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A CONTINUOUS LINEAR RIGHT INVERSE
FOR ALL LOWER ORDER PERTURBATIONS Q

Rüdiger W. Braun, Reinhold Meise, and B.A. Taylor

Those homogeneous polynomials P are characterized for
which for arbitrary lower order polynomials Q the partial dif-
ferential operator (P +Q)(D) admits a continuous linear right
inverse if regarded as an operator from the space of all C∞-
functions on Rn into itself. It is shown that P has this prop-
erty if and only if P is of principal type and real up to a
complex constant and has no elliptic factor.

1. Introduction.

The problem of L. Schwartz to characterize those linear partial differential
operators P (D) with constant coefficients that admit a continuous linear
right inverse on C∞(Ω) or D′(Ω), Ω an open set in Rn, n ≥ 2, was solved in
Meise, Taylor, and Vogt [9]. They derived various equivalent conditions for
this property. When Ω is convex, it is equivalent to a condition PL(Ω, log)
of Phragmén-Lindelöf type for plurisubharmonic functions on the algebraic
variety

V (P ) := {z ∈ Cn : P (−z) = 0}.
Using this characterization they showed in [12], Theorem 4.1, that when
V (P ) has PL(Ω, log), then also V (Pm) has PL(Ω, log), where Pm denotes
the principal part of P , which is a homogeneous polynomial of degree m.
In other words, if P (D) admits a right inverse on C∞(Ω), so does Pm(D).
The converse implication fails in general, as the example ( ∂

∂x)2− ( ∂
∂y )2 + ∂

∂z

shows. Since the condition PL(Ω, log) for V (Pm) is easier to check than
for V (P ), one would like to know additional conditions on Pm which imply
that for some or all lower degree perturbations Q the operator (Pm +Q)(D)
admits a right inverse on C∞(Ω). A first result of this type is Corollary
5.8 of [12] which states the following: If Pm is homogeneous of degree m,
gradPm(z) 6= 0 for all z ∈ Cn \ {0}, and V (Pm) satisfies PL(Rn, log), then
V (Pm + Q) satisfies PL(Rn, log) for each polynomial Q of degree less than
m.

In the present paper we prove the following extension of this result:
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Theorem 1.1. For each polynomial Pm ∈ C[z1, . . . , zn], homogeneous of
degree m ≥ 2, the following conditions are equivalent :

(1) (Pm + Q)(D) admits a continuous linear right inverse on C∞(Rn)
and/or D′(Rn) for each Q ∈ C[z1, . . . , zn] of degree less than m,

(2) gradPm(x) 6= 0 for each x ∈ Rn \ {0}, Pm is real up to a complex
constant, and each irreducible factor of Pm has a non-trivial real zero.

In particular, each operator P (D) of principal type admits a right inverse on
C∞(Rn) and D′(Rn) whenever its principal part Pm is real and no irreducible
factor of Pm is elliptic. Note that these operators P (D) admit fundamental
solutions with large lacunas, as the results of Meise, Taylor, and Vogt [8], [9]
imply (see 4.8). Also, Theorem 1.1 proves finally what had been suggested
by many examples (see [12], Example 4.9, [13], Lemma 4), namely that the
existence of real non-zero singular points in V (Pm) implies the existence of
a perturbation Q of degree less than m for which (Pm + Q)(D) does not
admit a right inverse on C∞(Rn).

The proof of Theorem 1.1 in one direction is a modification of the result
of Meise, Taylor, and Vogt [12] mentioned above. For the other direction
we use the concept of quasihomogeneity of polynomials. We show that this
notion together with [12], Lemma 4.7, provides a systematic method to find
necessary conditions for V (P ) to satisfy PL(Rn, log) which can be checked
easily and directly on the given polynomial P .

2. Preliminaries.

In this section we introduce some of the definitions that are used in this
paper. First we recall the definition of a weight function from [1], then
we introduce conditions of Phragmén-Lindelöf type for algebraic varieties
according to Meise, Taylor, and Vogt [9], [11], [12] and we explain the
significance of these conditions.

Throughout the paper, |·| will denote the euclidean norm and Bε(z) =
{w ∈ Cn : |w − z| < ε} an open ball in that norm. Zero is not a natural
number.

Definition 2.1. Let ω : [0,∞[ → ] 0,∞ [ be continuous and increasing and
assume that it has the following properties:

(α) ω(2t) = O(ω(t)) (β)

∞∫
1

ω(t)
t2

dt < ∞

(γ) log t = O(ω(t)), as t tends to infinity (δ) x 7→ ω(ex) is convex.

By abuse of notation, ω : z 7→ ω(|z|), z ∈ Cn, will be called a weight function.
Throughout this paper we assume that ω(0) ≥ 1. It is easy to check that
this can be assumed without loss of generality.
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Note that each weight function satisfies ω(z) = o(|z|). Moreover, each
weight function is plurisubharmonic in Cn in view of 2.1(δ).

Definition 2.2. Let V be an algebraic variety of pure dimension k in Cn

and Ω an open subset of V . A function u : Ω → [−∞,∞[ will be called
plurisubharmonic if it is locally bounded above, plurisubharmonic in the
usual sense on Ωreg, the set of all regular points of V in Ω, and satisfies

u(z) = lim sup
ξ∈Ωreg,ξ→z

u(ξ)

at the singular points of V in Ω. By PSH(Ω) we denote the set of all
plurisubharmonic functions on Ω.

