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This paper is divided in three parts. The first part deals
with the equivalence of finite determination on the right and
finite relative determination (with respect to S) under some
conditions on S. The second part deals with infinite determi-
nacy (with respect to S, a germ of a closed set of Rn). Both
generalize results of P. Porto [P] for a big family of closed sub-
sets S of Rn. The third part is a special case which is quite
interesting, when S coincides with the closure of its interior.

Introduction.

This paper continues the work done in [K]. In that paper there were proven
results of finite relative determination for particular algebraic subsets of Rn.
Here we continue in this direction. In the first part we prove the equivalence
of finite determination on the right and finite relative determination for a big
family of algebraic subsets, generalizing the results of [P-L]. In the second
part we continue with the concept of infinite determinacy and remarking
the importance of quasihomogeneous polynomials. In the third part we
generalize the results on relative stability in [P-L] and [P] for a broader
family of closed subsets of Rn, such as good semianalytic subsets.

Notation.

We shall work in E (n) , the local algebra of C∞ function germs of Rn to
R around the origin with maximal ideal m(n). The powers of m(n) will be
denoted by m(n)k and m(n)∞ = ∩∞k=1m(n)k. For I = (i1, . . . , in) a multi-
index of natural numbers and x = (x1, . . . , xn) we shall write xI = x

i1
1 . . . xin

n

and |I| = i1 + · · ·+ in, also for a germ f , ∂|I|f
∂xI = ∂|I|f

∂x
i1
1 ···∂xin

n

.

For S a subset of Rn, 0 ∈ S, cl(S) and int (S) will denote the closure
and the interior of S respectively and GS will be the group of germs of
diffeomophisms φ at 0, such that φ(x) = x ∀ x ∈ S. Also d(x, S) will denote
the usual distance from the point x to the subset S.

Finally if f is a germ, ∂f/∂xi will be the partial derivatives of f and〈
∂f
∂xi

〉
will be the ideal of E (n) generated by them. Also for a germ f ,
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316 LEÓN KUSHNER AND BRASIL TERRA LEME

jkf(x) will be the Taylor expansion of f at the point x up to degree k and it
is called the k−jet of f at x. We will denote by Jk(n, 1) the R-vector space
of all polynomials in n-coordinates up to degree k. In the case k = ∞ we
understand j∞f(x) the Taylor series of f at x. Also J∞(n, 1), the set of all
these jets will be identified with the formal power series ring R [[x1, . . . , xn]].

We are very grateful to the reviewer for his work and suggestions.

1. Finite Relative Determination and Finite Determination on
the Right.

Definition 1.

(a) Let S be a germ of a subset of Rn, f be a germ with f(0) = 0 and
let k ≤ ∞. We shall say that f is k− determined relative to GS if
whenever g is a germ such that jkg(0) = jkf(0) and g− f vanishes at
S, there exists h in GS with g = f ◦ h. In the case S =

{
0
}

we say
that f is finitely or infinitely determined on the right according to k
is finite or not. In general if k is finite, then we say that f is finitely
determined relative to GS .

(b) Let I be an ideal of E (n) and S = z (I) the germ of the common
zeroes of I (we suppose 0̄ ∈ S). We denote by rad I the ideal of E (n)
consisting of all germs vanishing at S, and we say that I is radical if
I = rad I.

Lemma 2 (Artin-Rees). If I is an ideal of R [[x]] = R [[x1, . . . , xn]], there
exists k such that I ∩Mm = Mm−k(I ∩Mk) (∀ m ≥ k).

We shall denote A(I) the minimum k satisfying the equality of Lemma
2. Consider R [[x]] the algebra of formal power series, M its maximal ideal,
and the canonical projection π : E (n) −→ R [[x]] which sends a germ to
its Taylor infinite series and J an ideal of E (n), we will get by Artin-Rees
lemma for l = A(π(J)), Mm ∩ π(J) = Mm−l(M l ∩ π(J)), ∀ m ≥ l. Hence
applying π−1 to the above equality and intersecting each member with J we
get

(∗) J ∩m(n)m = m(n)m−l(J ∩m(n)l) + J ∩m(n)∞ (∀ m ≥ l).

We shall denote A(J) the minimum l satisfying this equality, therefore
A(J) ≤ A(π(J)).

Since m(n)k ⊇ kerπ, then π(J ∩m(n)k) = π(J)∩π(m(n)k) = π(J)∩Mk.
If we apply the epimorphism π to the equality (∗), we get Mm ∩ π(J) =
Mm−l(M l ∩ π(J)), ∀ m ≥ l. Therefore A(π(J)) ≤ A(J) and hence A(J) =
A(π(J)).

