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If S is the graph of a minimal surface, then when given
parametrically by the Weierstrass representation, the first two
coordinate functions give a univalent harmonic mapping. In
this paper, the starting point is a univalent harmonic map-
ping f of the unit disk U . A height function is defined on
an appropriate Riemann surface over the range of f which
satisfies the minimal surface equation away from the branch
points. This height function is then used to obtain function
theoretic information about f .

1. Introduction.

Let f be a univalent harmonic mapping of the unit disk U . By this it
is meant not only that f is 1 − 1 and harmonic, but also that f is sense
preserving.

Harmonic univalent mappings were first studied in connection with min-
imal surfaces by E. Heinz [H]. However, considerable interest in their func-
tion theoretic properties, quite apart from this connection, was generated
by Clunie and Sheil-Small [CS-S].

Now, the Jacobian of f(ζ) is J = |fζ |2 − |fζ |
2, and f can be written

(1.1) f = h+ g

where h and g are analytic in U . If a(ζ) is defined by

(1.2) a(ζ) = fζ(ζ)/fζ(ζ) = g′(ζ)/h′(ζ),

then a(ζ) is analytic and |a(ζ)| < 1 in U . We shall refer to a(ζ) as the
analytic dilatation as opposed to the usual dilatation fζ/fζ in the theory of
quasiconformal mappings.

The case where a(ζ) is a finite Blaschke product is of special interest
since this case arises in taking Fourier series of step functions [S-S]. Their
function theoretic properties have been studied in [HS2] as well as in [S-S],
and infinite Blaschke products have been considered in [L].

In the present paper we shall study a connection between harmonic map-
pings and the theory of minimal surfaces, and in §4 we use this to prove a
special case of uniqueness for the Riemann mapping theorem of Hengartner
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and Schober [HS1]. As we have shown elsewhere, uniqueness fails in general
[W].

2. Definition of the height function and conjugate height
function.

Using the Weierstrass representation [O, p. 63] we shall associate with f ,
a minimal surface given parametrically in a simply connected subdomain
N ⊆ U where a(ζ) does not have a zero of odd order.

With g and h as in (1.1) we define up to an additive constant, a branch
of
(2.1)

F (ζ) = 2i
∫ √

h′(ζ)g′(ζ) dζ = 2i
∫
h′(ζ)

√
a(ζ) dζ = 2i

∫
fζ(ζ)

√
a(ζ) dζ.

Then, by (1.2) it follows that a branch of F can be defined in N , and for
ζ ∈ N ,

(2.2) ζ → (f(ζ), ReF (ζ))

gives a parametric representation of a minimal surface. Here we have iden-
tified R2 with C by (x, y) ↔ (Re f, Im f).

Let Û be the Riemann surface of the function
√
a(ζ). Then Û has alge-

braic branch points corresponding to those points ζ ∈ U for which a(ζ) has
a zero of odd order. Specifically, Û can be concretely described (the analytic
configuration [Sp, 69-74]) in terms of function elements (α, Fα) where α ∈ U ,
and Fα is a power series expansion of a branch of F in a neighborhood of α
if a(ζ) does not have a zero of odd order at ζ = α, and Fα a power series
in
√
ζ − α otherwise. The mapping p : (α, Fα) → α is the projection of the

surface so realized. The mapping F may now be lifted to a mapping F̂ on
Û .

By continuation, we may induce a mapping Û → Ũ to a surface Ũ with a
real analytic structure defined in terms of elements (β, F̃β) with β ∈ f(U) by
α = f−1(β) and F̃β = Fα◦f−1. We again define a projection by π : (β, F̃β) →
β.

We shall refer to a point ζ̂ ∈ Û to be over ζ, if p(ζ̂) = ζ, and z̃ ∈ Ũ to be
over z if π(z̃) = z.

The harmonic mapping f : U → f(U) lifts to a mapping f̂ : Û → Ũ which
is 1 − 1, onto, and satisfies the condition π(f̂(ζ̂)) = f(p(ζ̂)) for all ζ ∈ Û .
With these notations, we shall extend the meaning of (2.2). Thus

(2.3) ζ̂ → (f̂(ζ̂),Re F̂ (ζ̂))

gives a parametric representation of a minimal surface in the sense that in
a neighborhood of ζ̂ ∈ Û\B where B is the branch set, that is, the points
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above the zeros of a of odd order, then (2.2) is the same as (2.3) computed
in terms of local coordinates given by projection.

