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We introduce braided Lie bialgebras as the infinitesimal
version of braided groups. They are Lie algebras and Lie
coalgebras with the coboundary of the Lie cobracket an in-
finitesimal braiding. We provide theorems of transmutation,
Lie biproduct, bosonisation and double-bosonisation relating
braided Lie bialgebras to usual Lie bialgebras. Among the
results, the kernel of any split projection of Lie bialgebras is
a braided-Lie bialgebra. The Kirillov-Kostant Lie cobracket
provides a natural braided-Lie bialgebra on any complex sim-
ple Lie algebra, as the transmutation of the Drinfeld-Sklyanin
Lie cobracket. Other nontrivial braided-Lie bialgebras are as-
sociated to the inductive construction of simple Lie bialgebras
along the C and exceptional series.

1. Introduction.

Braided geometry has been developed in recent years as a natural gener-
alisation of super-geometry with the role of Z/2Z grading played by braid
statistics. It is also the kind of noncommutative geometry appropriate to
quantum group symmetry because the modules over a strict quantum group
(a quasitriangular Hopf algebra [3]) form a braided category, hence any ob-
ject covariant under the quantum group is naturally braided. In particular,
one has braided groups [6] as generalisations of super-groups or super-Hopf
algebras. The famous quantum-braided plane with relations yx = qxy is
a braided group with additive coproduct [7]. We refer to [8], [10] for in-
troductions to the 50-60 papers in which the theory of braided groups is
developed.

In a different direction, Drinfeld [2] has introduced Lie bialgebras as an
infinitesimalisation of the theory quantum groups. This concept has led (on
exponentiation) to an extensive theory of Poisson-Lie groups, as well as to a
Yang-Baxter theoretic approach to classical results of Lie theory, such as a
new proof of the Iwasawa decomposition and the structure of Bruhat cells;
see for example [9], [5]. For an introduction to quantum groups and Lie
bialgebras, see [10].

We now combine these ideas for the first time by introducing the infin-
itesimal theory of braided groups. All computations and results will be in
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the setting of Lie algebras, although motivated from the theory of braided
groups. In fact, there are several different concepts of precisely what one
may mean by the infinitesimal theory of braided groups. Firstly, one may
keep the braided category in which one works fixed and look at algebras
which depart infinitesimally from being commutative. In the category of
vector spaces this leads to Drinfeld’s notion of Poisson-Lie group. Then one
can consider the coalgebra also in an infinitesimal form, which leads in the
category of vector spaces to Drinfeld’s notion of Lie bialgebra. In the case
of a braided category one already has the notion of braided-Lie algebra [11]
and, adding to this, one could similarly consider a Lie bialgebra in a braided
category. By contrast, we now go further and let the braiding also depart
infinitesimally from the usual vector space transposition. In principle, the
degree of braiding is independent of the degree of algebra commutativity
or coalgebra cocommutativity. Thus one could have infinitesimally braided
algebras, coalgebras and Hopf algebras as well. However, the case which ap-
pears to be of most interest, on which we concentrate, is the case in which all
three aspects are made infinitesimal simultaneously, which we call a braided-
Lie bialgebra. The formal definition appears in Section 2. It consists of a
Lie algebra b equipped with further structure.

In Section 3 we provide the Lie version of the basic theorems from the
theory of braided groups. These basic theorems connect braided groups and
quantum groups by transmutation [12], [6] and bosonisation [13], [14] pro-
cedures, thereby establishing (for example) the existence of braided groups
associated to all simple Lie algebras. The theorems in Section 3 likewise
connect braided-Lie bialgebras with quasitriangular Lie bialgebras and es-
tablish the existence of the former. The Lie versions of biproducts [20] and
of the more recent double-bosonisation theorem [15] are covered as well. For
example, the Lie version of the theory of biproducts states that the kernel
of any split Lie bialgebra projection g→ f is a braided-Lie bialgebra b, and
g = b>/· f.

In Section 4 we study some concrete examples of braided-Lie bialgebras,
including ones not obtained by transmutation. The simplest are ones with
zero braided-Lie cobracket as the infinitesimal versions of the q-affine plane
braided groups in [7]. As an application of braided-Lie bialgebras, their
bosonisations provide maximal parabolic or inhomogeneous Lie bialgebras.
Meanwhile, double-bosonisation allows the formulation in a basis-free way
of the notion of adjoining a node to a Dynkin diagram. For every simple Lie
bialgebra g and braided-Lie bialgebra b in its category of modules we obtain
a new simple Lie bialgebra b>/· g·.<b∗op as its double-bosonisation. This pro-
vides the inductive construction of all complex simple Lie algebras, complete
with their Drinfeld-Sklyanin quasitriangular Lie bialgebra structure (which
is built up inductively at the same time). Some concrete examples are given
in detail.
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These results have been briefly announced in [16, Sec. 3], of which the
present paper is the extended text. We work over a general ground field k
of characteristic not 2.

Acknowledgements. The results were obtained during a visit in June 1996
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the facilities.

2. Braided-Lie bialgebras.

We will be concerned throughout with the Lie version of braided categories
obtained as module categories over quantum groups. In principle one could
also formulate an abstract notion of ‘infinitesimal braiding’ as a Lie version
of a general braided category, but since no examples other than the ones
related to quantum groups are known we limit ourselves essentially to this
concrete setting. Some slight extensions (such as to Lie crossed modules)
will be considered as well, later on.

As a Lie version of a strict quantum group we use Drinfeld’s notion of a
quasitriangular Lie bialgebra [2], [3]. We recall that a Lie bialgebra is a Lie
algebra g equipped with linear map δ : g → g⊗ g forming a Lie coalgebra
(in the finite dimensional case this is equivalent to a Lie bracket on g∗) and
being a 1-cocycle with values in g⊗ g as a g-module by the natural extension
of ad. It is quasitriangular if there exists r ∈ g⊗ g obeying dr = δ in the
Lie algebra complex, obeying the Classical Yang-Baxter Equation (CYBE)

[r(1), r′(1)]⊗ r(2)⊗ r′(2) + r(1)⊗[r(2), r′(1)]⊗ r′(2) + r(1)⊗ r′(1)⊗[r(2), r′(2)] = 0
(1)

and having ad-invariant symmetric part 2r+ = r + τ(r), where τ is trans-
position. We use the conventions and notation similar to [10, Ch. 8], with
r = r(1)⊗ r(2) denoting an element of g⊗ g (summation understood) and r′

denoting another distinct copy of r. We also use δξ = ξ(1)⊗ ξ(2) to denote
the output in g⊗ g for ξ ∈ g (summation understood). A quasitriangular
Lie bialgebra is called factorisable if 2r+ is surjective when viewed as a map
g∗ → g.

In view of the discussion above, we are interested in Lie-algebraic objects
living in the category gM of modules over a quasitriangular Lie bialgebra
g. If V is a g-module, we define its infinitesimal braiding to be the operator

ψ : V ⊗V → V ⊗V, ψ(v⊗w) = 2r+.(v⊗w − w⊗ v)

where . denotes the left action of g.

Lemma 2.1. Let b ∈ gM be a g-covariant Lie algebra. Then the associated
ψ : b⊗ b→ b⊗ b is a 2-cocycle ψ ∈ Z2

ad(b, b⊗ b).
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Proof. The proof that dψ = 0 is a straightforward computation in Lie alge-
bra cohomology. We use covariance of b in the form: ξ.[x, y] = [ξ.x, y] +
[x, ξ.y] for all ξ ∈ g. Then,

(dψ)(x, y, z)

= −ψ([x, y], z) + ψ([x, z], y)− ψ([y, z], x) + adxψ(y, z)

− adyψ(x, z) + adzψ(x, y)

= 2r+.(−[x, y]⊗ z + z⊗[x, y]) + [x, 2r+(1).y]⊗ r+(2).z

+ 2r+(1).y⊗[x, r+(2).z]

− [x, 2r+(1).z]⊗ r+(2).y − 2r+(1).z⊗[x, r+(2).y] + cyclic

= −[2r+(1).x, y]⊗ r+(2).z + 2r+(1).y⊗[x, r+(2).z]− [x, 2r+(1).z]⊗ r+(2).y

+ 2r+(1).z⊗[r+(2).x, y] + cyclic = 0

on using the cyclic invariance in x, y, z and antisymmetry of the Lie bracket.
Note that this works for any element 2r+ ∈ g⊗ g in the definition of ψ. �

Definition 2.2. A braided-Lie bialgebra b ∈ gM is a g-covariant Lie algebra
and g-covariant Lie coalgebra with cobracket δ : b→ b⊗ b obeying ∀x, y ∈ b,

δ([x, y]) = adxδy − adyδx− ψ(x⊗ y); ψ = 2r+.(id− τ),
i.e., δ obeys the coJacobi identity and dδ = ψ.

The definition is motivated from that of a braided group, where the co-
product fails to be multiplicative up to a braiding Ψ [6]. The results in the
next section serve to justify it further.

3. Lie versions of braided group theorems.

The existence of nontrivial quasitriangular Lie bialgebra structures is known
[3] for all simple g at least over C. Our first theorem ensures likewise the
existence of braided-Lie bialgebras.

Theorem 3.1. Let i : g → f be a map of Lie bialgebras, with g quasitrian-
gular. There is a braided-Lie bialgebra b(g, f), the transmutation of f, living
in gM. It has the Lie algebra of f and for all x ∈ f, ξ ∈ g,

δx = δx+ r(1).x⊗ i(r(2))− i(r(2))⊗ r(1).x, ξ.x = [i(ξ), x].