In case I is a radical ideal of E (n), we get in fact I ∩ m(n)m =
m(n)m−k(I ∩m(n)k) ∀m ≥ k.
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Theorem 3. Consider I a finitely generated ideal of E (n) . Then for any
k < ∞, I ∩m(n)k is also finitely generated.

Proof. Consider g1 , . . . , gs generators of I and let f =
∑s

i=1 higi. Then we
have

f =
s∑

i=1

h
(k)
i gi +

s∑
i=1

h
[k]
i gi,

where h
(k)
i is the (k − 1)− jet of hi and h

[k]
i = hi − h

(k)
i .

Hence as vector spaces I = V + m(n)kI, where V is the vector space
generated by

{
xIgi

}
with |I| ≤ k− 1. Therefore I ∩ m(n)k = V ∩ m(n)k +

m(n)kI. It is clear that a basis of the subspace V ∩ m(n)k of V and the
generators of m(n)kI generate I ∩ m(n)k as an ideal of E (n). �

Theorem 4. Suppose I is a radical ideal of E (n), I ∩m(n)k a finitely gen-
erated ideal and I ∩ m(n)k ⊆ Im(n)

〈
∂f
∂xi

〉
with k ≥ A (I) . Then f is k-

determined relative to GS, where S = z(I).

Theorem 5. Let f be a k-determined germ relative to GS, S = z(I) and I

a radical finitely generated ideal. Then I∩m(n)k+1 ⊆ I
〈

∂f
∂xi

〉
+m(n)k+2∩I.

Joining Theorems 4 and 5 we get for I a finitely generated ideal, the
following:

Theorem 6. Let f be a germ, I a finitely generated radical ideal, S = z(I),
and k ≥ A (I). Then f is finitely determined relative to GS if and only
if there exists a number l greater or equal than k such that m(n)l ∩ I ⊆ I〈

∂f
∂xi

〉
.

The proofs of the above theorems can be found in [K], Theorems 11 and
15.

We can change Theorem 4 in the following way.

Theorem 7. Let I be a radical ideal, k = A (I) and suppose that I ∩
m(n)k is finitely generated. Let l be a natural number such that m(n)lI ⊆
m(n)I

〈
∂f
∂xi

〉
. Then f is (k + l − 1) determined relative to GS, where

S = z(I).

Proof. Let g be a germ with g ≡ f on S and jk+l−1g(0) = jk+l−1f(0).
If we define the trivial homotopy F (x, t) = (1 − t) f(x) + tg(x) we get

∂F
∂t = g − f ∈ m(n)k+l ∩ I and ∂f

∂xi
= ∂F

∂xi
+ t

(
∂f
∂xi

− ∂g
∂xi

)
.
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Since m(n)k+l ∩ I ⊆ m(n)lI and Im (n)p−1 ⊆ I ∩m(n)p ∀ p, we get(
m(n)k+l ∩ I

)
E (n + 1) ⊆ m(n)I

〈
∂F

∂xi

〉
E (n + 1)

+ m(n)
(
m(n)k+l ∩ I

)
E (n + 1) .

By Nakayama’s lemma we arrive to the inclusion:

(m(n)k+l ∩ I)E (n + 1) ⊆ m(n)I
〈

∂F

∂xi

〉
E (n + 1) .

Hence ∂F
∂t =

∑
hi (x, t) ∂F

∂xi
with hi(x, t) ≡ 0 for x ∈ S, t near t0 (t0 fixed).

We now proceed in the usual way. �

Remark 1.

(a) If I = m(n) then k = 1 and we get that m(n)l+1 ⊆ m(n)2〈 ∂f
∂xi
〉 implies

f is l− determined on the right ([M]).
(b) If I = 〈x1, . . . , xs〉 then k = 1 and we get that m(n)lI ⊆ m(n)I 〈 ∂f

∂xi
〉

implies f is l− determined relative to GS , S = {0} × Rn−s ([P-L]).

Corollary 8. Let f be a germ, I a radical ideal, k = A (I) and I ∩m(n)k

be finitely generated. Suppose that m(n)l ⊆ m(n)〈 ∂f
∂xi
〉. Then f is (k+l−1)-

determined relative to GS . Hence finite determination on the right implies
finite relative determination.

Proof. Since m(n)l ⊆ m(n)〈 ∂f
∂xi
〉 then m(n)lI ⊆ m(n)I 〈 ∂f

∂xi
〉. We now use

Theorem 7. �

We are now interested in determining for which ideals I we have the
converse of Corollary 8. For this purpose we need the following:

Theorem 9. Let A be a commutative ring, I, J, K ideals of A with I =
〈g1, . . . , gk〉. Suppose that agi = 0 for all i and a ∈ Jk + K implies a = 0.
Then if IJ ⊂ IK hence Jk ⊆ K.