Definition 2.3. Let V ⊂ Cn be an algebraic variety and let ω be a weight
function. Then V satisfies the condition PL(Rn, ω) if the following holds:

There exists A ≥ 1 such that for each ρ > 1 there exists B > 0 such that
each u ∈ PSH(V ) satisfying (α) and (β) also satisfies (γ), where:
(α) u(z) ≤ |Im z|+ O(ω(z)), z ∈ V ,
(β) u(z) ≤ ρ|Im z|, z ∈ V ,
(γ) u(z) ≤ A|Im z|+ Bω(z), z ∈ V .

2.4. Phragmén-Lindelöf conditions and continuous linear right
inverses. To explain the significance of the condition PL(Rn, ω), let P (z) =∑

|α|≤m aαzα be a complex polynomial of degree m > 0 and let

V (P ) := {z ∈ Cn : P (z) = 0}

denote its zero variety. Then V (P ) satisfies PL(Rn, ω) if and only if the
linear partial differential operator

P (D) : E(ω)(Rn) → E(ω)(Rn), P (D)f :=
∑
|α|≤m

aαi−|α|
∂|α|f

∂xα

admits a continuous linear right inverse, where E(ω)(Rn) is the Fréchet space
of all ω-ultradifferentiable functions of Beurling type (see [1]). This follows
from the general characterization in Meise, Taylor, and Vogt [11]. Note that
for ω(t) = log(1+t), i.e., E(ω)(Rn) = C∞(Rn), this was obtained earlier in [9]
and that Palamodov [15] proved that a differential complex of C∞-functions
over Rn splits if and only if the associated varieties satisfy PL(Rn, log).

From Meise, Taylor, and Vogt [12], 4.7, we recall the following lemma
which for many examples was the only tool to show that they do not satisfy
PL(Rn, ω) for some weight function ω.

Lemma 2.5. Let V be an algebraic variety in Cn that satisfies PL(Rn, ω)
with constants A > 0 and Bρ for ρ > 0, according to 2.3. Assume that for
some M ≥ 1 and some z0 ∈ V we have |Im z| ≤ M |Im z0| for all z in the
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connected component Ṽz0 of z0 in the set V ∩ {z ∈ Cn : |z − z0| < t|Im z0|},
where t ≥ 2A + 4. Then z0 satisfies |Im z0| ≤ B(A+2)M+1ω(z0).

3. Quasihomogeneous Polynomials.

In this section we use the concept of quasihomogeneity together with the
lemma of Meise, Taylor, and Vogt [12] stated in 2.5 above to derive condi-
tions on a given polynomial P which imply that V (P ) fails PL(Rn, ω) for
weight functions ω which are growing not too fast. These conditions can be
checked easily by looking at the powers of the monomials appearing in P .

Definition 3.1. For d = (d1, . . . , dn) 6= (0, . . . , 0) with dj ∈ N0, 1 ≤ j ≤ n,
a polynomial P ∈ C[z1, . . . , zn] is said to be d-quasihomogeneous of de-
gree m ≥ 0 if

P (z) =
∑

〈d,α〉=m

aαzα, z ∈ Cn,

where 〈d, α〉 =
∑n

j=1 djαj and where not all aα vanish. The zero polynomial
is considered to be d-quasihomogeneous of degree −∞.

Remark. The concept of quasihomogeneity is widely used in the theory of
partial differential operators. We would like to mention, e.g., the theory of
semi-elliptic operators (see Hörmander [5]) and the recent books of Gindikin
and Volevich [2] and Laurent [6].

Lemma 3.2. Let P ∈ C[z1, . . . , zn] be d-quasihomogeneous of degree m >
0 and let Q ∈ C[z1, . . . , zn] be a sum of d-quasihomogeneous polynomials
of degrees less than m. Assume further that the following conditions are
fulfilled :

(1) d1 < dj for 2 ≤ j ≤ n,
(2) there exists ζ = (ζ1, ζ

′′) ∈ V (P ) with ζ1 6∈ R, ζ ′′ ∈ Rn−1, and ζ ′′ 6= 0,
(3) the polynomial λ 7→ P (λ, ζ ′′) does not vanish identically.

If V (P + Q) satisfies PL(Rn, ω) for some weight function ω and D =
max{dj : ζj 6= 0}, then ω satisfies td1/D = O(ω(t)) as t tends to infinity.

Proof. By (2) and (3) we can choose

0 < δ ≤ 1
4
|Im ζ1|

so that ζ1 is the only zero of λ 7→ P (λ, ζ2, . . . , ζn) in the disk Bδ(ζ1) and
that

η := inf
|λ|=δ

|P (ζ1 + λ, ζ2, . . . , ζn)| > 0.
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By a compactness argument there exists ε0 > 0 so that whenever |zk−ζk| ≤
ε0 for 2 ≤ k ≤ n and |λ| = δ we have

|P (ζ1 + λ, z2, . . . , zn)| ≥ η/2.(3.1)

Next fix R ≥ 1 and let

s(λ) :=
1

Rm
(P + Q)(Rd1(ζ1 + λ), Rd2ζ2, . . . , R

dnζn), λ ∈ C.

By hypothesis, we have Q =
∑m−1

k=0 Qk where Qk is zero or d-quasihomogen-
eous of degree k. Since P is d-quasihomogeneous of degree m, it follows
that

s(λ)− P (ζ1 + λ, ζ2, . . . , ζn) =
m−1∑
k=0

1
Rm−k

Qk(ζ1 + λ, ζ2, . . . , ζn).

Hence there exists R0 > 1 such that for R ≥ R0

|s(λ)− P (ζ1 + λ, ζ2, . . . , ζn)| ≤ η/4 if |λ| = δ.

Because of this and (3.1), Rouché’s theorem implies that for each R ≥ R0

there exists λ(R) ∈ C satisfying |λ(R)| < δ and s(λ(R)) = 0. Hence

z(R) := (Rd1(ζ1 + λ(R)), Rd2ζ2, . . . , R
dnζn)

belongs to V (P + Q). By (2) we have

|Im z(R)| = Rd1 |Im(ζ1 + λ(R))|.