Proof. We first verify that δ as stated is indeed a g-module map. Thus

δ(ξ.x)

= δ[i(ξ), x] + r(1)ξ.x⊗ i(r(2))− i(r(2))⊗ r(1)ξ.x

= ξ.δx− [x, i(ξ(1))]⊗ i(ξ(2))− i(ξ(1))⊗[x, i(ξ(2))]

+ r(1)ξ.x⊗ i(r(2))− i(r(2))⊗ r(1)ξ.x

= ξ.δx− [x, [i(ξ), i(r(1))]]⊗ i(r(2))− [x, i(r(1))]⊗[i(ξ), i(r(2))]
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− [i(ξ), i(r(1))]⊗[x, i(r(2))]− i(r(1))⊗[x, [i(ξ), i(r(2))]]

+ r(1)ξ.x⊗ i(r(2))− i(r(2))⊗ r(1)ξ.x

= ξ.δx+ [ξ, r(1)].x⊗ i(r(2))− [x, i(r(1))]⊗[i(ξ), i(r(2))]

− [i(ξ), i(r(1))]⊗[x, i(r(2))] + i(r(1))⊗[ξ, r(2)].x

+ r(1)ξ.x⊗ i(r(2))− i(r(2))⊗ r(1)ξ.x

= ξ.δx+ r(1).x⊗[i(ξ), i(r(2))] + [i(ξ), i(r(1))]⊗ r(2).x

+ ξr(1).x⊗ i(r(2))− i(r(2))⊗ ξr(1).x

= ξ.δx

where we used the definitions of . and δ and the fact that g is quasitriangular,
so that δξ = [ξ, r(1)]⊗ r(2) + r(1)⊗[ξ, r(2)].

Antisymmetry of the output of δ is clear. Next we verify the coJacobi
identity,

(id⊗ δ)δx
+ cyclic = (id⊗ δ)δx+ r(1).x⊗ δi(r(2))− i(r(2))⊗ δ(r(1).x) + cyclic

= x(1)⊗ r(1).x(2)⊗ i(r(2))− x(1)⊗ i(r(2))⊗ r(1).x(2) + r(1).x⊗ δi(r(2))

+ r(1).x⊗ i([r′(1), r(2)])⊗ i(r′(2))− r(1).x⊗ i(r′(2))⊗ i([r′(1), r(2)])

− i(r(2))⊗ r(1).x(1)⊗x(2) − i(r(2))⊗x(1)⊗ r(1).x(2)

− i(r(2))⊗ r(1)r′(1).x⊗ i(r′(2))− i(r(2))⊗ r′(1).x⊗ i([r(1), r′(2)])

+ i(r(2))⊗ i([r(1), r′(2)])⊗ r′(1).x+ i(r(2))⊗ i(r′(2))⊗ r(1)r′(1).x+ cyclic

using the definition of δ and the previous covariance result. Several of the
resulting terms cancel immediately. Using the quasitriangular form of δ on
r(2) and the further freedom to cyclically rotate all tensor products so that
x appears in the first factor, our expression becomes

= r(1).x⊗ i([r(2), r′(1)])⊗ i(r′(2)) + r(1).x⊗ i(r′(1))⊗ i([r(2), r′(2)])

+ r(1).x⊗ i([r′(1), r(2)])⊗ i(r′(2))− r(1).x⊗ i(r′(2))⊗ i([r′(1), r(2)])

+ [r(1), r′(1)].x⊗ i(r(2))⊗ i(r′(2))
+ r′(1).x⊗ i(r(2))⊗ i([r(1), r′(2)])− r′(1).x⊗ i([r(1), r′(2)])⊗ i(r(2)) + cyclic

= (( ).x⊗ i⊗ i)
(
[r(1), r′(1)]⊗ r(2)⊗ r′(2)

+ r(1)⊗[r(2), r′(1)]⊗ r′(2) + r(1)⊗ r′(1)⊗[r(2), r′(2)]
)

+ cyclic

= 0

by the CYBE (1).
Finally, we prove that dδ = ψ. Thus,

δ([x, y]) = δ[x, y] + r(1).[x, y]⊗ i(r(2))− i(r(2))⊗ r(1).[x, y]
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= adxδy − adyδx+ [r(1).x, y]⊗ i(r(2)) + [x, r(1).y]⊗ i(r(2))

− i(r(2))⊗[r(1).x, y]− i(r(2))⊗[x, r(1).y]

= adxδy − adyδx− r(1).y⊗[x, i(r(2))] + r(1).x⊗[y, i(r(2))]

+ [x, i(r(2))]⊗ r(1).y − [y, i(r(2))]⊗ r(1).x

= adxδy − adyδx− 2r+.(x⊗ y − y⊗x)

as required. We used the definitions of δ and .. �

Corollary 3.2. Every quasitriangular Lie bialgebra g has a braided version
g ∈ gM by ad, the same Lie bracket, and

δx = 2r+(1)⊗[x, r+(2)].(2)

Proof. We take the identity map i = id : g→ g and g = b(g, g). Its braided-
Lie cobracket from Theorem 3.1 is δx = [x, r(1)]⊗ r(2) + r(1)⊗[x, r(2)] +
r(1).x⊗ r(2) − r(2)⊗ r(1).x using the quasitriangular form of δ. �

The corollary ensures the existence of non-trivial braided-Lie bialgebras
since nontrivial quasitriangular Lie bialgebras are certainly known.

Example 3.3. Let g be a finite-dimensional factorisable Lie bialgebra.
Then δ in Corollary 3.2 is equivalent under the isomorphism 2r+ : g∗∼=g
to the Kirillov-Kostant Lie cobracket on g∗ (defined as the dualisation of
the Lie bracket g⊗ g→ g). The braided-Lie bialgebra g is self-dual.

Proof. It is well known that for any Lie algebra the vector space g∗ acquires a
natural Poisson bracket structure. Considering g as a subset of the functions
on g∗, this Kirillov-Kostant Poisson bracket is {ξ, η}(φ) = 〈φ, [ξ, η]〉 where
〈 , 〉 denotes evaluation and ξ, η ∈ g, φ ∈ g∗. The associated Lie coalgebra
structure δ : g∗ → g∗⊗ g∗ is defined by {ξ, η}(φ) = 〈ξ⊗ η, δφ〉 and is there-
fore the dualisation of the Lie bracket of g. We call it the Kirillov-Kostant
Lie coalgebra structure on g∗.

Let K(φ) = 2r+(1)〈φ, r+(2)〉 denote the isomorphism K : g∗∼=g resulting
from our factorisability assumption. Then

〈ξ⊗ η, (K−1⊗K−1)δK(φ)〉
= 〈ξ,K−1(2r+(1))〉〈η,K−1([K(φ), r+(2)])〉
= 〈K−1(ξ), 2r+(1)〉〈[η,K(φ)],K−1(r+(2))〉
= 〈[η,K(φ)],K−1(ξ)〉 = 〈K(φ),K−1([ξ, η])〉 = 〈φ, [ξ, η]〉.

We used symmetry and ad-invariance of K as an element of g⊗ g, with its
corresponding property 〈η,K−1([ξ, ζ])〉 = 〈[η, ξ],K−1(ζ)〉 ∀ξ, η, ζ ∈ g, for
the map K : g∗ → g.
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Next, we give g∗ with the above Kirillov-Kostant Lie cobracket δφ =
φ(1)⊗φ(2) (dual to the Lie algebra of g) a Lie bracket and g-module structure

[φ, χ] = χ(1)2r+(φ, χ(2)), ξ.φ = φ(1)〈φ(2), ξ〉(3)

for all ξ ∈ g, φ, χ ∈ g∗ and with 2r+ viewed as a map g∗⊗ g∗ → k. Then
g∗ becomes a braided-Lie bialgebra in gM, which we denote g∗. Its Lie
cobracket is δ = δ the dual of the Lie bracket of g (since this is the same as
that of g), and its Lie bracket is dual to the Lie cobracket of g in Corollary 3.2
since

〈ξ, [φ, χ]〉 = 〈ξ, χ(1)〉〈2r+(φ), χ(2)〉 = 〈[ξ, 2r+(φ)], χ〉
= 〈2r+(2)⊗[ξ, r+(1)], φ⊗χ〉 = 〈δξ, φ⊗χ〉

for all ξ ∈ g and φ, χ ∈ g∗. On the other hand,

〈ξ, [φ, χ]〉 = 〈ξ, χ(1)〉〈χ(2),K(φ)〉 = 〈[ξ,K(φ)], χ〉 = 〈ξ,K−1([K(φ),K(χ)])〉

hence 2r+ : g∗ → g is an isomorphism of braided-Lie bialgebras. �

This is the Lie analogue of the theorem that braided groups obtained
by full transmutation of factorisable quantum groups are self-dual via the
quantum Killing form [14]. Also, the fact that the data corresponding to
the original Lie cobracket on g does not enter into g corresponds in braided
group theory to transmutation rendering a quasitriangular Hopf algebra
braided-cocommutative. There is also a theory of quasitriangular braided-
Lie bialgebras of which the more general b(g, f) are examples when f is itself
quasitriangular. The braided-quasitriangular structure is the difference of
the quasitriangular structures on f, g as the Lie version of results in [12].

For use later on, the general duality for braided-Lie bialgebras relevant
to Example 3.3 is given by

Lemma 3.4. If b ∈ gM is a finite-dimensional braided-Lie bialgebra then
there is a dual braided-Lie bialgebra b∗ ∈ gM. It is built on the vector space
b∗ with action (ξ.φ)(x) = −φ(ξ.x) and Lie (co)bracket structure maps given
by dualisation.