Proof. Let m1, . . . , mk be arbitrary elements of J , then gimi =
∑k

j=i gjdij

∀ i with 1 ≤ i ≤ k (dij ∈ K). In matricial notation we can write

(∗) C

 g1
...

gk

 =

 0
...
0

 where C = (δijmi − dij).

If we multiply (∗) by the adjoint of C we get (det C)gi = 0 ∀ i, but
det C = m1 · · ·mk + b with b ∈ K. Hence by hypothesis det C = 0 and
then m1 · · ·mk ∈ K, therefore Jk ⊆ K. �
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Corollary 10. Let A = E (n), J = m(n)l, (or J = m(n)∞), K = 〈 ∂f
∂xi
〉

and I ideal with I = 〈g1, . . . , gk〉 . Suppose that hgi = 0 for all i and

h ∈ m(n)lk+
〈

∂f
∂xi

〉
(or h ∈ m(n)∞+〈 ∂f

∂xi
〉) implies h ≡ 0. Then if I m(n)l ⊆

I
〈

∂f
∂xi

〉
(or I m(n)∞ ⊆ I 〈 ∂f

∂xi
〉) hence m(n)lk ⊆ 〈 ∂f

∂xi
〉 (or m(n)∞ ⊆ 〈 ∂f

∂xi
〉)

and f is (lk + 1)-determined on the right (∞ - determined on the right).

This result motivates us to find examples where I is a finitely generated
radical ideal satisfying the hypothesis of the above corollary.

Example 11. Let I be a radical ideal generated by a non trivial analytic
germ g. If hg = 0 then h ≡ 0 and we will have finite relative determination
implies determination on the right (hg ≡ 0 =⇒ h−1(0) ∪ g−1(0) = Rn but
g− 1(0) is a closed set with empty interior, therefore h−1(0) = Rn).

Example 12. Consider in E (3) the ideal I generated by {x1x2, x1x3, x2x3}.
It is easy to see that I is radical and A (I) = 2. Moreover if we denote
P1 = x1x2, P2 = x1x3 and P3 = x2x3,we get for i 6= j, i 6= k, j 6= k that
the closure of z(Pi) ∩ z (Pj) − z(Pk) is a plane and does not contain z(I),
which is the union of the three axes, hence it does not satisfy the hypothesis
of Theorem 20 [K], but the conclusion is still true. We give a proof since it
is important for the converse of Corollary 8.

Proposition 13. With the above notation, if f is m-determined relative to
GS, where S = z(I) are the coordinate axes, then f is (2m− 2)-determined
on the right.

Proof. By Theorem 15 ([K]) we know that m(3)m+1 ∩ I ⊆ I〈 ∂f
∂xi
〉 which

in this case is equivalent to Im (3)m−1 ⊆ I〈 ∂f
∂xi
〉. We shall show that

m(3)2m−1 ⊆ 〈 ∂f
∂xi
〉m(3)2 and hence f is (2m − 2)-determined on the right.

Any mixed monomial of m(3)2m−1 has a factor of I times a monomial of
degree 2m − 3, hence for m ≥ 2 it is contained in the Jacobian ideal. We
now give the proof for x2m−1

1 , the other two are similar,

(∗) xm−1
1 (x1x2) = x1x2

3∑
j=1

∂f

∂xj
h1j + x1x3

3∑
j=1

∂f

∂xj
h2j + x2x3

3∑
j=1

∂f

∂xj
h3j .

If we denote φ = xm−1
1 −

∑3
i=1

∂f
∂xj

h1j we get that the zeroes of φ contain

{x3 = 0} and the zeroes of x1φ contain {x3 = 0}∪{x1 = 0}, hence x1φ ∈
∧
I=

I. From (∗) and the definition of φ, xm
1 = x1

∑3
j=1

∂f
∂xj

h1j + x1φ, therefore

x2m−1
1 ∈ m(3)2 〈 ∂f

∂xi
〉 and f is (2m− 2)-determined. �
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Remark 2. By Corollary 10, since I =
∧
I = 〈x1x2, x1x3, x2x3〉 then

Im (3)m−1 ⊆ I〈 ∂f
∂xi
〉 implies m(3)3(m−1) ⊆ 〈 ∂f

∂xi
〉 and f is (3m−2)-determined

on the right.

Definition 14. Let f1, . . . , fr be germs in m(n). We say that they are
linearly independent if their gradients denoted by ∇f1, . . . ,∇fr are linearly
independent at the origin.

Lemma 15. Let f1, . . . , fr be linearly independent germs. Then the ideal I
generated by them is radical.