Since |λ(R)| < δ ≤ 1
4 |Im ζ1|, we have

3
4
Rd1 |Im ζ1| ≤ |Im z(R)| ≤ 5

4
Rd1 |Im ζ1|.(3.2)

Now assume that V (P + Q) satisfies PL(Rn, ω) with constants A > 0 and
Bρ for ρ > 0, and let t := 2A + 4. We claim:

(∗) There exist R1 ≥ R0 and M > 0 such that for each R ≥ R1 and each
z in the connected component Ṽz(R) containing z(R) of the set

V (P + Q) ∩ {z ∈ Cn : |z − z(R)| < t|Im z(R)|}

we have |Im z| ≥ 1
M |Im z(R)|.

Assume for a moment that this claim is shown. Then it follows from Lemma
2.5 and (3.2) that for some constant C > 0 and all R ≥ R1 we have

3
4
Rd1 |Im ζ1| ≤ |Im z(R)| ≤ Cω(z(R)).

It is no restriction to assume ζn 6= 0 and dn = D. Then there exists C1 > 0
such that |z(R)| ≤ C1R

D for R ≥ R1 and hence

Rd1 ≤ Cω(C1R
D).
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By 2.1(α), this implies Rd1/D = O(ω(R)), as R tends to infinity. Thus the
proof of the lemma is complete once we have shown our claim (∗). To do
so, note that by (1) we can choose R̃1 ≥ R0 so large that

2t|Im ζ1| ≤ ε0R̃
dj−d1

1 for 2 ≤ j ≤ n.

Then fix R ≥ R̃1 and define π1,R : Cn → C by π1,R(z) := z1/Rd1 . Next
note that for each z ∈ Cn with |z − z(R)| ≤ t|Im z(R)| ≤ 2tRd1 |Im ζ1| its
coordinates z1, . . . , zn satisfy∣∣∣ z1

Rd1
− ζ1

∣∣∣ ≤ ∣∣∣ z1

Rd1
− π1,R(z(R))

∣∣∣ + |λ(R)| ≤ 3t|Im ζ1|,∣∣∣ zj

Rdj
− ζj

∣∣∣ ≤ 2t|Im ζ1|
Rdj−d1

≤ ε0 , 2 ≤ j ≤ n.
(3.3)

Note further that

K := {w ∈ Cn : |w1 − ζ1| ≤ 3t|Im ζ1|, |wj − ζj | ≤ ε0, 2 ≤ j ≤ n}

is compact and hence

max
0≤k≤m−1

sup
w∈K

|Qk(w)| < ∞.

Therefore we can choose R1 ≥ R̃1 so large that∣∣∣∣∣
m−1∑
k=0

1
Rm−k

Qk(w)

∣∣∣∣∣ ≤ η/4 for each R ≥ R1 and w ∈ K.(3.4)

Next fix R ≥ R1 and assume that z ∈ Cn satisfies the inequalities in (3.3).
Then the d-quasihomogeneity properties of P and Q imply

1
Rm

(P + Q)(z) = P
( z1

Rd1
, . . . ,

zn

Rdn

)
+

m−1∑
k=0

1
Rm−k

Qk

( z1

Rd1
, . . . ,

zn

Rdn

)
.

By (3.1) and (3.3) this implies∣∣∣∣ 1
Rm

(P + Q)(z)
∣∣∣∣ ≥ η/4 if

∣∣∣ z1

Rd1
− ζ1

∣∣∣ = δ.

This shows that

π1,R(Ṽz(R)) ⊂ C \ {λ ∈ C : |λ− ζ1| = δ}.

Since π1,R is continuous and satisfies |π1,R(z(R)) − ζ1| = |λ(R)| < δ and
since Ṽz(R) is connected, it follows that∣∣∣ z1

Rd1
− ζ1

∣∣∣ < δ ≤ 1
4
|Im ζ1| for each z ∈ Ṽz(R).
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Hence we have for each z ∈ Ṽz(R)

|Im z| ≥ |Im z1| ≥ |Im Rd1π1,R(z(R))| − |Im Rd1π1,R(z(R))− Im z1|

≥ 3
4
Rd1 |Im ζ1| −

1
4
Rd1 |Im ζ1| =

Rd1

2
|Im ζ1| ≥

2
5
|Im z(R)|.

This shows that our claim holds with M = 5
2 . �

Remark. Note that the application of Meise, Taylor, and Vogt [12], Lemma
4.7, stated in Lemma 2.5, requires a good understanding of the given vari-
ety V in order to find the points z0 ∈ V at which one can use this lemma.
Lemma 3.2 and also Lemma 3.6 below show that there is a systematic way
to find these points in V (P ) if P has a non-trivial d-quasihomogeneous prin-
cipal part with certain other properties. Therefore these lemmas are much
easier to use than Lemma 2.5. We demonstrate this in the following exam-
ples.

Examples 3.3.
(a) Let P ∈ C[z1, z2, z3] be defined as

P (z1, z2, z3) := z2
1z3 + z1z

2
2 + z2z3.

If V (P ) satisfies PL(R3, ω) for some weight function ω then t
1
3 =

O(ω(t)) as t tends to infinity. This is an immediate consequence of
Lemma 3.2 and the following facts:

(1) P is (1, 2, 3)-quasihomogeneous of degree 5
(2) (1

2(−1 + i
√

3), 1, 1) ∈ V (P )
(3) P (λ, 1, 1) = λ2 + λ + 1.

(b) Let P ∈ C[z1, z2, z3] be defined as

P (z1, z2, z3) := z2
1z3 + z1z

2
2 + z2

3 .

