

Harmonic univalent mappings were first studied in connection with min-
imal surfaces by E. Heinz [H]. However, considerable interest in their func-
tion theoretic properties, quite apart from this connection, was generated
by Clunie and Sheil-Small [CS-S].

Now, the Jacobian of f(¢) is J = |f¢]* — ]fZ\Q, and f can be written

(1.1) f=h+7g
where h and ¢ are analytic in U. If a(¢) is defined by
(1.2) a(¢) = F(0)/ fe(€) = g'(Q) /1 (©),

then a(¢) is analytic and |a(¢)] < 1 in U. We shall refer to a(¢) as the
analytic dilatation as opposed to the usual dilatation fZ/ f¢ in the theory of
quasiconformal mappings.

The case where a(() is a finite Blaschke product is of special interest
since this case arises in taking Fourier series of step functions [S-S]. Their
function theoretic properties have been studied in [HS2] as well as in [S-S],
and infinite Blaschke products have been considered in [L].

In the present paper we shall study a connection between harmonic map-
pings and the theory of minimal surfaces, and in §4 we use this to prove a
special case of uniqueness for the Riemann mapping theorem of Hengartner
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and Schober [HS1]. As we have shown elsewhere, uniqueness fails in general
[WI.

2. Definition of the height function and conjugate height
function.

Using the Weierstrass representation [O, p. 63] we shall associate with f,
a minimal surface given parametrically in a simply connected subdomain
N C U where a(¢) does not have a zero of odd order.

With g and h as in (1.1) we define up to an additive constant, a branch

2.1)
F(¢) = 2i / VIOFQ) dC =2 / WOV dC = 2i / Fe(O/a(Q) de.

Then, by (1.2) it follows that a branch of F' can be defined in N, and for
CEN,

(2.2) ¢ = (f(¢), ReF(())

gives a parametric representation of a minimal surface. Here we have iden-
tified R? with C by (z,y) < (Re f,Im f).

Let U be the Riemann surface of the function va(¢). Then U has alge-
braic branch points corresponding to those points ¢ € U for which a(¢) has
a zero of odd order. Specifically, U can be concretely described (the analytic
configuration [Sp, 69-74]) in terms of function elements («, Fy,) where o € U,
and F, is a power series expansion of a branch of F' in a neighborhood of «
if a(¢) does not have a zero of odd order at {( = «, and F, a power series
in v/¢ — a otherwise. The mapping p: (a, Fy) — « is the projection of the
S}lrface so realized. The mapping F' may now be lifted to a mapping F on
U.

By continuation, we may induce a mapping U — U to a surface U with a
real analytic structure defined in terms of elements (3, F 3) with 8 € f(U) by
a= f~1(3) and F/g = F,of~!. We again define a projection by 7: (8, Fg) —
s.

We shall refer to a point ¢ € U to be over ¢, if p(é) =(,and Z € U to be
over z if m(2) = 2.

The harmonic mapping f: U — f(U) lifts to a mapping f: U — U which
is 1 — 1, onto, and satisfies the condition 7(f(¢)) = f(p(¢)) for all ¢ € U.
With these notations, we shall extend the meaning of (2.2). Thus

(2.3) ¢ = (f(Q),Re F(Q))

gives a parametric representation of a minimal surface in the sense that in
a neighborhood of ¢ € U\B where B is the branch set, that is, the points
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above the zeros of a of odd order, then (2.2) is the same as (2.3) computed
in terms of local coordinates given by projection. o B

We may also define the surface nonparametrically on U\B, where B =
f(B), as follows. Let D be an open disk in f(U) such that f~!(D) contains
no zeros of a of odd multiplicity. Let w = ¢(x,y) be the nonparametric
description of the minimal surface corresponding to (2.2), that is, for ¢ €
F710) (cf. [HS3, p. 87]),

(2.4) z=Ref(¢) y=Imf((),
p(x,y) = Re F(Q).

Then, by continuation ¢ lifts to a function ¢ on U which satisfies the mini-
mal surface equation when computed in local coordinates given by projection
off the branch set B. We shall call ¢(2) a height function corresponding to
f. Finally, we define a conjugate height function 1[1(2) by solving locally

(2.5) Yy = @a /W, by = —py /W (W = \/m)

(cf. [F1, p. 344]) and lifting to U\B as was done for ¢. Let F = ¢ + it).
Then F is real analytic and locally quasiconformal on U \5’, with dilatation
whose magnitude is (W —1)/(W +1). The fact that 1) and F' are well defined
on U\ B follows from Theorem 1.