Proof. Let H be the germ of the common zeroes of I and Pr+1, . . . , Pn linear
polynomials such that ∇f1(0), . . . ,∇fr(0),∇Pr+1(0), . . . ,∇Pn(0) is a basis
of Rn. Thus φ = (f1, . . . , fr, Pr+1, . . . , Pn) is a germ of diffeomorphism.
Let f ∈ Î hence f ≡ 0 on H if and only if f ◦ φ−1 ≡ 0 on {0} × Rn−r.
By Hadamard’s lemma we get f ◦ φ−1(x1, . . . , xn) =

∑r
i=1 xigi, therefore

f =
∑r

i=1 fi(gi ◦ φ), and hence f belongs to the ideal I. �

Lemma 16. Let I1, . . . , Ir be radical ideals in E (n). Then their intersection
is also a radical ideal.

Proof. In general rad(∩r
i=1Ii) ⊆ ∩r

i=1rad Ii, hence we get

∩r
i=1Ii ⊆ rad ∩r

i=1 Ii ⊆ ∩r
i=1rad Ii = ∩r

i=1Ii.

Therefore the equality ∩r
i=1Ii = rad ∩r

i=1 Ii. �

Lemmas 15 and 16 generate a special collection of algebraic sets. They
are called bouquets of subspaces.

Example 17. Consider I ⊆ E (3) the ideal generated by x and yz, hence
z(I) is the union of the y−axis and z−axis, they are not in general position
(in R3). By Lemma 16, I is clearly a radical ideal since I = I1 ∩ I2 where
I1 = 〈x, y〉 and I2 = 〈x, z〉 .

Definition 18. Let I be a finitely generated ideal of E (n), I = 〈g1, . . . , gk〉 .
We say that I is integral if S = z(I) is nowhere dense.

We now arrive at the main theorem of this section.

Theorem 19. Let I be a finitely generated ideal of E (n) which is radical.
Then if f is finitely determined relative to GS, S = z(I), hence f is finitely
determined on the right.

Proof. Suppose I = 〈g1, . . . , gk〉 and that hgi ≡ 0 ∀ i. Therefore z(h) ∪
z(gi) = Rn ∀ i and hence z(h) ∪ z(I) = Rn. Since I is an integral ideal,
see [R], z(h) = Rn and hence h ≡ 0. On the other side there exists a
natural number p such that m(n)pI ⊂ 〈 ∂f

∂xi
〉I. By Corollary 10, we get

m(n)pk ⊂ 〈 ∂f
∂xi
〉 and therefore f is (pk + 1)-determined on the right. �
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Corollary 20. Consider I1, . . . , Ir ideals each of them generated by lin-
early independent linear polynomials and S the union of their common ze-
roes (bouquet of subspaces). Then a germ f is finitely determined on the
right if and only if f is finitely determined relative to GS .

We finish this section with an observation about homogeneous polynomi-
als.

Proposition 21. Let h1, . . . , hk be homogeneous polynomials of degree
s1, . . . , sk respectively and let s be the maximum of these degrees. Hence
if I is the ideal generated by h1, . . . , hk we get A(I) ≤ s.

Proof. We have to show that (I ∩m(n)s)m(n)r = I ∩m(n)s+r ∀ r ≥ 0. Let
f ∈ I ∩m(n)s+r, hence we have the following equalities.

f = h1g1 + . . . + hkgk(∗)

0 = js+r−1f(0) = h1j
r+s−1−s1 g1(0) + · · ·+ hkj

r+s−1−skgk(0).(∗∗)

Sustracting (∗∗) from (∗) we get f = h1
∼
g1 + · · · + hk

∼
gk, where

∼
gi∈

m(n)r+s−si .

Hence each
∼
gi is a sum of elements of the form

∼
hj

i

≈
hj

i , with
∼
hj

i ∈ m(n)r

and
≈
hj

i is a homogeneous monomial of degree s− si.

Therefore f is a sum of elements of the form (hi

≈
hj

i )
∼
hj

i ,with (hi

≈
hj

i ) ∈
I ∩ m(n)s, so f ∈ (I ∩ m(n)s)m(n)r . We have shown that I ∩m(n)s+r ⊆
(I ∩m(n)s) m(n)r ∀ r ≥ 0. The other inclusion is obvious. �

2. Infinite determinacy on germs of closed subsets of Rn.

In this setction we will assume that S is a germ of a closed subset of Rn

such that the origin is an accumulation point of S.

Definition 22. Let S ⊆ Rn be a germ of a closed set such that 0 is an
accumulation point of S. We say that a germ f in E (n) is S−infinitely
determined if given a germ g such that j∞g(x) = j∞f(x) ∀ x ∈ S there
exists a germ of a diffeomorphism φ such that g = f ◦ φ.

We denote by E (S, n) the ideal of E (n) consisting of the germs f such
that j∞f(x) = 0 for all x ∈ S. If f is a germ in this ideal, we can write
f = gh where {g, h} ⊆ m(n)∞ and h(x) > 0 for x 6= 0. Then j∞g(x) = 0 ∀
x 6= 0, x ∈ S and therefore E (S, n) ⊆ E (S, n) m(n)∞. We get in fact the
equality.