Proof. The Jacobi and coJacobi (and antisymmetry) axioms are clear by
dualisation, as is the specified left action on b∗. The induced infinitesimal
braiding on the dual is the usual dual:

〈x⊗ y, ψb∗(φ, χ)〉 = 〈x⊗ y, 2r+.(φ⊗χ− χ⊗φ)〉 = 〈ψ(x⊗ y), φ⊗χ〉

for all x, y ∈ b and φ, χ ∈ b∗. Moreover, the map dδ for b dualises to dδ for
b∗. The proof is identical to the proof that the dual of a usual Lie bialgebra
is a Lie bialgebra (see [10] for details). Hence dδ = ψ for b∗ by dualisation
of this relation for b. �
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Note also that if b ∈ gM is any braided-Lie bialgebra then so is bop/cop

with opposite bracket and cobracket, in the same category. This is because
the covariance conditions on the Lie bracket and cobracket are each linear
in those structures and hence valid even with the additional minus signs
in either case. Meanwhile, dδ is linear in δ and linear in the Lie bracket,
hence invariant when both are changed by a minus sign. The infinitesimal
braiding does not involve either the bracket or cobracket and is invariant.
Applying this observation to b∗ gives us another dual, b?. This is the Lie
analogue of the more braided-categorical dual which is more natural in the
theory of braided groups. In the Lie setting, however, we have b?∼=b∗ by
x 7→ −x, so can work entirely with b∗. We also conclude, in passing, that
bop and bcop are braided-Lie bialgebras in the category of modules over the
opposite quasitriangular Lie bialgebra (i.e., with quasitriangular structure
−r21 in place of r).

We consider now the adjoint direction to Theorem 3.1, to associate to a
braided-Lie bialgebra an ordinary Lie bialgebra. The quantum group version
of this result [13] has been used to construct inhomogeneous quantum groups
[7].

Theorem 3.5. Let b ∈ gM be a braided-Lie bialgebra. Its bosonisation is
the Lie bialgebra b>/· g with g as sub-Lie bialgebra, b as sub-Lie algebra and

[ξ, x] = ξ.x, δx = δx+ r(2)⊗ r(1).x− r(1).x⊗ r(2), ∀ξ ∈ g, x ∈ b.(4)

Proof. The Lie algebra structure of b>/· g is constructed as a semidirect sum
by the given action of g on b. The coassociativity of the Lie cobracket
may be verified directly from the CYBE along the lines of the proof of
coassociativity in Theorem 3.1. The line of deduction is reversed but the
formulae are similar. That the result is a Lie bialgebra has three cases. For
ξ, η ∈ g we have δ([ξ, η]) as required since g is a Lie bialgebra. For the mixed
case we have

δ([ξ, x]) = δ(ξ.x) = δ(ξ.x) + r(2)⊗ r(1)ξ.x− r(1)ξ.x⊗ r(2)

−adξδx = −ξ.δx− [ξ, r(2)]⊗ r(1).x− r(2)⊗ ξr(1).x+ ξr(1).x⊗ r(2)

+ r(1).x⊗[ξ, r(2)]
adxδξ = −ξ(1).x⊗ ξ(2) − ξ(1)⊗ ξ(2).x

= [r(1), ξ].x⊗ r(2) + r(1).x⊗[r(2), ξ] + [r(1), ξ]⊗ r(2).x

+ r(1)⊗[r(2), ξ].x.

We used the definitions and, in the last line, the form of δξ as a quasitrian-
gular Lie bialgebra. Adding these expressions, we obtain

δ([ξ, x])− adξδx+ adxδξ

= δξ.x− ξ.δx+ [2r+(2), ξ]⊗ r+(1).x+ 2r+(2)⊗[r+(1), ξ].x = 0
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by covariance of δ and ad-invariance of 2r+. The remaining case is

δ([x, y]) = δ([x, y]) + r(2)⊗ r(1).[x, y]− r(1).[x, y]⊗ r(2)

= (adxδy + r(2)⊗ adx(r(1).y)− adx(r(1).y)⊗ r(2) − (x↔y))
− ψ(x⊗ y)

= (adxδy − adx(r(2))⊗ r(1).y + r(1).y⊗ adx(r(2))

− (x↔y))− ψ(x⊗ y)
= adxδy − adyδx

on writing adx(r(2)) = −r(2).x and comparing with the definition of ψ. We
used the braided-Lie bialgebra property of δ. �

The construction in the bosonisation theorem can also be viewed as a
special case of a more general construction for Lie bialgebras which are
semidirect sums as Lie algebras and Lie coalgebras by a simultaneous Lie
action and Lie coaction. We call such Lie algebras bisum Lie algebras. They
are the analogue of biproduct Hopf algebras in [20]. In the general case one
only needs covariance under a Lie bialgebra, not necessarily quasitriangular.
However, any Lie bialgebra has a Drinfeld double [2] which is quasitriangu-
lar. In order to explain these topics we need quite a bit more formalism.
Firstly, if f is any Lie coalgebra, we have a notion of left Lie coaction on a
vector space V . This is a map β : V → f⊗V such that [10],

(δ⊗ id) ◦ β = ((id− τ)⊗ id) ◦ (id⊗β) ◦ β.(5)

The category of left Lie comodules is denoted gM and is monoidal in the ob-
vious derivation-like way. Morphisms are defined as linear maps intertwining
the Lie coactions, again in the obvious way.

Lemma 3.6. Let f be a Lie bialgebra. There is a monoidal category of
Lie crossed modules f

fM having as objects vector spaces V which are are
simultaneously f-modules . : f⊗V → ⊗V and f-comodules β : V → f⊗V
obeying ∀ξ ∈ f, v ∈ V ,

β(ξ.v) = ([ξ, ]⊗ id + id⊗ ξ.)β(v) + (δξ).v.

It can be identified when f is finite-dimensional with the category D(f)M
where D(f) is the Drinfeld double [2]. Writing β(v) = v ¯(1)⊗ v ¯(2), the corre-
sponding infinitesimal braiding on any object V ∈ f

fM is

ψ(v⊗w) = w
¯(1).v⊗w ¯(2) − v ¯(1).w⊗ v ¯(2) − w ¯(2)⊗w ¯(1).v + v

¯(2)⊗ v ¯(1).w.

Proof. Morphisms in f
fM are maps intertwining both the Lie action and the

Lie coaction. We start with f finite-dimensional and use Drinfeld’s formulae
for D(f) in the conventions in [10], where it contains the Lie algebras f and
f∗op with the cross relations [ξ, φ] = φ(1)〈φ(2), ξ〉+ξ(1)〈φ, ξ(2)〉 for all ξ ∈ f and
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φ ∈ f∗. A left module of D(f) therefore means a vector space which is a left f-
module and a right f∗-module, obeying ξ.(v/φ)− (ξ.v)/φ = v/φ(1)〈φ(2), ξ〉+
ξ(1).v〈φ, ξ(2)〉. Next we view the right action of f∗ as, equivalently, a left
coaction of f by v/φ = 〈φ, v ¯(1)〉v ¯(2). Inserting this, we have the condition

ξ.v
¯(2)〈φ, v ¯(1)〉 − 〈φ, (ξ.v) ¯(1)〉(ξ.v) ¯(2) = 〈φ, [v ¯(1), ξ]〉v ¯(2) + ξ(1).v〈φ, ξ(2)〉

for all φ. We wrote the Lie cobracket of f∗ in terms of the Lie algebra of f
here. This is the condition stated for β, which manifestly makes sense even
for infinite-dimensional Lie algebras. It is easy to check that the category
is well defined and monoidal even in this case. In the same spirit, D(f) has
a quasitriangular structure given by the canonical element for the duality
pairing [2]. Then 2r+ =

∑
a f

a⊗ ea + ea⊗ fa where {ea} is a basis of f and
{fa} is a dual basis. Hence the infinitesimal braiding in D(f)M is

ψ(v⊗w) = 2r+.(v⊗w − w⊗ v)

= 〈fa, v
¯(1)〉v ¯(2)⊗ ea.w + ea.v⊗〈fa, w

¯(1)〉w ¯(2) − (v↔w)

when the left action of f∗op is of the form given by a left coaction of f.
This gives ψ as stated. Note that the use of a coaction to reformulate an
action of the dual in the infinite dimensional case is a completely routine
procedure in Hopf algebra theory; we have given the details here since the
Lie version is less standard; the category of Lie crossed modules f

fM should
not be viewed as anything other than a version of the ideas behind Drinfeld’s
double construction. �

The resulting map ψ is well-defined even in the infinite dimensional case;
we call it the infinitesimal braiding of the category f

fM of crossed f-modules

and define a braided-Lie bialgebra in f
fM with respect to this.

Theorem 3.7. Let f be a Lie bialgebra and let b ∈ f
fM be a braided-Lie

bialgebra. The bisum Lie bialgebra b>/· f has semidirect Lie bracket/cobracket
and projects onto f. Conversely, any Lie bialgebra g with a split Lie bialgebra
projection g

π
→
←↩
i

f is of this form, with b = kerπ and braided-Lie bialgebra

structure given by b ⊂ g as a Lie algebra and

ξ. = adi(ξ), β = (π⊗ id) ◦ δ, δ = (id− i ◦ π)⊗ 2 ◦ δ.