If V (P ) satisfies PL(R3, ω) for some weight function ω then t
1
2 =

O(ω(t)) as t tends to infinity. This follows from Lemma 3.2 and the
following facts:

(1) P is (2, 3, 4)-quasihomogeneous of degree 8
(2) (i, 0, 1) ∈ V (P )
(3) P (λ, 0, 1) = λ2 + 1.

(c) Let P ∈ C[z1, z2, z3] be defined as

P (z1, z2, z3) := z2
1z2 − z2

3 .

If V (P ) satisfies PL(R3, ω) for some weight function ω then t
1
2 =

O(ω(t)) as t tends to infinity. This follows immediately from Lemma
3.2 and the following facts:

(1) P is (1, 2, 2)-quasihomogeneous of degree 4
(2) (i,−1, 1) ∈ V (P )
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(3) P (λ, 1,−1) = −(λ2 + 1).

To indicate that Lemma 3.2 can also be used to disprove conditions of
Phragmén-Lindelöf type for homogeneous polynomials which have not been
considered so far, we next recall the condition introduced by Hörmander
[3] to characterize the differential operators P (D) that are surjective on the
space A(Ω) of all real-analytic functions on a convex open set Ω ⊂ Rn, n ≥ 2.
We restrict our attention here to the case Ω = Rn.

Definition 3.4. Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m.
(a) The variety V (Pm) satisfies the condition HPL(Rn) if there exists A ≥

1 such that each u ∈ PSH(V ) satisfying (α) and (β) also satisfies (γ),
where

(α) u(z) ≤ |z|, z ∈ V (Pm),
(β) u(z) ≤ 0, z ∈ V (Pm) ∩ Rn,
(γ) u(z) ≤ A|Im z|, z ∈ V (Pm).

(b) The variety V (Pm) satisfies HPL(Rn, loc) at ξ ∈ V (Pm) ∩ Rn if there
exist A ≥ 0 and 0 < r2 < r1 such that each function u which is
plurisubharmonic on V (Pm) ∩ Br1(ξ) and satisfies (α) and (β) also
satisfies (γ), where

(α) 0 ≤ u ≤ 1 on V (Pm) ∩Br1(ξ),
(β) u(z) ≤ 0, z ∈ V (Pm) ∩ Rn ∩Br1(ξ),
(γ) u(z) ≤ A|Im z|, z ∈ V (Pm) ∩Br2(ξ).

Remark. For P ∈ C[z1, . . . , zn] let Pm denote the principal part of P .
Hörmander has shown in [3] that the operator P (D) : A(Rn) → A(Rn) is
surjective if and only if V (Pm) satisfies HPL(Rn). The latter holds if and
only if V (Pm) satisfies HPL(Rn, loc) at each ξ ∈ V (Pm) ∩ Rn, |ξ| = 1.

Example 3.5. Let P ∈ C[z1, . . . , z4] be defined as

P (z1, . . . , z4) := z2
1z4 − z2

2z3.

Then V (P ) fails PL(R4, ω) for each weight function ω and V (P ) fails
HPL(R4). In particular V (P ) fails HPL(R4, loc) at some ξ ∈ V (P ) ∩ Rn,
|ξ| = 1.

To show this, note first that P is homogeneous. By Meise, Taylor, and
Vogt [12], Theorem 4.1 and Corollary 2.9, this implies that V (P ) satisfies
PL(R4, log) if and only if V (P ) satisfies PL(R4, ω) for each weight function
ω. Next note that:

(1) P is (2, 3, 4, 6)-homogeneous of degree 10
(2) (i, 1,−1, 1) ∈ V (P )
(3) P (λ, 1,−1, 1) = λ2 + 1.

Therefore Lemma 3.2 implies that V (P ) fails PL(R4, t1/3). Hence it also
fails PL(R4, log). Since P is irreducible and not elliptic, it follows from [12],
Corollary 3.14, that V (P ) does not satisfy HPL(R4). Since V (P ) satisfies the
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dimension condition, dim V (P )∩Rn = n−1, Theorem 3.13(4) of [12] shows
that V (P ) fails HPL(R4, loc) at some ξ ∈ V (P ) ∩ Rn, |ξ| = 1. Inspection
of the proof of Lemma 3.2 shows that ξ = limR→∞ z(R)/|z(R)|. So in the
present example, ξ = (0, 0, 0, 1).

For our application we also need the following variant of Lemma 3.2,
which for k = 1 is weaker than that lemma.

Lemma 3.6. Let P ∈ C[z1, . . . , zn] be d-quasihomogeneous of degree m and
let Q ∈ C[z1, . . . , zn] be the sum of d-quasihomogeneous polynomials of de-
grees less than m. Assume that for some k, 1 ≤ k < n, the following
conditions are fulfilled :

(1) d1 = · · · = dk < dj for j > k,
(2) there exists ζ = (ζ ′, ζ ′′) ∈ Ck × Rn−k satisfying P (ζ) = 0 and ζ ′′ 6= 0,
(3) if P (z′, ζ ′′) = 0 then Im z′ 6= 0.

If V (P + Q) satisfies PL(Rn, ω) for some weight function ω and D =
max{dj : ζj 6= 0}, then ω satisfies td1/D = O(ω(t)) as t tends to infinity.

Proof. From (2) and (3) it follows that the polynomial z′ 7→ P (z′, ζ ′′) is not
constant. Since the hypotheses are invariant under a real linear change of
coordinates in the z′ variables, we may assume that z1 7→ P (z1, ζ2, . . . , ζn)
is not constant. From this and (2) it follows that we can choose 0 < r <
1
4 |Im ζ ′| so that

δ := inf
|λ|=r

|P (ζ1 + λ, ζ2, . . . , ζn)| > 0.