Remark 3. If f ∈ E (S, n) then for all multi-index I, ∂|I|f
∂xI ∈ E (S, n).
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Definition 23. A germ f is S-infinitesimally stable if E(S, n)⊆〈 ∂f
∂xi
〉E(S, n).

Theorem 24. Let S be a germ of a closed subset of Rn such that the origin
is an accumulation point of S. If f is S-infinitesimally stable then f is
S-infinitely determined.

Proof. Let g(x) be a germ such that j∞g(x) = j∞f(x) ∀ x ∈ S. We de-
fine the homotopy F (x, t) = tg(x) + (1 − t) f(x) . Consider the follow-
ing E(n + 1)− modules N = E(n + 1)〈 ∂f

∂xi
〉 and K = E(n + 1)〈 ∂F

∂xi
〉. If

h ∈ N , we have h(x, t) =
∑n

i=1
∂f
∂xi

(x) hi(x, t) =
∑n

i=1
∂F
∂xi

(x, t) hi(x, t)+

t
∑n

i=1
∂(f−g)

∂xi
(x) hi(x, t). Since ∂(f−g)

∂xi
(x) ∈ E(S, n) ⊆ 〈 ∂f

∂xi
〉E(S, n), we get

N ⊆ K +E(S, n)N , and by Nakayama’s lemma, N ⊆ K and hence E(S×R,
n + 1) 〈 ∂f

∂xi
〉 E(n + 1) ⊆ E(S × R, n + 1)〈 ∂F

∂xi
〉E(n + 1).

Since g − f ∈ E(S × R, n + 1) 〈 ∂f
∂xi
〉E(n + 1), hence

∂F
∂t ∈ E(S × R, n + 1)〈 ∂F

∂xi
〉E(n + 1). We now proceed in the usual way. �

Proposition 25. If f is a germ, finitely (infinitely) determined on the right,
it is S-infinitesimally stable and therefore S-infinitely determined.

Proof. By our hypothesis we have

m(n)∞ ⊆
〈

∂f

∂xi

〉
and E(S, n) ⊆ E(S, n)m(n)∞ ⊆ E(S, n)

〈
∂f

∂xi

〉
.

�

Example 26.
(a) Let f be a germ and k a natural number, denote by Ik the ideal

generated by fk. Suppose E(S, n) ⊆ Ik, fk ∈
〈

∂f
∂xi

〉
and j∞f(x) 6=

0 ∀ x ∈ T, where the closure of T is S. If h ∈ E(S, n), h = fkg where
g ∈ E(S, n). Therefore E(S, n) ⊆ E(S, n)

〈
fk

〉
⊆ E(S, n)

〈
∂f
∂xi

〉
, and

thus f is S-infinitely determined.
(b) In particular let S = {(x1, . . . , xn)|x1 ≤ 0}. Then for the germs

f1(x1, . . . , xn) =
∑n

i=1 x2
i , and f2(x1, . . . , xn) = x1, we get j∞f1(x) 6=

0 and j∞f2(x) 6= 0 ∀ x ∈ int S. Since S = cl(int S) and E(S, n) ⊆
〈
fk

i

〉
for i = 1, 2 (Proposition 5.4 of Chapter V, [T]), and clearly fk

i ∈
〈

∂fi

∂xj

〉
for i = 1, 2, we get that fk

1 , fk
2 are S-infinitely determined. ([P-L]).

Definition 27.
(a) Let S be a closed subset of Rn (containing the origin) and f a germ

with f
(
0
)

= 0. We say that f satisfies a Lojasiewicz inequality for S

if for any K, a germ of a compact set with 0 ∈ K, there exist constants
c > 0 and α ≥ 0 such that |f(x)| ≥ cd(x, S)α for all x ∈ K.
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(b) Let I be a finitely generated ideal of E(n) and S the germ of its common
zeroes. We say that I is a Lojasiewicz ideal if there exists f in I
satisfying a Lojasiewicz inequality for S.

(c) Let f ∈ m(n) and S a closed subset of Rn, we say that f satisfies
a Jacobi-Lojasiewicz condition for S if |∇f | satisfies a Lojasiewicz
inequality for S.

Remark 4. If {f1, . . . , fs} is a set of generators of a Lojasiewicz ideal I,
then

∑s
i=1 f2

i ,
∑s

i=1 |fi| and max
{
f2
1 , . . . , f2

s

}
also satisfy a Lojasiewicz

inequality for S.