Proof. In the forward direction, since b is covariant under an action of f we
can make, as usual, a semidirect sum b>/f. The bracket on general elements
of the direct sum vector space is [x⊕ ξ, y ⊕ η] = ([x, y] + ξ.y − η.x)⊕ [ξ, η]
as usual. On the other hand, since the Lie coalgebra of b is covariant under
a Lie coaction of f, one may make a semidirect Lie coalgebra b>Jf with [10]

δ(x⊕ ξ) = δξ + δx+ (id− τ) ◦ β(x)(6)
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where δ is the Lie cobracket of b. The required covariance of the Lie coal-
gebra under the coaction here is

(id⊗ δ) ◦ β = (id⊗(id− τ)) ◦ (β⊗ id) ◦ δ(7)

and ensures that δ on b>Jf obeys the coJacobi identity.
The further covariance assumptions on b are that its Lie bracket is co-

variant under the Lie coaction and its Lie cobracket is covariant under the
Lie action. These assumptions are all needed to show that the semidirect
Lie bracket and Lie cobracket form a Lie bialgebra b>/· f. The case δ([ξ, η])
is clear since f is a Lie subalgebra and Lie subcoalgebra. The mixed case is

δ([ξ, x]) = δ(ξ.x) = δ(ξ.x) + (ξ.x) ¯(1)⊗(ξ.x) ¯(2) − (ξ.x) ¯(2)⊗(ξ.x) ¯(1)

= ξ.δx+ adξ((id− τ) ◦ β(x)) + ξ(1)⊗ ξ(2).x− ξ(2).x⊗ ξ(1)

= adξδx− adxδξ

as required. We used the definition of δ for b>Jf, the covariance of δ under
ξ, the crossed module condition, antisymmetry of δξ and adξ(x) = ξ.x =
−adx(ξ) when viewed in the Lie algebra b>/f. The remaining case is

δ([x, y])

= δ([x, y]) + (id− τ)β([x, y])

= adxδy + y
¯(2)⊗ y ¯(1).x− y ¯(1).x⊗ y ¯(2) + x

¯(1)⊗[x ¯(2), y]

− [x ¯(2), y]⊗x ¯(1) − (x↔y)

= adxδy − y ¯(1).x⊗ y ¯(2) + y
¯(1)⊗[x, y ¯(2)]− [x, y ¯(2)]⊗ y ¯(1)

+ y
¯(2)⊗ y ¯(1).x− (x↔y)

= adxδy + [x, y ¯(1)]⊗ y ¯(2) + y
¯(1)⊗[x, y ¯(2)]− [x, y ¯(2)]⊗ y ¯(1)

− y ¯(2)⊗[x, y ¯(1)]− (x↔y)
= adxδy − adyδx

where we used β([x, y]) = y ¯(1)⊗[x, y ¯(2)]−x ¯(1)⊗[y, x ¯(2)] (covariance of the Lie
bracket of b under the Lie coaction) and the assumption that δ is a braided-
Lie bialgebra in f

fM with infinitesimal braiding from Lemma 3.6. We then
used the crossed module compatibility condition also from Lemma 3.6 and
ξ.x = −adx(ξ) to recognise the required result. It is easy to see that the
projection b>/· f→ f defined by setting elements of b to zero is a Lie bialgebra
map covering the inclusion f ⊂ b>/· f.

In the converse direction, we assume a split projection, i.e. a surjection
π : g → f between Lie bialgebras covering an inclusion i : f → g of Lie
bialgebras (so that π ◦ i = id). We define b = kerπ. Since this is a Lie
ideal, it both forms a sub-Lie algebra of g and is covariant under the action
of f given by pull-back along i of ad. Moreover, g coacts on itself by its Lie
cobracket δ (the adjoint coaction of any Lie bialgebra on itself) and hence
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push-out along π is an f-coaction β = (π⊗ id) ◦ δ, which restricts to b since
(id⊗π)β(x) = (π⊗π)δx = δπ(x) = 0 for x ∈ kerπ. This Lie action and Lie
coaction fit together to form a Lie crossed module,

β(ξ.x) = (π⊗ id) ◦ δ([i(ξ), x]) = (π⊗ id)(adi(ξ)δx− adxδi(ξ))

= π([i(ξ), x(1)])⊗x(2) + π(x(1))⊗[i(ξ), x(2)]− π([x, i(ξ)(1)])⊗ i(ξ)(2)

− π(i(ξ)(1))⊗[x, i(ξ)(2)]

= [x, π(x(1))]⊗x(2) + π(x(1))⊗ ξ.x(2) + ξ(1)⊗ ξ(2).x

= ([ξ, ]⊗ id + id⊗ ξ.)β(x) + (δξ).x

as required. We used that i is a Lie coalgebra map and π a Lie algebra map,
along with x ∈ kerπ to kill the term with π([x, i(ξ)(1)]).

Finally, we give b a Lie cobracket δ as stated. Writing p = id− i ◦ π, we
have

(id⊗ δ) ◦ δx
= p(x(1))⊗ p(p(x(2))(1))⊗ p(p(x(2))(2))

= (p⊗ p⊗ p)(id⊗ δ)δx− p(x(1))⊗ p(i ◦ π(x(2))(1))⊗ p(i ◦ π(x(2))(2))

= (p⊗ p⊗ p)(id⊗ δ)δx

since i ◦ π is a Lie coalgebra map and p ◦ i ◦ π = 0. Hence δ obeys the
coJacobi identity since δ does. Moreover, for all x, y ∈ kerπ,

δ([x, y]) = (id− i ◦ π)⊗(id− i ◦ π)δ[x, y]

= [x, y(1)]⊗ y(2) + y(1)⊗[x, y(2)]− [x, y(1)]⊗ i ◦ π(y(2))

− i ◦ π(y(1))⊗[x, y(2)]− (x↔y)

since i ◦ π([x, y(2)]) = 0 etc., as i ◦ π is a Lie algebra map. Also, from
Lemma 3.6 and the form of β and antisymmetry of δ we have

ψ(x⊗ y) = [i ◦ π(y(1)), x]⊗ y(2) + y(1)⊗[i ◦ π(y(2)), x]− (x↔y).

Then,

adxδy − adyδx

= [x, (id− i ◦ π)(y(1))]⊗(id− i ◦ π)(y(2))

+ (id− i ◦ π)(y(1))⊗[x, (id− i ◦ π)(y(2))]− (x↔y)
= [x, y(1)]⊗ y(2) + y(1)⊗[x, y(2)]− [x, i ◦ π(y(1))]⊗ y(2) − [x, y(1)]⊗ i ◦ π(y(2))

− i ◦ π(y(1))⊗[x, y(2)]− y(1)⊗[x, i ◦ π(y(2))]− (x↔y)
= ψ(x⊗ y) + δ([x, y])

as required. The additional terms i ◦ π(y(1))⊗[x, i ◦ π(y(2))] etc. vanish as
i ◦ π is a Lie coalgebra map and x, y ∈ kerπ. Hence b = kerπ becomes
a braided-Lie bialgebra in f

fM. One may then verify that the bisum Lie
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bialgebra b>/· f coincides with g viewed as a direct sum b⊕ f of vector spaces
according to the projection i ◦ π. �

This is the Lie analogue of the braided groups interpretation [14] of Rad-
ford’s theorem [20]. It tells us that braided-Lie bialgebras are rather com-
mon as they arise whenever we have a projection of ordinary Lie bialgebras.
Finally, we provide the Lie analogue of the functor [17] which connects
biproducts and bosonisation.

Lemma 3.8. Let g be a quasitriangular Lie bialgebra. There is a monoidal
functor gM→ g

gM respecting the infinitesimal braidings. It sends an action
. to a pair (., β) where β = r21., the induced Lie coaction. The bosonisation
of b ∈ gM in Theorem 3.5 can thereby be viewed as an example of a biproduct
in Theorem 3.7.

Proof. We first verify that β(v) = r(2)⊗ r(1).v defines a Lie coaction for any
g-module V 3 v. This follows immediately from the identity (id⊗ δ)r =
[r(1), r′(1)]⊗ r′(2)⊗ r(2) holding for any quasitriangular Lie bialgebra (follow-
ing from the CYBE and δ = dr). Thus,

(id⊗ δ)β(v) = r(2)⊗ r′(2)⊗ r′(1)r(1).v − r′(2)⊗ r(2)⊗ r′(1)r(1).v

= ((id− τ)⊗ id) ◦ (id⊗β) ◦ β(v)

as required. This fits together with the given action to form a Lie crossed
module as

β(ξ.v) = r(2)⊗ r(1)ξ.v = r(2)⊗[r(1), ξ].v + r(2)⊗ ξr(1).v

= (δξ).v + [ξ, r(2)]⊗ r(1).v + (id⊗ ξ.)β(v)

as required, using the quasitriangular form of δξ. More trivially, a morphism
φ : V → W in gM is automatically an intertwiner of the induced coactions
(since r(2)⊗ r(1).φ(v) = r(2)⊗φ(r(1).v)) and hence a morphism in g

gM. It is
also clear that the functor respects tensor products. In this way, gM is a
full monoidal subcategory.

Finally, we check that the infinitesimal braidings coincide. Computing ψ
from Lemma 3.6 in the image of the functor, we have

ψ(v⊗w) = r(2).v⊗ r(1).w + r(1).v⊗ r(2).w − (v↔w)

= 2r+.(v⊗w − w⊗ v)
as required. From the form of the Lie cobracket in the bosonisation con-
struction, it is clear that it can be viewed as a semidirect Lie coalgebra by
the induced action, i.e., it can be viewed as a nontrivial construction for
examples of bisum Lie algebras. �

There is a dual theory of dual quasitriangular (or coquasitriangular) Lie
bialgebras [10] where the Lie bracket has a special form

[ξ, η] = ξ(1)r(ξ(2), η) + η(1)r(ξ, η(2)), ∀ξ, η ∈ g,(8)
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defined by a dual quasitriangular structure r : g⊗ g → k. This is required
to obey the CYBE in a dual form

r(ξ, η(1))r(η(2), ζ) + r(ξ(1), η)r(ξ(2), ζ) + r(ξ, ζ(1))r(η, ζ(2)) = 0, ∀ξ, η, ζ ∈ g

(9)

and 2r+ is required to be invariant under the adjoint Lie coaction (= δ, the
Lie cobracket) according to r+(ξ, η(1))η(2) + r+(ξ(1), η)ξ(2) = 0. All of the
above theory goes through in this form. Thus, gM has, by definition, an
infinitesimal braiding defined by

ψ(v⊗w) = r(v ¯(1), w
¯(1))(v ¯(2)⊗w ¯(2) − w ¯(2)⊗ v ¯(2))(10)

with respect to which we define a braided-Lie bialgebra in gM. The Lie
comodule transmutation theory associates to a map f→ g of Lie bialgebras
with g dual quasitriangular, a braided-Lie bialgebra b(f, g) ∈ gM.

For example, the Lie comodule version of Corollary 3.2 is g ∈ gM with
the same Lie cobracket as g, the adjoint coaction δ and

[ξ, η] = η(1)2r+(ξ, η(2)) ∀ξ, η ∈ g.(11)

A concrete example is provided by g∗ when g is finite-dimensional quasitri-
angular. Then g∗ is dual quasitriangular and its transmutation g∗ coincides
with (g)∗ in (3) in Example 3.3.