For each τ ≥ 1 we get from (3) that P does not vanish on the compact set

L(τ) := {x ∈ Rn : |xj | ≤ τ, 1 ≤ j ≤ k, xj = ζj , k + 1 ≤ j ≤ n}.

Hence there exists ε = ε(τ) > 0 such that for Bε(0) := {z ∈ Cn : |z| ≤ ε}
we have

η(τ) := inf{|P (z)| : z ∈ L(τ) + Bε(τ)(0)} > 0.

Next note that by hypothesis we have Q =
∑m−1

k=0 Qk, where Qk is either
zero or d-quasihomogeneous of degree k. Then fix R ≥ 1 and consider the
polynomial

s(λ) :=
1

Rm
(P + Q)(Rd1(ζ1 + λ), Rd2ζ2, . . . , R

dnζn).

Because of our assumptions on d-quasihomogeneity, we have

s(λ)− P (ζ1 + λ, ζ2, . . . , ζn) =
m−1∑
k=0

1
Rm−k

Qk(ζ1 + λ, ζ2, . . . , ζn).
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From this and a standard compactness argument it follows that there exists
R0 ≥ 1 such that for each R ≥ R0,

sup
|λ|=r

|s(λ)− P (ζ1 + λ, ζ2, . . . , ζn)| ≤ δ/2.

Since P (ζ) = 0, our choice of δ shows that we can apply Rouché’s theorem
to get the existence of a zero λ(R) of s satisfying

|λ(R)| < r ≤ 1
4
|Im ζ ′|.

Now assume that V (P + Q) satisfies PL(Rn, ω) for some weight function
ω with constants A ≥ 1 and Bρ > 0 for ρ > 0. Then let t := 2A + 4 and
define for R ≥ R0

z(R) := (Rd1(ζ1 + λ(R)), Rd2ζ2, . . . , R
dnζn).

By VR we denote the set V (P + Q) ∩ Bt|Im z(R)|(z(R)). We claim that the
following holds:

(∗) There exist R2 ≥ R0 and σ > 0 such that for R ≥ R2

|Im z| ≥ σ|Im z(R)| for each z ∈ VR.

To prove (∗) note that the choice of λ(R) and d1 = · · · = dk imply z(R) ∈
V (P + Q) and |Im z(R)| = Rd1 |Im(ζ1 + λ(R), ζ2, . . . , ζk)|. By the estimate
for λ(R) this shows

3
4
Rd1 |Im ζ ′| ≤ |Im z(R)| ≤ 5

4
Rd1 |Im ζ ′|.

For z ∈ VR this implies∣∣∣ z1

Rd1
− ζ1

∣∣∣ ≤ t|Im z(R)|
Rd1

+ |λ(R)| ≤ 2t|Im ζ ′|,∣∣∣ zj

Rdj
− ζj

∣∣∣ ≤ 2tRd1−dj |Im ζ ′|, 2 ≤ j ≤ n.

Because of this and (1) we can choose τ ≥ 1 and R1 ≥ R0 so that∣∣∣ zj

Rdj

∣∣∣ ≤ τ for 1 ≤ j ≤ k and
∣∣∣ zj

Rdj
− ζj

∣∣∣ ≤ ε(τ) for k + 1 ≤ j ≤ n

whenever R ≥ R1 and z ∈ VR. Next note that

0 = (P + Q)(z)

= RmP
( z1

Rd1
, . . . ,

zn

Rdn

)
+ Rm

m−1∑
k=0

1
Rm−k

Qk

( z1

Rd1
, . . . ,

zn

Rdn

)
implies ∣∣∣P ( z1

Rd1
, . . . ,

zn

Rdn

)∣∣∣ =
∣∣∣∣m−1∑
k=0

1
Rm−k

Qk

( z1

Rd1
, . . . ,

zn

Rdn

)∣∣∣∣ ≤ C

R
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for some constant C ≥ 1 and all z ∈ VR, R ≥ R1. Hence we can choose
R2 ≥ R1, so that

∣∣∣P ( z1

Rd1
, . . . ,

zn

Rdn

)∣∣∣ < η(τ) whenever R ≥ R2, z ∈ VR.

By the definition of η(τ), this implies

R−d1 |Im z′| =
∣∣∣Im ( z1

Rd1
, . . . ,

zn

Rdn

)∣∣∣ ≥ ε(τ)

and consequently, for σ := 4
5

ε(τ)
|Im ζ′| :

|Im z| ≥ |Im z′| ≥ ε(τ)Rd1 = σ
5
4
Rd1 |Im ζ ′| ≥ σ|Im z(R)|,

which proves (∗).
From (∗) and Meise, Taylor, and Vogt [12], Lemma 4.7, it follows that

there exists B > 0 such that

|Im z(R)| ≤ Bω(z(R)) for R ≥ R2.

It is again no restriction to assume ζn 6= 0 and D = dn. From this it
follows as in the proof of Lemma 3.2 that Rd1/D = O(ω(R)) as R tends to
infinity. �

As an application, we give a short proof of a result of Meise and Taylor
[7], 2.1.

Corollary 3.7. Let P ∈ C[z1, . . . , zn] be of degree m and assume that its
principal part Pm is real. Let q ∈ C[t] have degree k < m and non-real
leading coefficient. Set Q(z, t) = P (z) + q(t) and let ω be a weight function
with ω(t) = o(tk/m). Then V (Q) does not satisfy PL(Rn+1, ω).