A glossary of terminology is given schematically in Figure 1.
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Theorem 1. With the above notations, ' = F o f + C for some constant
C.

Proof. Let D be an open disk in f(U) such that f~1(D) contain no zeros
of odd multiplicities of a. We fix a branch of Vva in f~4(D), and consider

o(C) + Z¢(C) F(é) for points in a component of U over f~(D), and

o(2) + M/J( ) = F(%) for points in a component of U over D. Since we shall
compute in local coordinates given by projection, to reduce notatlon in this
proof, we shall subsequently erte F D, w in place of Fop L ¢op~ wop L
and F, D, w in place of For 1, pom L, w om™ respectlvely Wlth this
notation, by (2.4) we have that

(2.6) ¢=pof,

so it suffices to show that

(2.7) v=1of+C.

The result then follows from continuation. O

In fact, since ¢ + ith is analytic in f~1(D), it follows from (2.6) that to
prove (2.7) it suffices to show that F o f is analytic in f~1(D).

We first record the relationship between a(() of (1.2) and W(z) (z = f(())
of (2.5). This is given by [O, p. 105], [HS3, pp. 87-88] as

wW—-1
2.8 = .
(2.) ol = 1y
Now,
(2.9) (Fof) FfC+Ff§—Ff§+F( ¢)
A simple computation using (2.5) gives
W41 W -1
Fz = T s ¥z FE = z
w7 w7
When used in (2.9) these give
W+1._ W —

(2.10) (Fof)e= — P let 1@;@.

Again, a direct computation gives

: _ pelfo) — ¢e(Fo) 5. _ Fefe bl
TP T KPR
When used in (2.10) this gives
(2.11)
(Fof); = ! 25 f2(J0) + Gl fel* (W—1- 'f‘|2<W+1>
WP TR TR ]2



UNIVALENT HARMONIC MAPPINGS 195
Now, by (1.2), (2.1), and (2.8) we have,
pc =ig'/Va, ¢z =—ig/Va, fe=4d/a, fr=7,
and
WA =W —1—[aP (W +1) =2(W - 1)/(W +1).

Substituting into (2.11) we obtain

(Fof)e= 1 2ig'(4")®  2ig'lg')? <W - 1)
WP 1D\ Ve ale2 \W +1

0.

Thus, F o f is analytic and (2.7) follows.

3. The height function corresponding to Poisson integrals of step

functions.
Let P be a polygon with vertices ci,...,c, given cyclically, and in order
induced by a positive orientation of 0P. Let f be the Poisson integral of
a step function on U having values c1, ... ,c¢, and suppose that f is then

a univalent harmonic mapping, f: U — P. If P is convex, for example,
this will always be the case [C], [K]. The analytic dilatation a(({) for such
mappings were studied in [HS2] and [S-S]. In general, a(() is a Blaschke
product of order at most n — 2, and of order precisely n — 2 if P is convex
[S-S, pp. 469, 473].

We shall now explore the boundary behavior of height functions corre-
sponding to such mappings. The prototype for this is Scherk’s minimal
surface over the square —7/2 <z < 7/2, —7/2 <y < m/2, given by

(3.1) Y(x,y) = log(cosx/ cosy)

which tends to 400 and —oo over alternate sides. It seems remarkable that
this type of behavior persists in general for height functions corresponding
to all such f described above.

Theorem 2. Let P be a polygon having vertices cy, ... ,c, given cyclically,
and ordered by a positive orientation on OP. Let f be a univalent harmonic
mapping of U such that f is the Poisson integral of a step function having
the ordered sequence cy,... ,c, as its values. Then the analytic dilatation
a(€) of f is a finite Blaschke product of order at most n—2, f(U) =P, and
if ¢ is a height function for f, then ¢ tends to +00 or —oo at points over
the open segments making up the sides of P. If P is converx, then +o0o and
—o0 alternate on adjacent sides.
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Proof. That a((¢) is a Blaschke product of order at most n — 2 and f(U) =
P follow from general properties of Poisson integrals [S-S, p. 469], [HS2,
p. 203]. 0

Let f =h+g asin (1.1). Then we may write b’ and ¢’ in the form [S-S,
pp. 460-461]

3

W =SS ey~ NSO
O=3 7 40 ;C_Ck,

=1

o

where o, 20, k=1,...,
With F as in (2.1), we are then interested in the branches of

(3.2) F(Q) / ZC Z _O"“

as ( = (x, k=1,...,n. The cluster sets for the nontangential approaches
to points over the (i give the points lying over the open segments making
up the sides of P.