Similarly, there is a functor gM → g
gM sending a Lie coaction by g to

a crossed module with an induced action ξ.v = r(v ¯(1), ξ)v ¯(2) and respecting
the infinitesimal braidings. A braided-Lie bialgebra in b ∈ gM has a Lie
bosonisation b>/· g given by a semidirect Lie cobracket by the given Lie
coaction and semidirect Lie bracket given by the induced action. All of this
dual theory follows rigorously and automatically by writing all constructions
in terms of equalities of linear maps and then reversing all arrows. Such
dualisation of theorems is completely routine in the theory of Hopf algebras,
and similarly here. Hence we do not need to provide a separate proof of
these assertions. Note that dualisation of theorems should not be confused
with the dualisation of given algebras and coalgebras, which can be far from
routine.

Example 3.9. Let g be a finite-dimensional quasitriangular Lie bialgebra
and g∗ the dual of its transmutation. Its bosonisation g∗>/· g is isomorphic
as a Lie bialgebra to the Drinfeld double D(g).

Proof. The required isomorphism θ : D(g)→ g∗>/· g is θ(φ)=φ− r(2)〈φ, r(1)〉
and θ(ξ) = ξ for ξ ∈ g and φ ∈ g∗. We check first that it is a Lie algebra
map. The [ξ, η] case is automatic as g is a sub-Lie algebra on both sides.
The mixed case is

[θ(ξ), θ(φ)]bos = [ξ, φ− r(2)〈φ, r(1)〉]bos = ξ.φ− [ξ, r(2)]〈φ, r(1)〉
= φ(1)〈φ(2), ξ〉+ ξ(1)〈φ, ξ(2)〉+ r(2)〈φ, [ξ, r(1)]〉
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= θ(φ(1)〈φ(2), ξ〉+ ξ(1)〈φ, ξ(2)〉) = θ([ξ, φ])

where [ , ]bos is the Lie bracket of g∗>/· g. We use the definition of θ, the
quasitriangular form of δξ, the action ξ.φ = φ(1)〈φ(2), ξ〉 for g∗ and the cross
relations in D(g) (as recalled in Lemma 3.6) to recognise the result. The
remaining case is

[θ(φ), θ(χ)]bos

= [φ− r(2)〈φ, r(1)〉, χ− r′(2)〈χ, r′(1)〉]
= [r(2), r′(2)]〈φ, r(1)〉〈χ, r′(1)〉 − r(2).χ〈φ, r(1)〉+ r(2).φ〈χ, r(1)〉

+ χ(1)〈2r+, φ⊗χ(2)〉
= [r(2), r′(2)]〈φ, r(1)〉〈χ, r′(1)〉+ χ(1)〈r, χ(2)⊗φ〉+ φ(1)〈r, χ⊗φ(2)〉
= [χ, φ]− r(2)〈δr(1), χ⊗φ〉 = [χ, φ]− r(2)〈[χ, φ], r(1)〉 = θ([χ, φ])

as required since D(g) contains g∗op as a sub-Lie algebra. We used the
definition of θ and the Lie bracket (3) of g∗ as a sub-Lie algebra of the
bosonisation. We then used form of the action r(1).χ etc. and combined the
result with the 2r+ term to recognise the Lie bracket [χ, φ] (as in (8)) of the
dual quasitriangular Lie bialgebra g∗. We also use the quasitriangular form
of g to recognise δr(1).

Next, we verify that θ is a Lie coalgebra map. This is automatic on ξ ∈ g
as a sub-Lie bialgebra on both sides. The remaining case is

δbosθ(φ)

= δbosφ− δr(2)〈φ, r(1)〉
= δφ+ r(2)⊗ r(1).φ− r(1).φ⊗ r(2) − r(2)⊗ r′(2)〈φ, [r(1), r′(1)]〉
= δφ+ r(2)⊗φ(1)〈φ(2), r

(1)〉 − φ(1)〈φ(2), r
(1)〉⊗ r(2) − r(2)⊗ r′(2)〈φ, [r(1), r′(1)]〉

= (φ(1) − r(2)〈φ(1), r
(1)〉)⊗(φ(2) − r′(2)〈φ(2), r

′(1)〉) = (θ⊗ θ)δφ

using the Lie cobracket δbos on g∗>/· g from Theorem 3.5. The braided-Lie
cobracket of g∗ coincides with that of g∗, i.e., δφ = δφ. We also use the
quasitriangular form of g to compute its Lie cobracket on r(2).

Note that another way to present the result is that π(ξ) = ξ and π(φ) =
−r(2)〈φ, r(1)〉 is a Lie bialgebra projection D(g) → g split by the inclusion
of g, and recognise g∗ as the image under θ of the braided-Lie bialgebra
kernel of this according to Theorem 3.7. The computations involved are
similar to the above proofs for θ. Similar formulae are obtained if one
takes π(φ) = r(1)〈φ, r(2)〉, corresponding to transmutation with respect to
the conjugate quasitriangular structure. �

This is the Lie version of the result for the quantum double of a quasitri-
angular Hopf algebra in [17]. It completes the partial result in [14] where,
in the absence of a theory of braided-Lie bialgebras we could only give the
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result D(g)∼=g>/g in the factorisable case (where g∗∼=g) and only as a Lie
algebra isomorphism. Since g>/g by ad is easily seen to be isomorphic to
a direct sum Lie algebra g ⊕ g, one recovers the result that D(g) in the
factorisable case is a Lie algebra direct sum, but now with a certain Lie
bialgebra structure (namely the double cross cosum gIJg in [10]).

More recently, we have obtained a more general ‘double bosonisation’ the-
orem [15] which yields as output quasitriangular Hopf algebras. It provides
an inductive construction for factorisable quasitriangular Hopf algebras such
as Uq(g). The Lie version of this is as follows. We suppose c, b are dually
paired in the sense of a morphism 〈 , 〉 : c⊗ b→ k such that the Lie bracket
of one is adjoint to the Lie cobracket of the other, and vice versa. The nicest
case is where b is finite-dimensional and c = b∗ as in Lemma 3.4, but we do
not need to assume this for the main construction.

Theorem 3.10. For dually paired braided Lie bialgebras b, c ∈ gM the vec-
tor space b⊕g⊕c has a unique Lie bialgebra structure b>/· g·.<cop, the double-
bosonisation, such that g is a sub-Lie bialgebra, b, cop are sub-Lie algebras,
and

[ξ, x] = ξ.x, [ξ, φ] = ξ.φ,

[x, φ] = x(1)〈φ, x(2)〉+ φ(1)〈φ(2), x〉+ 2r+(1)〈φ, r+(2).x〉
δx = δx+ r(2)⊗ r(1).x− r(1).x⊗ r(2),

δφ = δφ+ r(2).φ⊗ r(1) − r(1)⊗ r(2).φ

∀x ∈ b, ξ ∈ g and φ ∈ c. Here δx = x(1)⊗x(2).

Proof. Here b, g clearly form the bosonisation Lie bialgebra b>/· g from The-
orem 3.5. In the same way, we recognise g·.<cop as the bosonisation of cop

as a braided-Lie bialgebra in the category of g-modules with opposite in-
finitesimal braiding (see the remark below Lemma 3.4). Since these are
already known to form Lie bialgebras, the coJacobi identity for the double-
bosonisation holds, as well as the 1-cocycle axiom for all cases except δ([x, φ])
mixing b, c. We outline the proof of this remaining case. From the definition
of b>/· g·.<cop, we have

δ([x, φ])

= δ(x(1)〈φ, x(2)〉+ φ(1)〈φ(2), x〉+ 2r+(1)〈φ, r+(2).x〉)
= x(1)(1)⊗x(1)(2)〈φ, x(2)〉+ r(2)⊗ r(1).x(1)〈φ, x(2)〉 − r(1).x(1)⊗ r(2)〈φ, x(2)〉

+ φ(1)(1)⊗φ(1)(2)〈φ(2), x〉+ r(2).φ(1)⊗ r(1)〈φ(2), x〉 − r(1)⊗ r(2).φ(1)〈φ(2), x〉
+ 2δr+(1)〈φ, r+(2).x〉

adxδφ

= [x, φ(1)]⊗φ(2) + φ(1)⊗[x, φ(2)] + [x, r(2).φ]⊗ r(1)
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+ r(2).φ⊗[x, r(1)]− [x, r(1)]⊗ r(2).φ− r(1)⊗[x, r(2).φ]

= x(1)〈φ(1), x(2)〉⊗φ(2) + φ(1)(1)〈φ(1)(2), x〉⊗φ(2) + 2r+(1)〈φ(1), r+
(2).x〉⊗φ(2)

+ φ(1)⊗x(1)〈φ(2), x(2)〉+ φ(1)⊗φ(2)(1)〈φ(2)(2), x〉
+ φ(1)⊗ 2r+(1)〈φ(2), r+

(2).x〉 − r(2).φ⊗ r(1).x+ r(1).x⊗ r(2).φ

+ [x, r(2).φ]⊗ r(1) − r(1)⊗[x, r(2).φ].

In a similar way, one has

− adφδx

= x(1)(1)〈φ, x(1)(2)〉⊗x(2) + φ(1)〈φ(2), x(1)〉⊗x(2) + 2r+(1)〈φ, r+(2).x(1)〉⊗x(2)

+ x(1)⊗x(2)(1)〈φ, x(2)(2)〉+ x(1)〈φ(2), x(2)〉⊗φ(1)

+ x(1)⊗ 2r+(1)〈φ, r+(2).x(2)〉
+ r(2).φ⊗ r(1).x− r(1).x⊗ r(2).φ

+ r(2)⊗[r(1).x, φ]− [r(1).x, φ]⊗ r(2).