We may also define the surface nonparametrically on Ũ\B̃, where B̃ =
f̂(B), as follows. Let D be an open disk in f(U) such that f−1(D) contains
no zeros of a of odd multiplicity. Let w = ϕ(x, y) be the nonparametric
description of the minimal surface corresponding to (2.2), that is, for ζ ∈
f−1(0) (cf. [HS3, p. 87]),

x = Re f(ζ) y = Im f(ζ),(2.4)

ϕ(x, y) = ReF (ζ).

Then, by continuation ϕ lifts to a function ϕ̃ on Ũ which satisfies the mini-
mal surface equation when computed in local coordinates given by projection
off the branch set B̃. We shall call ϕ̃(z̃) a height function corresponding to
f . Finally, we define a conjugate height function ψ̃(z) by solving locally

(2.5) ψy = ϕx/W, ψx = −ϕy/W
(
W =

√
1 + ϕ2

x + ϕ2
y

)
(cf. [F1, p. 344]) and lifting to Ũ\B̃ as was done for ϕ. Let F̃ = ϕ̃ + iψ̃.
Then F̃ is real analytic and locally quasiconformal on Ũ\B̃, with dilatation
whose magnitude is (W−1)/(W+1). The fact that ψ̃ and F̃ are well defined
on Ũ\B̃ follows from Theorem 1.

A glossary of terminology is given schematically in Figure 1.
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Theorem 1. With the above notations, F̂ = F̃ ◦ f̂ + C for some constant
C.

Proof. Let D be an open disk in f(U) such that f−1(D) contain no zeros
of odd multiplicities of a. We fix a branch of

√
a in f−1(D), and consider

ϕ̂(ζ̂) + iψ̂(ζ̂) = F̂ (ζ̂) for points in a component of Û over f−1(D), and
ϕ̃(z̃) + iψ̃(z̃) = F̃ (z̃) for points in a component of Ũ over D. Since we shall
compute in local coordinates given by projection, to reduce notation in this
proof, we shall subsequently write F̂ , ϕ̂, ψ̂ in place of F̂ ◦p−1, ϕ̂◦p−1, ψ̂◦p−1,
and F̃ , ϕ̃, ψ̃ in place of F̃ ◦ π−1, ϕ̃ ◦ π−1, ψ̃ ◦ π−1 respectively. With this
notation, by (2.4) we have that

(2.6) ϕ̂ = ϕ̃ ◦ f,

so it suffices to show that

(2.7) ψ̂ = ψ̃ ◦ f + C.

The result then follows from continuation. �

In fact, since ϕ̂ + iψ̂ is analytic in f−1(D), it follows from (2.6) that to
prove (2.7) it suffices to show that F̃ ◦ f is analytic in f−1(D).

We first record the relationship between a(ζ) of (1.2) and W (z) (z = f(ζ))
of (2.5). This is given by [O, p. 105], [HS3, pp. 87-88] as

(2.8) |a| = W − 1
W + 1

.

Now,

(2.9) (F̃ ◦ f)ζ = F̃zfζ + F̃zf ζ = F̃zfζ + F̃z(fζ).

A simple computation using (2.5) gives

Fz =
W + 1
W

ϕz, Fz =
W − 1
W

ϕz.

When used in (2.9) these give

(2.10) (F̃ ◦ f)ζ =
W + 1
W

ϕ̃zfζ +
W − 1
W

ϕ̃z(fζ).

Again, a direct computation gives

ϕ̃z =
ϕ̂ζ(fζ)− ϕ̂ζ(fζ)

|fζ |2 − |fζ |2
, ϕ̃z =

ϕ̂ζfζ − ϕ̂ζfζ

|fζ |2 − |fζ |2
.

When used in (2.10) this gives
(2.11)

(F̃ ◦f)ζ =
1

W (|fζ |2 − |fζ |2)

(
2ϕ̂ζfζ(fζ) + ϕ̂ζ |fζ |2

(
W− 1−

|fζ |
2

|fζ |2
(W + 1)

))
.
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Now, by (1.2), (2.1), and (2.8) we have,

ϕ̂ζ = ig′/
√
a, ϕ̂ζ = −ig′/

√
a, fζ = g′/a, fζ = g′,

and

W − 1−
|fζ |

2

|fζ |2
(W + 1) = W − 1− |a|2(W + 1) = 2(W − 1)/(W + 1).