Definition 28. Let (bi) be a sequence of positive real numbers converging
to zero. We say that a sequence of real numbers (ai) is flat along (bi) if
given r > 0 there exists a natural number N = N(r) such that |ai| ≤ br

i
for i ≥ N . Sequences of vectors, matrices, jets are flat along a sequence
(bi) if each entry is flat along (bi). A sequence is flat along a sequence (xi)
of nonzero vectors in Rn converging to the vector 0 if it is flat along the
sequence (|xi|). In the case of ∞−jets, we ask for a uniform N = N(r) for
all entries. Here we are identifying

∑
α aα

(x−x0)α

α! with (aα).

Remark 5. We can change r > 0 for r = n, n a natural number since for
n > r, we get bn

i ≤ br
i (0 ≤ bi ≤ 1).

We state an interesting equivalence.

Lemma 29. A germ g does not satisfy a Lojasiewicz inequality for a closed
subset S if and only if there exists a sequence of vectors xi ∈ Rn − S con-
verging to the vector 0 such that (g(xi)) is flat along (d(xi,S)).

Remark 6. For a germ g not identically zero we can choose g(xi) 6= 0 ∀ i.

Definition 30. Let S be a closed subset of Rn. Then M(S, n) is the set of
maps φ : Rn − S −→ R such that if K is a germ of a compact set and I is a
multi-index of natural numbers, there exist constants c > 0 and α > 0 such
that

∣∣∣∂|I|φ
∂xI (x)

∣∣∣ ≤ cd(x, S)−α for all x ∈ K − S.

We state the following proposition (Chapter IV, Proposition 4.2 of [T]).

Proposition 31. Let φ ∈ M(S, n) and f ∈ E(S, n). Then we can extend
φf in a unique way to a germ in E(S, n), denoted also by φf .

Theorem 32. Let f be a germ, S a germ of a closed subset of Rn such that 0
is an accumulation point of S. Suppose that f satisfies a Jacobi-Lojasiewicz
condition for S. Then f is S-infinitesimally stable and therefore S-infinitely
determined.

Proof. Consider g = |∇f |2, we shall show that E(S, n) ⊆
〈

∂f
∂xi

〉
E(S, n).

Let K be a germ of a compact subset and g1 be a representative of g; for
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each I multi-index there exists CI constant such that
∣∣∣∣∂|I|( 1

g1
)

∂xI

∣∣∣∣ ≤ CI

|g1(x)|(|I|+1)

∀x ∈ K. Since g1 satisfies a Lojasiewicz inequality for S, there exist c > 0

and α ≥ 0 such that |g1(x)| ≥ cd(x, S)α ∀x ∈ K−S and therefore
∣∣∣∣∂|I|( 1

g1
)

∂xI

∣∣∣∣ ≤
CI

c|I|+1 d(x,S)α(|I|+1)∀x ∈ K −S, hence 1
g1
∈ M(S, n). Now for h ∈ E(S, n) and

x /∈ S we have h(x) = h(x)
g1(x)g1(x), extend h(x)

g1(x) to a germ H in E(S, n) and

h = Hg1 in E(S, n)
〈

∂f
∂xi

〉
. Therefore we get E(S, n) ⊆ E(S, n)

〈
∂f
∂xi

〉
and f

is S-infinitesimally stable. �

Lemma 33 ([W, Lemma 3.3]). Suppose there exist a sequence (wi) in
Jk(n, 1), k ≤ ∞, a sequence (xi) in Rn −

{
0
}

converging to the origin
and a germ f such that qi = wi − jkf(xi) is flat along (xi). Then there
exists a germ g such that jkg(xij ) = wij holds for (xij ) subsequence of (xi),
and j∞g(0) = j∞f(0).

Lemma 34. Suppose there exist a sequence (wi) in Jk(n, 1), k ≤ ∞, a
sequence (xi) in Rn − S converging to zero and a germ f ∈ E(n) such that
(qi) = (wi − jkf(xi)) is flat along (d(xi, S)), where S is a closed subset
of Rn(0 ∈ S). Then there exists a germ g ∈ E(n), such that j∞g(x) =
j∞f(x)∀x ∈ S and jkg(xi) = wi holds for a subsequence of (xi).

Proof. If k is finite, then we transform qi into an ∞-jet in such a way that
all the terms of order greater than k of qi are zero. Thus we will assume
k = ∞.