Adding the latter two expressions and comparing with δ([x, φ]) we see that
the terms of the form r(2).φ⊗ r(1).x etc. immediately cancel, the terms of
the form φ(1)〈φ(2), x(2)〉⊗x(2) etc. (involving Lie cobrackets of both x and
φ) cancel by antisymmetry of the Lie cobrackets, and the terms of the form
x(1)(1)〈φ, x(1)(2)〉⊗x(2) etc. (involving iterated Lie cobrackets of either x or φ)
cancel using antisymmetry of the Lie cobrackets and the coJacobi identity
(id⊗ δ)δ + cyclic = 0 for b and c. Hence the 1-cocycle identity for this case
reduces to the more manageable

r(2)⊗ r(1).x(1)〈φ, x(2)〉+ r(2).φ(1)⊗ r(1)〈φ(2), x〉
+ [2r+(1), r′(1)]⊗ r′(2)〈φ, r+(2)〉 − flip

= 2r+(1)〈φ(1), r+
(2).x〉⊗φ(2) + 2r+(1)〈φ, r+(2).x(1)〉⊗x(2)

+ [x, r(2).φ]⊗ r(1) − [r(1).x, φ]⊗ r(2) − flip

where ‘-flip’ means to subtract all the same expressions with the opposite
tensor product. We used antisymmetry of the Lie cobrackets and the qua-
sitriangular of g for δr+(1). One then has to put in the stated definitions of
the Lie brackets [x, r(2).φ] and [r(1).x, φ] and use g-covariance of the pairing,
and of the braided-Lie brackets and cobrackets to obtain equality.

Note that by comparing the Lie bosonisation formulae with the braided
group case, we can read off the Lie double-bosonisation formulae from the
braided group case given in the required left-module form in the appendix
of [18]. The only subtlety is that in the Lie case we can eliminate the
categorical pairing ev (corresponding to the categorical dual b? in the finite-
dimensional case): c, b are categorically paired by ev : c⊗ b → k iff 〈 , 〉 =
−ev is a (g-equivariant) ordinary duality pairing. Then one obtains the [x, φ]
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relations as stated. Finally, in [15] it is explicitly shown that the double-
bosonisation is built on the tensor product vector space. The analogous
arguments now prove that the Lie double bosonisation is built on the direct
sum vector space. �

Proposition 3.11. Let b ∈ gM be a finite-dimensional braided-Lie bialge-
bra with dual b∗. Then the double-bosonisation b>/· g·.<b∗op is quasitriangu-
lar, with

rnew = r +
∑

a

fa⊗ ea,

where {ea} is a basis of b and {fa} is a dual basis, and r is the quasitrian-
gular structure of g. If g is factorisable then so is the double-bosonisation.

Proof. We show first that the Lie cobracket of the double-bosonisation has
the form δ = drnew. With summation over a understood, we have

[φ, r(1)
new]⊗ r(2)

new + r(1)
new⊗[φ, r(2)

new]

= [φ, r(1)]⊗ r(2) + r(1)⊗[φ, r(2)]− [φ, fa]b∗ ⊗ ea + fa⊗[φ, ea]

= −[φ, fa]b∗ ⊗ ea − r(1).φ⊗ r(2) − r(1)⊗ r(2).φ

− fa⊗ ea(1)〈φ, ea(2)〉 − fa⊗φ(1)〈φ(2), ea〉 − fa⊗ 2r+(1)〈φ, r+(2).ea〉
= δφ− r(1).φ⊗ r(2) − r(1)⊗ r(2).φ+ 2r+(2).φ⊗ r+(1) = δφ

as required. Here [fa, φ]b∗ ⊗ ea = fa⊗ ea(1)〈φ, ea(2)〉 since both evaluate
against x ∈ b to x(1)〈φ, x(2)〉. The suffix b∗ is to avoid confusion with the
Lie bracket inside the double-bosonisation, which is that of b∗op on these
elements. Similarly,

[x, r(1)
new]⊗ r(1)

new + r(1)
new⊗[x, r(2)

new]

= −r(1).x⊗ r(2) − r(1)⊗ r(2).x+ [x, fa]⊗ ea + fa⊗[x, ea]

= −r(1).x⊗ r(2) − r(1)⊗ r(2).x+ fa⊗[x, ea] + x(1)〈fa, x(2)〉⊗ ea
+ fa

(1)〈fa
(2), x〉⊗ ea + 2r+(1)⊗ r+(2).x

= δx− r(1).x⊗ r(2) + r(2)⊗ r(1).x = δx.

Here fa
(1)〈fa

(2), x〉⊗ ea = −fa⊗[x, ea] as both evaluate against φ ∈ b∗ to
φ(1)〈φ(2), x〉. Since the Lie cobracket of the double-bosonisation is antisym-
metric, we conclude also that 2r+new is ad-invariant.

Finally, we verify the CYBE for rnew. Actually, once δ = drnew has been
established, the CYBE is equivalent to

(δ⊗ id)rnew = r(1)
new⊗ r′(1)new⊗[r(2)

new, r
′(2)

new]

(see [10]). Note that

δfa⊗ ea = fa⊗ f b⊗[ea, eb]
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(sum over a, b) since evaluation against x, y ∈ b gives [x, y] in both cases.
Then

(δ⊗ id)rnew = (δ⊗ id)r + δfa⊗ ea
= r(1)⊗ r′(1)⊗[r(2), r′(2)] + fa⊗ f b⊗[ea, eb]

+ r(2).fa⊗ r(1)⊗ ea − r(1)⊗ r(2).fa⊗ ea
= r(1)⊗ r′(1)⊗[r(2), r′(2)] + fa⊗ f b⊗[ea, eb]

− fa⊗ r(1)⊗[r(2), ea] + r(1)⊗ fa⊗[r(2), ea]

as required. We used g-covariance of the pairing, so that ξ.fa⊗ ea =
−fa⊗ ξ.ea = −fa⊗[ξ, ea] for all ξ ∈ g.

If g is factorisable then 2r+new as a map (b>/· g·.<b∗op)∗ → b>/· g·.<b∗op

has g in its image, by restricting to g. It has b in its image by restricting
to b, and b∗ in its image by restricting to b∗. So the double-bosonisation
is again factorisable. Explicitly, if we denote by K the bilinear form on g
corresponding to the inverse of 2r+ as a map, we have

Knew(x⊕ ξ ⊕ φ, y ⊕ η ⊕ ψ) = 〈ψ, x〉+K(ξ, η) + 〈φ, y〉.

�

There is also a more general double-bisum construction b>/· f ·.<cop con-
taining biproducts b>/· f and f ·.<cop (with c, b ∈ f

fM suitably paired braided-
Lie bialgebras) and reducing to the double-bosonisation in the case when
c, b are in the image of the functor in Lemma 3.8.

Double bosonisation reduces to Drinfeld’s double D(b) when g = 0 (then
a braided-Lie bialgebra reduces to an ordinary Lie bialgebra). And because
it preserves factorisability, it provides an inductive construction for new fac-
torisable quasitriangular Lie bialgebras from old ones. We will see in the
next section that it can be used as a coordinate free version of the idea of
adjoining a node to a Dynkin diagram (adjoining a simple root vector in
the Cartan-Weyl basis). Moreover, building up g iteratively like this also
builds up the quasitriangular structure r. Finally, the triangular decompo-
sition implies, in particular, examples of Lie algebra splittings and hence of
matched pairs of Lie algebras as in [9]. Thus, b>/· g·.<b∗op = (b>/g)./b∗op as
Lie algebras, where b>/g (the semidirect sum by the given action of g on b)
and b∗op act on each other by

φ.x = 〈φ, x(1)〉x(2) − 2r+(1)〈φ, r+(2).x〉,
φ.ξ = 0, φ/x = 〈φ(1), x〉φ(2), φ/ξ = −ξ.φ

for x ∈ b, φ ∈ b∗, ξ ∈ g. This is immediate from the Lie bracket stated in
Theorem 3.10.
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4. Parabolic Lie bialgebras and Lie induction.

In this section we give some concrete examples and applications of the above
theory. We work over C. We begin with the simplest example of a braided-
Lie bialgebra, with zero Lie bracket and zero Lie cobracket. According to
Definition 2.2 this means precisely modules of our background quasitrian-
gular Lie bialgebras for which the infinitesimal braiding cocycle ψ vanishes.

Proposition 4.1. Let g be a semisimple factorisable (s.s.f) Lie bialgebra
and b an isotypical representation such that Λ2b is isotypical. Then b with
zero bracket and zero cobracket is a braided-Lie bialgebra in g̃M, where g̃ is
a central extension.

Proof. Let c = r+
(1)r+

(2) in U(g). Since r+ is ad-invariant, c is central.
Moreover, 2r+ = ∆c − (c⊗ 1 + 1⊗ c) where ∆ is the coproduct of U(g) as
a Hopf algebra. Since b is assumed isotypical, the action of c on it is by
multiplication by a scalar, say λ1. Since Λ2b is assumed isotypical, the action
of c on it, which is the action of ∆c in each factor, is also multiplication by
a scalar, say λ2. Then ψ(x⊗ y) = (∆c − (c⊗ 1 + 1⊗ c)).(x⊗ y − y⊗x) =
(λ2 − 2λ1)(x⊗ y − y⊗x) = λ(x⊗ y − y⊗x) say, where λ is a constant.

Now, b with the zero bracket and cobracket is not a braided group in
gM unless our cocycle ψ vanishes. However, in the present case we can
neutralise the cocycle with a central extension. Thus, let g̃ = C⊕ g with C
spanned by ς, say. We take the Lie bracket, quasitriangular structure and
Lie cobracket

[ξ, ς] = 0, r̃ = r − λ

2
ς ⊗ ς, δς = 0

for all ξ ∈ g. In this way, g̃ becomes a quasitriangular Lie bialgebra. We
consider b ∈ g̃M by ς.x = x for all x ∈ b. The infinitesimal braiding on b

in this category is ψ̃(x⊗ y) = 2r̃+.(x⊗ y − y⊗x) = ψ(x⊗ y) − λ(x⊗ y −
y⊗x) = 0. So b is a braided-Lie bialgebra in this category. �

The constant λ is the infinitesimal analogue of the so-called quantum
group normalisation constant. The central extension is the analogue of the
central extension by a ‘dilaton’ needed for the quantum planes to be viewed
as braided groups [7]. We see now the infinitesimal analogue of this phe-
nomenon.