Substituting into (2.11) we obtain

(F̃ ◦ f)ζ =
1

W (|fζ |2 − |fζ |2)

(
2ig′(g′)2√

aa
− 2ig′|g′|2
√
a|a|2

(
W − 1
W + 1

))
= 0.

Thus, F̃ ◦ f is analytic and (2.7) follows.

3. The height function corresponding to Poisson integrals of step
functions.

Let P be a polygon with vertices c1, . . . , cn given cyclically, and in order
induced by a positive orientation of ∂P. Let f be the Poisson integral of
a step function on ∂U having values c1, . . . , cn and suppose that f is then
a univalent harmonic mapping, f : U → P. If P is convex, for example,
this will always be the case [C], [K]. The analytic dilatation a(ζ) for such
mappings were studied in [HS2] and [S-S]. In general, a(ζ) is a Blaschke
product of order at most n − 2, and of order precisely n − 2 if P is convex
[S-S, pp. 469, 473].

We shall now explore the boundary behavior of height functions corre-
sponding to such mappings. The prototype for this is Scherk’s minimal
surface over the square −π/2 < x < π/2, −π/2 < y < π/2, given by

(3.1) ψ(x, y) = log(cosx/ cos y)

which tends to +∞ and −∞ over alternate sides. It seems remarkable that
this type of behavior persists in general for height functions corresponding
to all such f described above.

Theorem 2. Let P be a polygon having vertices c1, . . . , cn given cyclically,
and ordered by a positive orientation on ∂P. Let f be a univalent harmonic
mapping of U such that f is the Poisson integral of a step function having
the ordered sequence c1, . . . , cn as its values. Then the analytic dilatation
a(ζ) of f is a finite Blaschke product of order at most n−2, f(U) = P, and
if ϕ is a height function for f , then ϕ tends to +∞ or −∞ at points over
the open segments making up the sides of P. If P is convex, then +∞ and
−∞ alternate on adjacent sides.
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Proof. That a(ζ) is a Blaschke product of order at most n− 2 and f(U) =
P follow from general properties of Poisson integrals [S-S, p. 469], [HS2,
p. 203]. �

Let f = h+ g as in (1.1). Then we may write h′ and g′ in the form [S-S,
pp. 460-461]

h′(ζ) =
n∑

k=1

αk

ζ − ζk
, g′(ζ) = −

n∑
k=1

αk

ζ − ζk
,

where αk 6= 0, k = 1, . . . , n.
With F as in (2.1), we are then interested in the branches of

(3.2) F (ζ) = −2
∫ √√√√ n∑

k=1

αk

ζ − ζk

n∑
k=1

−αk

ζ − ζk
dζ

as ζ → ζk, k = 1, . . . , n. The cluster sets for the nontangential approaches
to points over the ζk give the points lying over the open segments making
up the sides of P.

Thus, take a vertex ζj , and an open segment lj of ∂P corresponding to
it. Then, as ζ → ζj ,

n∑
k=1

αk

ζ − ζk

∑ −αk

ζ − ζk
=

|αj |2

(ζ − ζj)2
(1 + o(1)),

and hence, by (3.2), a branch of F satisfies

(3.3) F (ζ) = ±2|αj | log(ζ − ζj) + o(1)

as ζ → ζj , for a fixed branch of the log. Suppose the fixed branch of (3.3)
has minus sign, and let φ(z) = ReF ◦ f−1(z) be a corresponding branch
in P for points near the corresponding side lj . Now suppose P is convex
and F (ζ) is analytically continued to an adjacent point, say ζj+1, so that
φ is then continued to a corresponding side lj+1 having common endpoint
cj with lj . Since φ → −∞ as z → lj , it remains to show that φ → +∞
as z → lj+1. This effect has been noted for minimal surfaces [JS], and can
be accomplished by a simple barrier argument. I thank Professor Finn for
pointing this out.