Proof. We apply Lemma 3.6 in n + 1 variables with d1 = · · · = dn = k <
m = dn+1. Let b ∈ C \ R denote the leading coefficient of q. The d-
quasihomogeneous principal part of Q is Pm(z) + btk. Choose ζ ′ ∈ Cn with
Pm(ζ ′) = b and set ζ ′′ = −1. Then (1), (2), and (3) of Lemma 3.6 are
obviously satisfied. The claim follows from that lemma. �

4. Main Results.

In this section we use the results of the previous one to characterize the
homogeneous polynomials Pm of degree m in n variables (n ≥ 2) for which
V (Pm + Q) satisfies the condition PL(Rn, log) for each perturbation Q of
degree less than m. This will also prove Theorem 1.1. For the proof we need
the following lemma, which is a variation of Meise, Taylor, and Vogt [12],
Lemma 5.2.

Lemma 4.1. For P ∈ C[z1, . . . , zn] denote by Pm its principal part and
assume that V (Pm) has PL(Rn, log), that gradPm(x) 6= 0 for x ∈ V (Pm) ∩
(Rn \ {0}), and that for some weight function ω the following condition is
fulfilled :
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(C) For each ξ ∈ V (Pm) ∩ Rn, |ξ| = 1, there exist δξ, Cξ, Rξ > 0 such that
dist(ζ, V (Pm)) ≤ Cξω(ζ) whenever ζ ∈ V (P ) satisfies |ζ| ≥ Rξ and
| ζ
|ζ| − ξ| < δξ.

Then V (P ) satisfies PL(Rn, ω).

The proof of Lemma 4.1 is quite analogous to that of [12], Lemma 5.2.
Therefore, we will only sketch its main steps: Since V (Pm) has PL(Rn, log)
by hypothesis, it follows from Meise, Taylor, and Vogt [12], Theorem 3.13,
and [10], Theorem 5.1, that V (P ) satisfies the condition (RPL) of [10], 2.2.
Hence there exists A0 ≥ 1 such that for each ρ > 1, there exists Bρ > 0 such
that each u ∈ PSH(V (P )) satisfying

u(z) ≤ |z|+ o(|z|) and u(z) ≤ ρ|Im z|, z ∈ V (P )(4.1)

also satisfies

u(z) ≤ A0|z|+ Bρ, z ∈ V (P ).(4.2)

This a priori estimate and a compactness argument imply that it suffices to
prove the desired Phragmén-Lindelöf estimate for each ξ ∈ V (Pm)∩Rn, |ξ| =
1, in the intersection of V (P ) with some small cone centered around ξ (for
the precise argument we refer to the proof of Meise and Taylor [7], 4.5).
Using appropriate coordinates in such cones, these estimates are derived
from (4.2) similarly as in the proof of [12], Lemma 5.2.

To state our main result, we recall the following definition from Hörman-
der [5], 10.4.11.

Definition 4.2. P ∈ C[z1, . . . , zn] is said to be of principal type if its prin-
cipal part Pm satisfies

n∑
j=1

∣∣∣∣∂Pm

∂zj
(x)

∣∣∣∣2 6= 0 for each x ∈ Rn \ {0}.

Note that by Euler’s rule 〈x, gradPm(x)〉 = mPm(x), so P is of principal
type if and only if

gradPm(x) 6= 0 for each x ∈ Rn \ {0} satisfying Pm(x) = 0.

Theorem 4.3. Let n ≥ 2 and let Pm ∈ C[z1, . . . , zn] be homogeneous of
degree m ≥ 2. Then the following conditions are equivalent :

(1) For each Q ∈ C[z1, . . . , zn] with deg Q < m, the variety V (Pm + Q)
satisfies PL(Rn, log),

(2) Pm is of principal type, Pm is real up to a complex constant, and each
irreducible factor q of Pm has a real zero ξ 6= 0.

Proof. (1) ⇒ (2): By hypothesis, V (Pm) has PL(Rn, log). Hence it follows
from Meise, Taylor, and Vogt [12], Theorem 3.13, that dim V (q)∩Rn = n−1
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for each irreducible factor q of Pm. Thus, the third condition in (2) is
fulfilled.

To prove that Pm is of principal type, note first that by Meise, Taylor, and
Vogt [13], Lemma 2, there exists λ ∈ C \ {0} so that λPm ∈ R[z1, . . . , zn].
Hence the second condition of (2) is fulfilled and it is no restriction to assume
that Pm has real coefficients. To prove that gradPm does not vanish on
V (Pm)∩ (Rn \ {0}) we argue by contradiction and assume that there exists
θ ∈ V (Pm)∩ (Rn \{0}) satisfying gradPm(θ) = 0. After a real linear change
of variables, we may assume θ = en = (0, . . . , 0, 1). Then we apply Taylor’s
formula at θ to get

Pm(z′, 1) = Pm(θ + (z′, 0)) =
m∑

k=ν

qk(z′),(4.3)

where qk ∈ C[z1, . . . , zn−1] is zero or homogeneous of degree k and where
qν 6= 0. Then 2 ≤ ν ≤ m since Pm and gradPm vanish at θ. By the
homogeneity of Pm it follows from 4.3 that for zn 6= 0 we have

Pm(z′, zn) = zm
n Pm

(
z′

zn
, 1

)
= zm

n

m∑
k=ν

qk

(
z′

zn

)
=

m∑
k=ν

zm−k
n qk(z′).

By continuity, this holds also when zn = 0. Now let

P (z) := Pm(z) + izm−1
n =

m∑
k=ν

zm−k
n qk(z′) + izm−1

n

and d := (ν−1, . . . , ν−1, ν). Then the monomial zm−1
n has d-degree (m−1)ν

and the polynomials zm−k
n qk(z′) have d-degree νm−k, so they are decreasing

in k. Hence the d-quasihomogeneous principal part q of P equals

q(z) = zm−ν
n qν(z′) + izm−1

n .