Next, we can apply Theorem 3.5 and obtain a Lie bialgebra b>/· g̃ as the
bosonisation of b. Moreover, double-bosonisation provides a still bigger and
factorisable Lie algebra containing b>/· g̃.

Corollary 4.2. Let g be simple and strictly quasitriangular, and b a finite-
dimensional irreducible representation with Λ2b isotypical. Then the double
bosonisation b>/· g̃·.<b∗ from Theorem 3.10 is again simple, strictly quasitri-
angular and of strictly greater rank.
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Proof. The Lie bracket in the double-bosonisation in Theorem 3.10, and the
form of r̃ are

[ξ, x] = ξ.x, [ς, x] = x, [ξ, φ] = ξ.φ, [ς, φ] = −φ, [ξ, ς] = 0

[x, φ] = 2r+(1)〈φ, r+(2).x〉 − λς〈φ, x〉
for all ξ ∈ g, x ∈ b and φ ∈ g∗. Consider I ⊆ b⊕ g⊕ C⊕ b∗ an ideal of the
double-bosonisation. Let Ib, Ib∗ , Ig, IC be the components of I in the direct
sum. By the relation [ξ, x] = ξ.x, Ib ⊆ b is a subrepresentation under g.
Since b is irreducible, Ib is either zero or b. Similarly for Ib∗ . Likewise Ig is
zero or g as g is simple. Finally, IC is zero or C by linearity. We therefore
have 16 possibilities to consider for whether C, g, b, b∗ are contained or not
in I. (i) If g is contained, then since b is irreducible, the relation [ξ, x] = ξ.x
spans b for any fixed x, and hence is certainly not always zero. So b is
contained, and likewise b∗ is contained if g is. In this case, the [x, φ] relation
means that C is contained and I is the whole space. (ii) If b is contained then
the [x, φ] relation and 2r+ nondegenerate means that g and C are contained
and hence I is the whole space. (iii) Similarly if b∗ is contained. (iv) Finally,
if C is contained then the relation [ς, x] = x implies that b is contained and
hence I is the whole space. Hence I is zero or the whole space, as required.
The new quasitriangular structure is non-zero since its component in g⊗ g
is non-zero. The rank is clearly increased by at least 1 due to the addition
of ς. �

Thus the double-bosonisation in Theorem 3.10 provides an inductive con-
struction for simple strictly quasitriangular Lie bialgebras. It is possible to
see that the fundamental representations of sun or son take us up to sun+1

and son+1, i.e., precisely take us up the ABD series in the usual classifica-
tion of Lie algebras. Moreover, we see the role of the single bosonisation in
Theorem 3.5:

Example 4.3. Consider g = su2 with the Drinfeld-Sklyanin quasitriangu-
lar structure. The 2-dimensional irreducible representation b is a braided-Lie
bialgebra via Proposition 4.1. Its bosonisation C2>/· s̃u2 is the maximal par-
abolic of the double bosonisation C2>/· g̃·.<C2 = su3. Explicitly, it is the Lie
algebra of su2 and

[x, y] = 0, [X+, x] = 0, [X+, y] = x, [X−, x] = y, [X−, y] = 0

[H,x] = x, [H, y] = −y, [ς,H] = 0, [ς,X±] = 0,

[ς, x] = x, [ς, y] = y

where {x, y} are a basis of C2 and H,X± are the standard su2 Chevalley
generators. The Lie cobracket on the generators is

δς = 0, δX± =
1
2
X± ∧H, δx =

1
2
x ∧ h
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where h = −1
2H −

3
2 ς and ∧ = (id− τ) ◦ ⊗.

Proof. Note that we work over C, but there is are natural real forms justify-
ing the notation. Here Λ2b is the 1-dimensional (i.e., spin 0) representation
of su2. The standard quasitriangular structure of su2 is

r =
1
4
H ⊗H +X+⊗X−.

Then c = r+
(1)r+

(2) is twice the quadratic Casimir in its usual normalisation.
Hence its value in the (2j+1) dimensional (i.e., spin j) irreducible represen-
tation is j(j+1). In the present case, we have λ = 0.(0+1)−2.12(1

2 +1) = −3
2

in Proposition 4.1. We therefore make the central extension to g̃ and apply
Theorem 3.5. The Lie algebra of the bosonisation is given by the action of g̃.

Its explicit form in the representation ρ(X+) =
(

0 1
0 0

)
, ρ(X−) =

(
0 0
1 0

)
and ρ(H) =

(
1 0
0 −1

)
is X+.x = 0, X+.y = x, X−.x = y, X−.y = 0,

H.x = x and H.y = −y, giving the Lie bracket stated. The Lie cobracket
is δx = 0+r̃(2)∧r̃(1).x = 1

4H∧H.x+ 3
4 ς∧ς.x = 1

2x∧h as stated. We identify
X± = X±1,H = H1 as a sub-Lie algebra of su3 and x = X−2, h = H2 as the
remaining Chevalley generators of its standard maximal parabolic. Finally,
let b∗ have dual basis {φ, ψ}. By a similar computation to the above, we
obtain ˜su2·.<C2 with Lie bracket

[φ, ψ] = 0, [X+, φ] = −ψ, [X+, ψ] = 0, [X−, φ] = 0, [X−, ψ] = −φ
[H,φ] = −φ, [H,ψ] = ψ, [ς, φ] = −φ, [ς, ψ] = −ψ.

Among the further b, b∗ brackets in the double bosonisation in Theorem 3.10,
we have [x, φ] = 2r+(1)〈φ, r+(2).x〉+ 3

2 ς〈φ, x〉 = 1
2H〈φ,H.x〉+0+ 3

2 ς〈φ, x〉 =
−h. From these relations we find that φ = X+2 and ψ = X+12 explicitly
identifies the double bosonisation as su3. The Lie cobracket on φ is δφ =
r̃(2).φ ∧ r̃(1) = 1

4H.φ ∧ H + 3
4 ς.φ ∧ ς = 1

2φ ∧ h. This conforms with the
standard Lie cobracket for su3. Indeed, the quasitriangular structure of
the double bosonisation in Theorem 3.10 reproduces the Drinfeld-Sklyanin
quasitriangular structure of su3. �

This is far from the only braided-Lie bialgebra in the category of s̃u2-
modules, however.

Example 4.4. Consider g = su2 with the Drinfeld-Sklyanin quasitriangu-
lar structure. The 3-dimensional irreducible representation b is a braided-Lie
bialgebra via Proposition 4.1. Its bosonisation R3>/· s̃o3 is the maximal par-
abolic of the double bosonisation so5. Explicitly, it is the Lie algebra of so3
and

[xi, xj ] = 0, [ei, xj ] =
∑

k εijkxk, [ς, xj ] = xj
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where i, j, k = 1, 2, 3 and ε is the totally antisymmetric tensor with ε123 = 1.
Here {ei} are the vector basis of so3. The Lie cobracket is

δe1 = ıe1 ∧ e3, δe2 = ıe2 ∧ e3, δe3 = 0, δς = 0,

δx1 = (ıe1 + e2) ∧ x3 + x2 ∧ e3 + ς ∧ x1

δx2 = x3 ∧ (e1 − ıe2) + e3 ∧ x1 + ς ∧ x2,

δx3 = (e1 − ıe2) ∧ x2 + x1 ∧ (ıe1 + e2) + ς ∧ x3.

Proof. Here Λ2b is also the 3-dimensional (i.e., spin 1) representation. Hence,
from the first part of the proof of Proposition 4.1, we have λ = 1.(1 + 1)−
2.1.(1 + 1) = −2. The Lie algebra so3 in the vector basis is [e1, e2] = e3 and
cyclic rotations of this, and the Drinfeld-Sklyanin quasitriangular structure
in this basis is [10, Ex. 8.1.13]

r = −
∑

i

ei⊗ ei + ı(e1⊗ e2 − e2⊗ e1).

We add ς ⊗ ς to give the quasitriangular structure r̃. The action on C3

with basis xi is [e1, x2] = x3 and cyclic rotations of this. This immedi-
ately provides the Lie algebra of the bosonisation. The Lie cobracket from
Theorem 3.5 is

δxi = ıe2 ∧ [e1, xi]− ıe1 ∧ [e2, xi] +
∑
j,k

ej ∧ εijkxk + ς ∧ xi

with computes as stated. �

This example is manifestly the Lie algebra of motions plus dilation of R3,
as a sub-Lie algebra of the conformal Lie algebra so(1, 4), equipped now
with a Lie bialgebra structure. At the level of complex Lie algebra, it is
the maximal parabolic of so5. The generator ς is called the ‘dilaton’ in the
corresponding quantum groups literature. We likewise obtain natural maxi-
mal parabolics for the whole ABD series by bosonisation of the fundamental
representation b.

On the other hand, these steps for other Lie algebras can involve less
trivial braided-Lie bialgebras b (with non-zero bracket and cobracket). The
general case is as follows. We consider simple Lie algebras g associated
to root systems in the usual conventions. Positive roots are denoted α,
with length dα. The Cartan-Weyl basis has root vectors X±α and Cartan
generators Hi corresponding to the simple roots αi. We define dαHα =∑

i nidiHi if α =
∑

i niαi. We take the Drinfeld-Sklyanin quasitriangular
structure in its general form

r =
∑
α

dαXα⊗X−α +
1
2

∑
ij

AijHi⊗Hj ,(12)
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where Aij = di(a−1)ij . Here a is the Cartan matrix. The corresponding Lie
cobracket is δX±i = di

2 X±i ∧Hi and δHi = 0 on the generators.

Proposition 4.5. Let i0 be a choice of simple root such that its deletion
again generates the root system of a simple Lie algebra, g0. Let b− ⊂ g
be the standard (negative) Borel and let f ⊂ b− denote the sub-Lie algebra
excluding all vectors generated by X−i0. Both b− and f are sub-Lie bialgebras
of g and

b−

π→
←↩

f, π(Hi) = Hi, π(X−α) =

{
0 if α contains αi0

X−α else

is a split Lie bialgebra projection. Then b = kerπ is the Lie ideal generated
by X−i0 in b− and is a braided-Lie bialgebra in f

fM by Theorem 3.7.

