Vol. 192, No. 2, 2000

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Hardy’s Uncertainty Principle on semisimple groups

M. Cowling, A. Sitaram and M. Sundari

Vol. 192 (2000), No. 2, 293–296
Abstract

A theorem of Hardy states that, if f is a function on such that |f(x)|≤ C eα|x|2 for all x in and |f(ξ)|≤ C eβ|ξ|2 for all ξ in , where α > 0, β > 0, and αβ > 14, then f = 0. Sitaram and Sundari generalised this theorem to semisimple groups with one conjugacy class of Cartan subgroups and to the K-invariant case for general semisimple groups. We extend the theorem to all semisimple groups.

Milestones
Received: 26 June 1998
Published: 1 February 2000
Authors
M. Cowling
University of New South Wales
Sydney NSW 2052
Australia
A. Sitaram
Indian Statistical Institute
Bangalore - 560 059
India
M. Sundari
University of New South Wales
Sydney NSW 2052
Australia
P.O. Box No. 5978
Jeddah 21432
Kingdom of Saudi Arabia