We define Q, a Taylor field, by qi at xi and by the zero series on S.
We want to show that Q is a C∞ Whitney field. It is enough to show
(Proposition 1.5 of Chapter IV, [T]) for each m and each multi-index I

with |I| ≤ m, that (Rm
y Q)I (x) = o(|x − y|m−|I|), where (Rm

y Q)I(x) =

QI(x)−
∑

|L|≤m−|I| Q
I+L(y) (x−y)L

L! .
If {x, y} ⊆ S then the proof is obvious. In the case {x, y} ⊆ {xi}∪

{
0
}

we
proceed as in the proof of Lemma 3.3 of [W]. If {x, y} = {xj , s}, s ∈ S, we
use the flatness of (qi) along (d(xi, S)) to obtain for each natural number
l another N(l) such that |(Rm

s )I (xj)| = |qI
j | ≤ d(xj , S)l ≤ d(xj , s)l and

|(Rm
xj

)I (s)| ≤
∣∣∣∑|L|≤m−|I| q

(I+L)
j

(s−xj)
L

L!

∣∣∣ ≤ Cd(xj , s)l for j ≥ N(l), where
C is a positive real number depending only on m and I. Let l = m + 1.

Hence, using Whitney Extension Theorem (Theorem 3.1 of Chapter IV,
[T]), there exists a smooth germ q such that j∞q(x) = 0∀x ∈ S and
j∞q(xi) = qi. If g = f + q, we see that g has the desired properties.

Theorem 35. Let f be a germ, S a closed subset of Rn and 0 an accumu-
lation point of S. Hence if f is S-infinitely determined, then f satisfies a
Jacobi-Lojasiewicz condition for S.
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Proof. We shall prove the theorem by contradiction. Then there is a se-
quence (xj) in Rn − S converging to the origin such that (|∇f(xj)|) is flat
along (d(xj , S)). Choose (yj) a sequence of regular values of f converging
to zero and such that (f(xj)− yj) is flat along (d(xj , S)). It clearly follows
that (yj , 0)− (f(xj),∇f(xj)) is flat along (d(xj , S)).

If we denote qj = (yj , 0) − (f(xj),∇f(xj)) and setting k = 1 in the
previous lemma, there exists a germ g such that j1g(xj ) = (yj , 0) and g−f ∈
E(S, n). Now since f is S-infinitely determined, f and g must have the same
critical and regular values, which is not the case, since the points yj are
regular values for f but critical values for g. �

As a consequence of Theorems 24, 32 and 35 we get the main theorem of
part II:

Theorem 36. Let f ∈ E(n). The concepts of S-infinitesimally stability, S-
infinite determinacy and the Jacobi-Lojasiewicz condition at S are equivalent
for the germ f and S a germ of a closed subset of Rn with 0 an accumulation
point of S.

3. A special case.

Definition 37. Let S be a germ of a closed subset of Rn such that 0∈
cl(int ). We say that a germ f is S-stable, if given a germ g such that
g(x) = f(x) ∀ x ∈ S, there exists a germ of a diffeomorphism φ ∈ GS such
that g = f ◦ φ.

Note that if cl(int) = S, the previous definition is apparently much
stronger than Definition 23. In this case f(x) = g(x) ∀ x ∈ S and j∞g(x) =
j∞f(x) ∀ x ∈ S are equivalent but now we restrict ourselves to the group
GS , hence the diffeomorphism must be the identity on S.

Example 38.
(a) Let S =

{
(x, y) ∈ R2|x ≤ 0 and y = 0

}
, then S is closed but 0 /∈

cl(int S).
(b) Let S =

{
(x, y) ∈ R2|x4 − x3 − xy2 ≥ 0

}
, in this case S = cl(int S).

(c) Let S =
{
(x, y, z) ∈ R3|z(x2 + y2)− x3 ≤ 0

}
, in this case 0 ∈ cl(intS)

but clearly cl(int S) 6= S.

For S any germ of subset of Rncontaining the origin, we let CS(Rn) be
the R-algebra of germs constant at S. It is a local algebra with maximal
ideal m(S) consisting of germs of CS(Rn) vanishing at S. In fact m(S) is
an ideal of E(n).

Remark 7. If f ∈ m(S) and S = cl(int S) we have f ∈ m(n)∞ and ∂|I|f
∂xI ∈

m(S) for all multi-index I. We also get in this case the equality m(S) =
m(n)∞m(S).
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Lemma 39. Let S a subset of Rn. Suppose S0 is a nonempty open subset
of S. Then cl(S0) = cl(int S) if and only if int (S − S0) ⊆ cl(S0).

Proof. We decompose intS in the following way: intS = S0∪ int (S−S0)∪T ,
where int T = ∅. Then cl(int S) = cl(S0) ∪ cl(int (S − S0)), since cl(T ) ⊆
cl(S0∪ int(S−S0)). Hence cl(int S) = cl(S0) if and only if cl(int (S−S0)) ⊆
cl(S0) and this is equivalent to int (S − S0) ⊆ cl(S0). �

Definition 40. Let A be a closed subset of Rn. We say that A is good if
there exists a locally finite partition P of A into C0−submanifolds of Rn,
called strata, such that if X ∈ P and dimX < n, then there exists a non
void open stratum Y ∈ P such that X ⊂ cl(Y).