Thus, take a vertex (;, and an open segment [; of P corresponding to
it. Then, as ¢ — (j,

o —a; _|ay]?
2 TG TG o gr e

and hence, by (3.2), a branch of F' satisfies

(3.3) F(¢) = £2a;|log(¢ — ¢;) + o(1)

as ( — (j, for a fixed branch of the log. Suppose the fixed branch of (3.3)
has minus sign, and let ¢(z) = Re F o f~1(2) be a corresponding branch
in P for points near the corresponding side /;. Now suppose P is convex
and F'(¢) is analytically continued to an adjacent point, say (j+1, so that
¢ is then continued to a corresponding side /;11 having common endpoint
c;j with [;. Since ¢ — —oo0 as z — [, it remains to show that ¢ — +o00
as z — lj1. This effect has been noted for minimal surfaces [JS], and can
be accomplished by a simple barrier argument. I thank Professor Finn for
pointing this out.

Let 0 < 8 < 7w be the angle in P between [; and [;4;. Suppose that
¢ — —oo on both open segments /; and l;4;. Since ¢ satisfies the minimal
surface equation, ¢ can only tend to —oo over line segments [O, p. 102].
Since we make no assumption at the common endpoint ¢;, in order to get
a contradiction we must show that ¢ — —oo at ¢; as well. We may assume
that ¢; = (7/2,0), and 1}, ;41 make the angle § symmetrically with respect
to the z axis, opening toward the origin. Let 0 < & < (7/2)cot(3/2) be
small enough so that the isosceles triangle N formed by the sector and the
line x = 7/2 — € has the given branch of F' single valued. Then, two of
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the sides of N are contained in the segments [; and /;11, and the third is
x=m/2—¢, —0 <y < J, where § = etan(3/2). If ¢ is the height function
for Scherk’s surface given by (3.1), then for any M > 0, clearly

(34) ¢($ay) < _w(l'_ﬂ-—i_g)y) -M
on ON\{c;}. By the extended maximum principle [F1, pp. 342-343], it

follows that (3.4) holds thoughout N. Since M > 0 was arbitrary, it follows
that ¢ = —oo on N, a contradiction. Thus ¢ = 400 on /1.

4. An application to the Riemann mapping theorem.

One of the most basic results in the theory of univalent harmonic mappings
is the Riemann mapping theorem of Hengartner and Schober [HS1].

Theorem A. Let D be a bounded simply connected domain whose bound-
ary s locally connected. Fix wyg € D, and let a(¢) be analytic in U, with
a(U) C U. Then there exists a univalent harmonic mapping f with the
following properties.

a) f maps U into D and f(0) = wo, f.(0) > 0.
b) [ satisfies the equation (fz) = afc.
c) Except for a countable set E C OU, the unrestricted limit f*(e') =

lim f(C) exists and belongs to OD.

C_)en

d) The one sided limits lim+ (™), Hm f*(e'™) through values of €™ ¢
T

T—t
E exist and belong to OD; for e & E they are equal and for e € E
they are different. ‘
e) The cluster set of f at et € E is the straight line segment joining the
left and right limits in d).

If in Theorem A, the set D is convex, and a(() is a finite Blaschke product,
one can say more [HS2, p. 203], [S-S, p. 473].

Theorem B. Let f be as in Theorem A with D bounded and convex, and
a(¢) a Blaschke product of order n — 2. Then f(U) is a polygon with n
vertices all of which lie on 0D.

We shall prove uniqueness in the case a(¢{) = (™ and D convex. The case
of uniqueness when D = U and a(¢) = ¢ was done in [HS2, p. 204].

The proof involves a combinatorial argument with the level sets of the
height function. Such arguments are often useful in the theory of partial
differential equation, and in particular the minimal surface equation [F1],

[FOJ, [JS], [Se].

Theorem 3. The solution f({) to the Riemann mapping theorem above
with D convex and

(4.1) a(¢) = ¢
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is unique for each n = 3,4, ...

Proof. Let fi and fo be Riemann mappings corresponding to D. We may
assume f1(0) = f2(0) = 0. Let A be a disk centered at 0, and contained in
[1(U) N f2(U). R X

If n is even, then U = U and if n is odd U is a two sheeted cover of U
with branch point over 0. Similarly, if U; corresponds to fi(U) and Us to
f(U), then U; and Uy are one or two sheeted according as n is even or odd.
We consider the case where n is odd. The even case goes the same way, but
is simpler since one can bypass discussion of Riemann surfaces.