Let 0 < β < π be the angle in P between lj and lj+1. Suppose that
φ → −∞ on both open segments lj and lj+1. Since φ satisfies the minimal
surface equation, φ can only tend to −∞ over line segments [O, p. 102].
Since we make no assumption at the common endpoint cj , in order to get
a contradiction we must show that φ→ −∞ at cj as well. We may assume
that cj = (π/2, 0), and lj , lj+1 make the angle β symmetrically with respect
to the x axis, opening toward the origin. Let 0 < ε < (π/2) cot(β/2) be
small enough so that the isosceles triangle N formed by the sector and the
line x = π/2 − ε has the given branch of F single valued. Then, two of
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the sides of N are contained in the segments lj and lj+1, and the third is
x = π/2− ε, −δ < y < δ, where δ = ε tan(β/2). If ψ is the height function
for Scherk’s surface given by (3.1), then for any M > 0, clearly

(3.4) φ(x, y) < −ψ(x− π + ε, y)−M

on ∂N\{cj}. By the extended maximum principle [F1, pp. 342-343], it
follows that (3.4) holds thoughout N . Since M > 0 was arbitrary, it follows
that φ ≡ −∞ on N , a contradiction. Thus φ = +∞ on lj+1.

4. An application to the Riemann mapping theorem.

One of the most basic results in the theory of univalent harmonic mappings
is the Riemann mapping theorem of Hengartner and Schober [HS1].

Theorem A. Let D be a bounded simply connected domain whose bound-
ary is locally connected. Fix w0 ∈ D, and let a(ζ) be analytic in U , with
a(U) ⊆ U . Then there exists a univalent harmonic mapping f with the
following properties.

a) f maps U into D and f(0) = w0, fz(0) > 0.
b) f satisfies the equation (fζ) = afζ .
c) Except for a countable set E ⊆ ∂U , the unrestricted limit f∗(eit) =

lim
ζ→eit

f(ζ) exists and belongs to ∂D.

d) The one sided limits lim
τ→t+

f ∗(eiτ ), lim
τ→t−

f∗(eiτ ) through values of eiτ 6∈

E exist and belong to ∂D; for eit 6∈ E they are equal and for eit ∈ E
they are different.

e) The cluster set of f at eit ∈ E is the straight line segment joining the
left and right limits in d).

If in Theorem A, the setD is convex, and a(ζ) is a finite Blaschke product,
one can say more [HS2, p. 203], [S-S, p. 473].

Theorem B. Let f be as in Theorem A with D bounded and convex, and
a(ζ) a Blaschke product of order n − 2. Then f(U) is a polygon with n
vertices all of which lie on ∂D.

We shall prove uniqueness in the case a(ζ) = ζn and D convex. The case
of uniqueness when D = U and a(ζ) = ζ was done in [HS2, p. 204].

The proof involves a combinatorial argument with the level sets of the
height function. Such arguments are often useful in the theory of partial
differential equation, and in particular the minimal surface equation [F1],
[FO], [JS], [Se].

Theorem 3. The solution f(ζ) to the Riemann mapping theorem above
with D convex and

(4.1) a(ζ) = ζn−2
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is unique for each n = 3, 4, . . .

Proof. Let f1 and f2 be Riemann mappings corresponding to D. We may
assume f1(0) = f2(0) = 0. Let ∆ be a disk centered at 0, and contained in
f1(U) ∩ f2(U).

If n is even, then Û = U and if n is odd Û is a two sheeted cover of U
with branch point over 0. Similarly, if Ũ1 corresponds to f1(U) and Ũ2 to
f(U2), then Ũ1 and Ũ2 are one or two sheeted according as n is even or odd.
We consider the case where n is odd. The even case goes the same way, but
is simpler since one can bypass discussion of Riemann surfaces.

Let ϕj , ψj , ϕ̃j , ψ̃j , F̃j , Ũj , πj , j = 1, 2 be the quantities of §2 defined for
f1 and f2 respectively. We may assume that F̃1(0̃) = F̃2(0̃) = 0. If ∆̃
represents the Riemann surface of

√
z over ∆, then we may consider ∆̃ ⊆ Ũ1

and ∆̃ ⊆ Ũ2, so that F̃1 and F̃2 may both be considered as defined for all
z̃ ∈ ∆̃. For brevity of notation, we shall write F̃ for F̃ ◦ π−1.

Since the analytic dilatation for f1(ζ) and f2(ζ) is 0 when ζ = 0, it follows
from (1.2), (4.1), and a) of Theorem A, that

(4.2) fj(ζ) = cjζ(1 + o(1)) (ζ → 0, cj > 0, j = 1, 2).