Proof. Here f is generated by all the Hi and only those X−j where j 6= i0,
i.e. spanned by the Hi and {X−α} such that α does not contain αi0 . It is
clearly a sub-Lie algebra of b−. We show first that it is a sub-Lie bialgebra.
First of all, note that the Lie coproduct in g has the general form

δX±α =
dα

2
X±α ∧Hα +

∑
β+γ=α

c±β,±γX±β ∧X±γ

where the sum is over positive root β, γ adding up to α and the c are
constants. The proof is by induction (being careful about signs). From the
Lie bialgebra cocycle axiom and the induction hypothesis,

δ([Xi, Xα])

=
dα

2
[Xi, Xα] ∧Hα +

dα

2
Xα ∧ [Xi,Hα] +

∑
β+γ=α

cβ,γ [Xi, Xβ ] ∧Xγ

+
∑

β+γ=α

cβ,γXβ ∧ [Xi, Xγ ]− di

2
[Xα, Xi] ∧Hi −

di

2
Xi ∧ [Xα,Hi]

=
dα+αi

2
[Xi, Xα] ∧Hα+αi + α(diHi)Xi ∧Xα

+
∑

β+γ=α

cβ,γ [Xi, Xβ ] ∧Xγ +
∑

β+γ=α

cβ,γXβ ∧ [Xi, Xγ ]

if α + αi is a positive root. We used the identities [dαHα, Xi] = α(diHi)Xi

and [diHi, Xα] = α(diHi)Xα. Since all positive root vectors are obtained
by iterated Lie brackets of the Xi, we conclude the result (the argument for
negative roots is similar).

From this form, it is clear first of all that δ restricts to b− → b−⊗ b−,
so this becomes a sub-Lie bialgebra of g (this is well-known). Moreover, if
α does not involve αi0 then neither can positive β, γ such that β + γ = α.
Hence f is a Lie sub-bialgebra of b−.
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Finally, π is clearly a Lie algebra map by considering the cases separately.
For elements of f⊗ f we know that π ◦ [ , ] = [ , ] = [π( ), π( )] since f is
closed, while if α involves αi0 then so does α+ β and π([X−α, X−β]) = 0 =
[π(X−α), π(X−β)]. Moreover, π is a Lie coalgebra map on f since δf ⊂ f⊗ f
as shown above. Finally, (π⊗π)δX−i0 = 0 = δπ(X−i0) from the simple
form of δ on the generators.

Therefore we may apply Theorem 3.7 and obtain a braided-Lie bialgebra
b = kerπ. Here b ⊂ b− is the Lie ideal generated by X−i0 , i.e., spanned by
{X−α} where α contains αi0 .

The braided-Lie cobracket of b from Theorem 3.7 is

δX−α =
∑

c−β,−γX−β ∧X−γ ,

the part of the Lie cobracket δX−α in which both β, γ contain αi0 . The
action of f is by Lie bracket in b− and the Lie coaction of f is β(X−α) =
−dα

2 Hα⊗X−α +
∑
c−β,−γX−β ⊗X−γ where the sum is the part of δX−α

where β does not contain αi0 . �

This constructs the required braided-Lie bialgebra for the general case.
Although obtained here in the category of D(f)-modules, this action is com-
patible with an action of the central extension g̃0 ⊂ g. It is easy to see that
there is a unique element ς ∈ g, ς /∈ g0 which commutes with the image of g0.
It is determined by the Cartan matrices of g, g0. Viewed in g, this g̃0 acts on
g by the adjoint action and this action restricts to b. In this way, b becomes
a braided-Lie bialgebra in g̃0

M. One may then recover g = b>/· g̃0·.<b∗op

from Theorem 3.10.

Example 4.6. When g = g2 and g0 = su2, we obtain the 5-dimensional
braided-Lie bialgebra where su2 acts as the 4⊕ 1 dimensional (i.e., the spin
3
2 and spin 0 representations). Both the Lie bracket and the Lie cobracket
are not identically zero.

Proof. We take the Cartan matrix for g as
(

2 −1
−3 2

)
. We take i0 = 1 so

that the required su2 is spanned by H2, X±2. The negative roots vectors
X−1, X−21, X−221, X−2221 span the 4-dimensional representation of su2, the
eigenvalues of the adjoint action of −1

2H2 being −3
2 ,−

1
2 ,

1
2 ,

3
2 respectively.

These and the remaining negative root vector X−12221 (which forms a 1-
dimensional trivial representation of su2) are a basis of b. We then restrict
the Lie bracket to b, the only non-zero entries being

[X−1, X−2221] = X−12221 = [X−221, X−21].

This is a central extension (by a cocycle) of the zero bracket on the 4-
dimensional representation. The Lie cobracket can then be computed by
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projection of the Lie cobracket in g2. Since (as one may easily verify) the in-
finitesimal braiding is nontrivial, both the braided-Lie bracket and braided-
Lie cobracket on b are not identically zero. The element ς = −2H1 − H2

commutes with su2 and acts as the identity in the 4-dimensional part of
b. �

Example 4.7. When g = sp6 and g0 = sp4, we obtain the 5-dimensional
braided-Lie bialgebra where sp4 acts in the 4⊕1 dimensional representation.
Here the 4-dimensional representation is the fundamental one of sp4. Both
the Lie bracket and the Lie cobracket are not identically zero.

Proof. We take the Cartan matrices for g and g0 as

a =

 2 −1 0
−1 2 −2
0 −1 2

 , a0 =
(

2 −2
−1 2

)
where i0 = 1. We identify sp4 = C2 inside sp6 as the root vectors X±2, X±3,
X±23 and Cartan vectors H2,H3. The negative root vectors X−1, X−12,
X−123, X−1223 form the 4-dimensional representation of sp4. These and the
remaining negative root vector X−11223 (which forms a 1-dimensional trivial
representation of sp4) are a basis of b. We then restrict the Lie bracket to b
and find that this is again a cocycle central extension of the zero Lie bracket
on the 4-dimensional representation, the only non-zero entries being

[X−12, X−123] =
1
2
X−11223, [X−1, X−1223] = X−11223.

The infinitesimal braiding and the Lie cobracket are also nontrivial, as one
may verify by further computation. The element ς = −(H1 + H2 + H3)
commutes with sp4 and acts as the identity in the 4-dimensional part of
b. �

These examples show that the general case need not depart too far from
the setting of Proposition 4.1 and Corollary 4.2; we need to make a central
extension of the underlying irreducible representation to define b. By con-
struction, b>/· g̃0 is once again the maximal parabolic of g associated to αi0 .
A similar construction works for more roots missing, giving non-maximal
parabolics of the double-bosonisation. We simply define π setting to zero all
the root vectors containing the roots to be deleted in defining g0. Clearly, the
extreme example of this is f = t (the Cartan subalgebra) so that π(Hi) = Hi

and π(X−α) = 0. Then b = n− (the Lie algebra generated by the X−i) is a
braided-Lie bialgebra in t

tM with

δX−i = 0, ψ(X−α⊗X−β) = (α, β)X−α ∧X−β ,

h.X−α = −α(h), β(X−α) = −dα

2
Hα⊗X−α,
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for all h ∈ t. The coaction here is induced from the action as in Lemma 3.8,
where t is a quasitriangular Lie algebra with zero bracket, zero cobracket
and r = 1

2

∑
ij AijHi⊗Hj . In this way we can also view n− ∈ tM and

g = n−>/· t·.<n+ via Theorem 3.10, where we identify (n−)∗op = n+ via the
Killing form.

5. Concluding remarks.

We have given here the basic theory of braided-Lie algebras, obtained by
infinitesimalising the existing theory of braided groups. We also outlined in
Section 4 its application to the inductive construction of simple Lie algebras
with their standard quasitriangular structures. Further variations of these
constructions are certainly possible, and by making them one should be able
to also obtain the other strictly quasitriangular Lie bialgebras structures
in the Belavin-Drinfeld classification [1]. For example, there is a twisting
theory of quantum groups [4] and braided groups [19]. An infinitesimal
version of the latter would allow one to introduce additional twists at each
stage of the inductive construction of the simple Lie algebra.

Also, although we have (following common practice) named our Lie alge-
bras by their natural real forms, our Lie algebras in Section 4 were complex
ones. There is a theory of ∗-braided groups (real forms of braided groups)
as well as their corresponding bosonisations and double-bosonisations [19],
[18]. The infinitesimal version of these should yield, for example, so(1, 4)
as a real form arising from the double-bosonisation of the 3-dimensional
braided-Lie bialgebra in Example 4.4. The construction of natural compact
real forms and the classification of real forms would be a further goal. These
are some directions for further work.

Finally, just as Lie bialgebras extend to Poisson-Lie groups, so braided-Lie
bialgebra structures typically extend to the associated Lie group B of b, at
least locally. First, one needs to exponentiate ψ ∈ Z2

ad(b, b⊗ b) to a group
cocycle Ψ ∈ Z2

Ad(B, b⊗ b). Since dδ = ψ, we should likewise exponentiate
δ to the group as a map D : B → b⊗ b with coboundary Ψ, and define
from this a ‘braided-Poisson bracket’. The latter will not, however, respect
the group product in the usual way but rather up to a ‘braiding’ obtained
from ψ. Details of these braided-Poisson-Lie groups and the example of the
Kirillov-Kostant braided-Poisson bracket from Example 3.3 extended to the
group manifold (e.g., to SU2) will be developed elsewhere.
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