To show that q satisfies the hypotheses of Lemma 3.6, we note that qν 6= 0
implies the existence of ζ ′ ∈ Cn−1 satisfying qν(ζ ′) = −i. Then ζ := (ζ ′, 1)
satisfies

q(ζ) = qν(ζ ′) + i = 0.

Hence the conditions (1) and (2) of Lemma 3.6 are fulfilled. To show that
also condition 3.6(3) holds, assume that for some z′ ∈ Cn−1 we have

0 = q(z′, 1) = qν(z′) + i.

Since qν has real coefficients, this implies z′ /∈ Rn−1, which proves condition
3.6(3). Hence we can apply Lemma 3.6 to conclude that V (P ) does not
satisfy PL(Rn, log) in contradiction to the hypothesis (1).

(2) ⇒ (1): Since Pm is real up to a complex factor, it is no restriction to
assume that Pm has real coefficients. By Meise and Taylor [7], Lemma 4.6,
the hypothesis implies that Pm is a product of distinct, irreducible factors
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with real coefficients, each of which is of principal type. This implies that
Pm is locally hyperbolic at every real characteristic in the sense of Definition
6.4 of Hörmander [3]. Hence it follows from [3], Theorem 6.5, that V (Pm)
satisfies HPL(Rn). By hypothesis, no irreducible component of V (Pm) is
elliptic. Hence V (Pm) satisfies PL(Rn, log) by Meise, Taylor, and Vogt [12],
Corollary 3.14. Next fix Q ∈ C[z1, . . . , zn] with deg Q < m, Q 6= 0 and
choose C > 0 such that |Q(z)| ≤ C(1+|z|m−1), z ∈ Cn. By the homogeneity
of Pm, the function

x 7→
n∑

j=1

∣∣∣∣∂Pm

∂xj
(x)

∣∣∣∣
is positively homogeneous of degree m−1 and does not vanish for x ∈ Rn\{0}
by hypothesis. This implies the existence of δ > 0 and A ≥ 1 such that

1 + |z|m−1 ≤ A max
α 6=0

|P (α)
m (z)|, z ∈ {z ∈ Cn : |Im z| < δ|z|} =: Γ.

Consequently, there exists A′ with

|Q(z)| ≤ A′ max
α 6=0

|P (α)
m (z)|, z ∈ Γ.

Now fix z ∈ Γ ∩ (V (Pm + Q) \ V (Pm)) and note that by Hörmander [4],
Lemma 4.1.1, (which holds also for ξ ∈ Cn) there exists D > 0 such that

dist(ζ, V (Pm))
∑
α 6=0

∣∣∣∣∣P (α)
m (ζ)

Pm(ζ)

∣∣∣∣∣
1

|α|

≤ D, ζ ∈ Cn \ V (Pm).

This and Pm(z) = −Q(z) imply

1
A′ ≤ max

α 6=0

∣∣∣∣∣P (α)
m (z)
Q(z)

∣∣∣∣∣ = max
α 6=0

∣∣∣∣∣P (α)
m (z)

Pm(z)

∣∣∣∣∣ ≤ max
α 6=0

(
D

dist(z, V (Pm))

)|α|

and hence the existence of E > 0 such that (by continuity)

dist(z, V (Pm)) ≤ E, z ∈ Γ ∩ V (Pm + Q).

From this we get (1) by Lemma 4.1. �

Remark 4.4. Note that Theorem 4.3 and its Corollary 4.7 below extend
Corollary 5.8 of Meise, Taylor, and Vogt [12]. Moreover, Theorem 4.3 shows
that the characterizing condition is in fact weaker than the sufficient condi-
tion given there, since Pm can be of principal type, while V (Pm) has complex
singularities. To see this, consider P4(x, y, z) := (x2+y2−z2)(x2+z2−y2/4)
and note that {λ · (i

√
3/5, 2

√
2/5, 1) : λ ∈ C} is a singular line for V (P4).

Remark 4.5. From Meise and Taylor [7], 4.8 and 3.4, it follows that each
real homogeneous polynomial Pm of principal type for which each irreducible
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factor has a non-trivial real zero is also stable under certain real perturba-
tions introducing an extra variable. More precisely, the variety

{z ∈ Cn+1 : Pm(z1, . . . , zn) = zn+1}

satisfies PL(Rn+1, log), provided that Pm is of real principal type and has
no elliptic factor.

In the proof of Theorem 4.3 we used complex polynomials to show that
V (Pm+Q) fails PL(Rn, log) if V (Pm) satisfies PL(Rn, log) while Pm is not of
principal type. In some cases, such as P2(x, y, z) = x2 − y2, this is the only
possible choice (see Meise, Taylor, and Vogt [12], Example 4.9). However, in
other cases, real perturbations can also have the same effect, as the following
example shows.

Example 4.6. Let P (x, y, z) :=x2z+yz2+yz. The principal part P3(x, y, z)
= x2z+yz2 = (x2+yz)z is hyperbolic with respect to N = (0,−1, 1). Hence
V (P3) satisfies PL(R3, log) by Meise, Taylor, and Vogt [9], 3.6, and 4.5 in
connection with [12], 2.12. Obviously, P3 is not of principal type. By
Example 3.3(a), V (P ) does not satisfy PL(R3, ω) whenever ω(t) = o(t1/3).