Then, from (2.1), (4.1), (4.2), and Theorem 1 we may take determinations
of F̃1 and F̃2 in ∆̃ so that

(4.3) ϕ̃j(z) + iψ̃j(z) = F̃j(z) = djz
n/2(1 + o(1)) (j = 1, 2 z → 0)

with d1, d2 > 0 and zn/2 is some fixed branch.
Having thus fixed branches in (4.3) we may then take a constant λ > 0

such that

(4.4) F̃1(z)− λF̃2(z/λ) = Cz
p+2
2 (1 + o(1)) (z → 0)

for some constant C and integer p ≥ n. We suppose λ ≥ 1; otherwise we in-
terchange F̃1 and F̃2. Now, the change from F (z) to λF (z/λ) corresponds to
replacing f by λf . Then the analytic dilatation is unchanged, and following
the change in (2.1) it gives the parametrization ζ → (λf(ζ),ReλF (ζ)).

Let ϕ3, ψ3, ϕ̃3, ψ̃3 correspond to f3 = λf2 so that f3(U), is nothing more
than f1(U) dilated by the constant λ ≥ 1, and (4.5) becomes

(4.5) F̃1(z̃)− F̃3(z̃) = Cz
p+2
2 (1 + o(1)) (z → 0).

Case 1. C = 0 for every p. Since F̃1(z2)− F̃3(z2) is real analytic, then F̃1 ≡
F̃3. Thus, in particular λ = 1 and f1(U) = f3(U) = P. In order to show
that f1 ≡ f3 we use the subordination principle of [BHH, p. 170]. Briefly,
since P is a convex polygon by Theorem B, and (f1)z(0), (f3)z(0) > 0, we
may apply the argument principle in [BHH, p. 170] to

G(z) = (f3)z(0)f1(z)− (f1)z(0)f3(z)
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to deduce that (f1)z(0) = (f3)z(0). Then, another application of the argu-
ment principle as in [BHH] to Gε(z) = (1 + ε)f1(z)− f3(z) (ε→ 0) shows
that f1 ≡ f3.

Case 2. C 6= 0 for some p ≥ n. In this case, near the origin on ∆̃, by (4.5)
there are 2p + 4 level curves ϕ̃1 − ϕ̃3 = 0 emanating from 0̃. Between the
level curves, ϕ̃1 − ϕ̃3 alternates in sign. In order to analyze the component
sets between the level sets, we must modify f3.

Let η1, η2, . . . be homeomorphisms of |ζ| = 1 onto the boundary of λD,
which converge to the (step function) boundary values of f3, and let f (n)

3 ,

n = 1, 2, . . . their corresponding Poisson integrals so that f (n)
3 → f3 uni-

formly on compact subsets of U .
The level sets of ϕ̃1 − ϕ̃3 = 0 create 2p+ 4 disjoint component open sets

O1, O2, . . . , O2p+4 where ϕ̃1 − ϕ̃3 > 0 in O2j−1 and ϕ̃1 − ϕ̃3 < 0 in O2j for
j = 1, . . . , p+ 2. These components alternate in position around the origin.

For ε > 0 we can find nonempty components at O1(ε), O2(ε), ..., O2p+4(ε)
where ϕ̃1− ϕ̃(n)

3 > ε in O2j−1(ε), ϕ̃− ϕ̃(n)
3 = ε on ∂O2j−1(ε), ∆̃∩O2j−1(ε) ⊆

O2j−1, j = 1, . . . , 2p, and analogous statements hold for O2j(ε), j = 1, . . . ,
p+ 2.

Now, f (j)
3 (U) = λD, so by the maximum principle for solutions to the

minimal surface equation, the level sets forming the boundaries of theOj(ε)’s
must extend to points over the boundary of P = f1(U). As in [FO, pp. 357-
358], we observe that since F̃1 is ±∞ over the sides of P by Theorem 2, if
a component Oj(ε) has a boundary point over an interior point of a side
of P, then the boundary must contain that side. Since, by Theorem B, P
has n sides, then P̃ = π−1

1 (P) has 2n sides. This implies that there are at
most 2n sets Oj(ε) whose boundaries have interior points over ∂P. If Oj(ε)
were a component whose boundary contained no points over ∂P, then its
boundary could only be interior points over P, or vertices. As pointed out
in [FO, p. 358], this is impossible by a theorem of Finn [F1, pp. 342-343].
Thus, 2p+ 4 ≤ 2n. Since p ≥ n, we obtain a contradiction and the theorem
is proved. �
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