Let ¢;, v, gbj,lﬁj,ﬁj, [7]',71']‘, j = 1,2 be the quantities of §2 defined for
f1 and fy respectively. We may assume that Fy(0) = Fy(0) = 0. If A
represents the Riemann surface of V/z over A, then we may consider ACU;
and A C Ug, so that F1 and Fg may both be considered as defined for all
Z € A. For brevity of notation, we shall write F for F o7 L.

Since the analytic dilatation for fi(¢) and f2(¢) is 0 when ¢ = 0, it follows
from (1.2), (4.1), and a) of Theorem A, that

(4.2) fi(€) = ¢iC(1+0(1)) (=0, ¢>0,j=1,2)

Then, from (2.1), (4.1), (4.2), and Theorem 1 we may take determinations
of Fy and F, in A so that

(43) @) +ids(e) = Fi(2) = dz"* (14 0(1)) (G=1.2 z—0)

with dy,ds > 0 and 2"/2 is some fixed branch.
Having thus fixed branches in (4.3) we may then take a constant A > 0
such that

(4.4) Fi(2) — ABy(2/\) = C2"2 (1 + 0(1)) (2 — 0)

for some constant C' and integer p > n. We suppose A > 1; otherwise we in-
terchange Fy and Fy. Now, the change from F(z) to AF(z/\) corresponds to
replacing f by Af. Then the analytic dilatation is unchanged, and following
the change in (2.1) it gives the parametrization ¢ — (Af(¢), Re AF'(()).

Let 3,3, @3, 13 correspond to f3 = Afy so that f3(U), is nothing more
than f1(U) dilated by the constant A > 1, and (4.5) becomes

(4.5) Fi(3) - F3(3) = 02" (1 + o(1)

(1+0(1))
Case 1. C =0 for every p. Since F(2%) — F3(22) is real analytic, then F} =
F3. Thus, in particular A = 1 and f,(U) = f3(U) = P. In order to show
that fi = f3 we use the subordination principle of [BHH, p. 170]. Briefly,
since P is a convex polygon by Theorem B, and (f1).(0), (f3).(0) > 0, we
may apply the argument principle in [BHH, p. 170] to

G(2) = (f3)=(0)f1(2) = (f1)=(0)f3(2)

(z —0).
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to deduce that (f1).(0) = (f3).(0). Then, another application of the argu-
ment principle as in [BHH] to G<(2) = (1 +¢) fi(z) — f3(2) (¢ — 0) shows
that f1 = f3.

Case 2. C # 0 for some p > n. In this case, near the origin on A, by (4.5)
there are 2p + 4 level curves ¢; — ¢3 = 0 emanating from 0. Between the
level curves, o1 — (3 alternates in sign. In order to analyze the component
sets between the level sets, we must modify fs.

Let m1,m2,... be homeomorphisms of |(| = 1 onto the boundary of AD,
which converge to the (step function) boundary values of f3, and let fén),

n = 1,2,... their corresponding Poisson integrals so that fg(n) — f3 uni-
formly on compact subsets of U.

The level sets of ¢1 — @3 = 0 create 2p + 4 disjoint component open sets
01, 02, C ,02p+4 where p1 — @3 > 0in 02];1 and p1 — @3 < 0in Ogj for
j=1,...,p+2. These components alternate in position around the origin.

For € > 0 we can find nonempty components at O1(¢), Oz(¢), ..., O2pt4(e)
where @1 —(,55(3”) > ¢ in Og5-1(¢), @—@én) = e on 002;_1(¢), AﬂOgj_l(z-:) C
O2j-1, j =1,...,2p, and analogous statements hold for Oq;(¢), 7 =1,...,
p+ 2. .

Now, fS(J )(U) = AD, so by the maximum principle for solutions to the
minimal surface equation, the level sets forming the boundaries of the O;(e)’s
must extend to points over the boundary of P = f1(U). Asin [FO, pp. 357-
358], we observe that since F is 400 over the sides of P by Theorem 2, if
a component Oj(e) has a boundary point over an interior point of a side
of P, then the boundary must contain that side. Since, by Theorem B, P
has n sides, then P = 77 (P) has 2n sides. This implies that there are at
most 2n sets Oj(e) whose boundaries have interior points over OP. If O;(e)
were a component whose boundary contained no points over 9P, then its
boundary could only be interior points over P, or vertices. As pointed out
in [FO, p. 358], this is impossible by a theorem of Finn [F1, pp. 342-343].
Thus, 2p + 4 < 2n. Since p > n, we obtain a contradiction and the theorem
is proved. O
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