Corollary 4.7. Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2
and of principal type. Then the following conditions are equivalent :

(1) V (Pm) satisfies PL(Rn, log),
(2) Pm is real up to a complex constant and each irreducible factor q of

Pm has a real zero ξ 6= 0,
(3) there exist k ∈ N, Q ∈ C[z1, . . . , zn] with deg Q < km, and a weight

function ω so that V (P k
m + Q) satisfies PL(Rn, ω),

(4) for each k ∈ N and each Q ∈ C[z1, . . . , zn] with deg Q = l < km we
have:

(a) if l ≤ k(m− 1), then V (P k
m + Q) satisfies PL(Rn, log),

(b) if l > k(m − 1), then V (P k
m + Q) satisfies PL(Rn, 1 + tβ) for β =

1 + l
k −m.

Proof. (1) ⇒ (2): This follows from Meise, Taylor, and Vogt [13], Lemma
2, and [12], Corollary 3.14.

(2) ⇒ (3): Since Pm is of principal type, (2) implies that condition 4.3(2)
is fulfilled. Hence V (Pm) satisfies PL(Rn, log) by Theorem 4.3. Thus (3)
holds for k = 1 and Q = 0.

(3)⇒ (1): If V (P k
m+Q) satisfies PL(Rn, ω) then V (P k

m) = V (Pm) satisfies
PL(Rn, log) by Meise, Taylor, and Vogt [12], Theorem 4.1.

(4) ⇒ (3): This holds trivially.
(2) ⇒ (4): Since Pm is of principal type, there exists η > 0 such that

|gradPm(z)| > 0 for z ∈ Cn, |z| = 1 and |Im z| ≤ η.
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Therefore standard arguments using homogeneity and compactness imply
the existence of δ > 0 such that

max
0<|α|≤k

|(P k
m)(α)(z)| ≥ δ|z|k(m−1) for z ∈ Cn, |Im z| ≤ η|z|, |z| ≥ 1.(4.4)

Now fix Q ∈ C[z1, . . . , zn] satisfying deg Q ≤ k(m − 1). Then there exists
D ≥ 1 such that

|Q(z)| ≤ D max
|α|>0

∣∣∣(P k
m)(α)(z)

∣∣∣ for z ∈ Cn, |z| ≥ 1, |Im z| ≤ η|z|.(4.5)

Now fix ξ ∈ V (Pm) ∩ Rn, |ξ| = 1, and let

Γ(ξ, η, 1) :=
{

z ∈ Cn :
∣∣∣∣ z

|z|
− ξ

∣∣∣∣ ≤ η, |z| ≥ 1
}

.

For z ∈ Γ(ξ, η, 1) we have |Im z| ≤ η|z| since ξ is real. Now fix ζ ∈ V (P k
m +

Q) ∩ Γ(ξ, η, 1) satisfying Pm(ζ) 6= 0. Then P k
m(ζ) = −Q(ζ) and (4.5) imply

the existence of M ≥ 1 such that

1
M

≤
∑
|α|>0

∣∣∣∣∣(P k
m)(α)(ζ)
Q(ζ)

∣∣∣∣∣
1/|α|

=
∑
|α|>0

∣∣∣∣∣(P k
m)(α)(ζ)
P k

m(ζ)

∣∣∣∣∣
1/|α|

.

Since by Hörmander [4], Lemma 4.1.1, there exists C ≥ 1 such that

dist(ζ, V (P k
m))

∑
|α|>0

∣∣∣∣∣(P k
m)(α)(ζ)
P k

m(ζ)

∣∣∣∣∣
1/|α|

≤ C

we conclude that

dist(ζ, V (P k
m)) ≤ CM ≤ CM log(2 + |ζ|).

Since ξ ∈ V (Pm) ∩ Rn, |ξ| = 1, was chosen arbitrarily, it follows from
Lemma 4.1 that V (P k

m + Q) satisfies PL(Rn, log) in this case.
If k(m − 1) < l = deg Q < km then 0 < β := 1 + l

k − m < 1 and (4.4)
implies the existence of δ > 0 such that

max
0<|α|≤k

∣∣∣(P k
m)(α)(z)

∣∣∣ |z|β|α| ≥ δ|z|k(m−1)−βk

= δ|z|l if |z| ≥ 1 and |Im z| ≤ η|z|.
Hence there exists D ≥ 1 such that

|Q(z)| ≤ D max
|α|>0

∣∣∣(P k
m)(α)(z)

∣∣∣ (1 + |z|β)|α| for z ∈ Cn, |Im z| ≤ η|z|, |z| ≥ 1.

From this it follows as above that for each ξ ∈ V (P k
m) ∩ Rn, |ξ| = 1, there

exists Cξ > 0 such that

dist(ζ, V (P k
m)) ≤ Cξ(1 + |ζ|β), ζ ∈ Γ(ξ, η, 1).
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By Lemma 4.1, this implies that V (P k
m + Q) satisfies PL(Rn, ω) for ω(t) =

1 + tβ, as asserted. �

Theorem 4.3 in connection with Meise, Taylor, and Vogt [8], Théorème,
also implies the following result on the existence of fundamental solutions
with large lacunas.

Corollary 4.8. Let P ∈ C[z1, . . . , zn] be of principal type and of degree
m ≥ 2. If the principal part Pm of P is real up to a complex constant and
if each irreducible factor q of Pm has a real zero ξ 6= 0 then the following
holds:

For each r > 0 there exists R > 0 such that for each ξ ∈ Rn, |ξ| > R, there
exists a fundamental solution Eξ ∈ D′(Rn) of P (D) satisfying SuppEξ ⊂
{x ∈ Rn : |x− ξ| ≥ r}.

References

[1] R.W. Braun, R. Meise and B.A. Taylor, Ultradifferentiable functions and Fourier
analysis, Res. Math., 17 (1990), 207-237.

[2] S.G. Gindikin and L.R. Volevich, Mixed Problem for Partial Differential Equations
with Quasihomogeneous Principal Part, Amer. Math. Soc., 1996 (translation from the
Russian).
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