We clearly have the next:

Proposition 41. Suppose that S is a good subset of Rn. Then cl(S) =
cl(int S).

Joining Lemma 39 and Proposition 41 we get the following:

Proposition 42. Let P1, . . . , Ps be real continous functions on Rn such that
S = {x|Pi(x) ≤ 0 ∀ i} is good and define S0 = {x|Pi(x) < 0 ∀ i}. Suppose
int (S − S0) ⊆ cl(S0). Then cl(S0) = S.

Remark 8. If P1, . . . , Ps are real analytic functions on Rn then S =
{x|Pi(x) ≤ 0 ∀ i} will be good if we have for a decomposition of S, that
whenever T is a stratum of lower dimension, then there exists a nonempty
open stratum T ′ such that T ⊂ cl(T ′). Obviously there are more examples
of good sets than the semianalytical ones. For this purpose see for instance
Sections 1 and 2 of [V-M].

We remind here the following:

Definition 43. Suppose that S is a closed subset of Rn containing the origin
and such that S = cl (int S). We say that f is S−infinitesimally stable if
m(S) ⊆ 〈 ∂f

∂xi
〉m(S).

Theorem 44. Suppose S is a closed subset of Rn such that 0 ∈ S and
S = cl(int S). If f is S−infinitesimally stable then f is S-stable.

Proof. Following the proof of Theorem 24 we start with g a germ such that
g(x) = f(x) ∀ x ∈ S, therefore ∂|I|f

∂xI (x) = ∂|I|g
∂xI (x) ∀ x ∈ S, and we arrive to

the inclusion m(S ×R)〈 ∂f
∂xi
〉CS×R(Rn ×R) ⊆ m(S ×R)〈 ∂F

∂xi
〉CS×R(Rn ×R).

Since ∂F
∂t = g − f ∈ m(S × R) ⊆ m(S × R)〈 ∂f

∂xi
〉CS×R(Rn × R), then

∂F
∂t (x, t) =

∑n
i=1 hi(x, t) ∂F

∂xi
(x, t), with hi(x, t) ∈ m(S×R), hence hi(x, t) = 0

∀ (x, t) ∈ S×R. When we integrate, the required diffeomorphism will belong
to GS . �
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Proposition 45. If f ∈ E(n) is a finitely (infinitely) determined on the
right, then f is S-infinitesimally stable and therefore S-stable for S =
cl(int S).

Proof. Since m(S) = m(n)∞m(S) and m(n)k ⊆
〈

∂f
∂xi

〉
for some k ≤ ∞, we

get that m(S) ⊆
〈

∂f
∂xi

〉
m(S). We now use Theorem 44. �

Definition 46. Let P be a polynomial in variables x1, . . . , xn. We say that
P is quasihomogeneous of degree l and weights k1, . . . , kn if
P (tk1x1, . . . , tknxn) = tlP (x1, . . . , xn).

For P quasihomogeneous we get ∂P
∂xj

(tk1x1, . . . , tknxn) =

tl−kj ∂P
∂xj

(x1, . . . , xn).
Also if we write P =

∑
aIx

I , for a quasihomogeneous polynomial we
obtain for any multi-index I = (i1, . . . , in), i1k1 + . . . + inkn = l (aI 6= 0).

Theorem 47. Let P (x) be a quasihomogeneous polynomial and S a closed
subset of Rn containing the origin and such that S = cl(int S). Suppose that
m(S) ⊆ 〈P 〉 and that z(P ) ∩ intS = φ. Then P is S-infinitesimally stable.
In the case S = {x|P (x) ≤ 0} is a good semialgebraic set, we can skip the
equality z(P ) ∩ intS = φ.

Proof. By hypothesis we get m(S) ⊆ 〈P 〉 and P ∈
〈

∂P
∂xi

〉
, this together with

z(P )∩ intS = φ give the result using Example 26. For the second part it is
obvious that z(P ) ∩ intS = φ since S is a good semialgebraic set. �

As in the previous section, we get the following:

Theorem 48. Let f ∈ E(n), S be a closed subset of Rn such that the origin
is an accumulation point of S and S = cl(int S). Then the concepts for f of
S-infinitesimally stability, S-stability and the Jacobi-Lojasiewicz condition
for S are equivalent.

Proof. Our Theorem 44 shows that S-infinitesimally stability implies S-
stability. Now as in Theorem 32, we show that the Jacobi-Lojasiewicz con-
dition at S implies S-infinitesimally stability. Since Lemma 34 is true for
any closed subset of Rn, the proof of Theorem 35 will be true in the case
S = cl(int S), and hence S-stability implies the Jacobi-Lojasiewicz condition
of f for S. �
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México, D.F. 04510
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