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Let M be a compact, orientable, irreducible, ∂-irreducible,
anannular 3-manifold with one component T of ∂M a torus.
Suppose that r1 and r2 are two slopes on T . In this paper, we
shall show that if M(r1) is reducible while M(r2) contains an
essential annulus, then 4(r1, r2) ≤ 2.

1. Introduction.

Let M be a compact, orientable, irreducible, ∂-irreducible, anannular 3-
manifold with one component T of ∂M a torus. A slope r on T is a T -
isotopy class of essential, unoriented, simple closed curves on T , and the
distance between two slopes r1 and r2, denoted by 4(r1, r2), is the minimal
geometric intersection number among all the curves representing the slopes.
For a slope r on T , we denote by M(r) the surgered manifold obtained by
attaching a solid torus J to M along T so that r bounds a disk in J . Now
consider two distinct slopes r1, r2 on T . There are many results showing
how constraints on the topology of M(r1) and M(r2) put constraints on
4(r1, r2). For example, C. Gordon and J. Luecke [5] have shown that if
M(r1) and M(r2) are reducible, then 4(r1, r2) ≤ 1. C. Gordon [3] has
shown that if M contains no essential torus, and M(ri) contains an essential
torus, i = 1, 2, then 4(r1, r2) ≤ 8. Y-Q Wu [8] has shown that if M(r1) and
M(r2) are ∂-reducible, then 4(r1, r2) ≤ 1. In this paper, we shall estimate
4(r1, r2) when M(r1) is reducible, and M(r2) contains an essential annulus.
The main result is the following theorem:

Theorem 1. Let M be a compact, orientable, irreducible, ∂-irreducible,
anannular 3-manifold with one component T of ∂M a torus. If r1 and r2

are two slopes on T , such that M(r1) is reducible while M(r2) contains an
essential annulus, then 4(r1, r2) ≤ 2.

An example has been given by Hayashi and Motegi [6] showing that the
bound 2 in Theorem 1 is the best possible in general.

Another proof of Theorem 1 has been obtained independently by Y-Q
Wu.
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2. Scharlemann cycle and parallel edges.

In what follows, we shall assume that M(r1) is reducible, and M(r2) contains
an essential annulus. We may assume further that M(r2) is irreducible, ∂-
irreducible (see [5], [7]).

Let Vi be the solid torus attached to M in forming M(ri), i = 1, 2.
Consider the family of essential 2-spheres in M(r1) which intersect V1 in a
family of meridional discs, and let S ⊂ M(r1) be such a 2-sphere chosen
so that S ∩ V1 has the minimal number, say n1, of components. Similarly,
let A ⊂ M(r2) be an essential annulus which intersects V2 in a collection
of meridian discs, the number of which, say n2, is minimal among all such
annuli. By assumptions, n1 > 2 and n2 > 0.

Now suppose that F1 = M ∩ S and F2 = M ∩ A. Then F1 is an es-
sential planar surface in M with boundary slope r1 while F2 is an essential
punctured annulus in M with boundary slope r2. We may assume that the
number of components of F1 ∩ F2 is minimal subject to these conditions.
Then no circle component of F1 ∩ F2 bounds a disk in F1 or F2, and no arc
component of F1 ∩ F2 is boundary parallel in F1 or F2. Each component of
∂Fi lying in T is called an inner component of ∂Fi, i = 1, 2.

Let Γ1(Γ2) be the graph in S(A) obtained by taking the arc components
of F1 ∩ F2 as edges and taking the inner components of ∂F1( ∂F2) as fat
vertices.

We shall use the indices α and β to denote 1 or 2, with the convention
that, when they are used together,

{
α, β

}
=

{
1, 2

}
.

Number the inner components of ∂Fα, ∂1Fα, . . . , ∂nαFα, so that they
appear consecutively on T . By construction, each inner component ∂iFα of
∂Fα intersects each inner component ∂jFβ of ∂Fβ in exactly ∆(r1, r2) points.
The ends of the edges in Γα may be labeled by an integer k ∈

{
1, 2, . . . , nβ

}
as follows. Let x be the intersection of an edge e of Γα with one of its vertices
∂iFα , then x is labeled k, where ∂kFβ is the unique vertex of Γβ, such that
x ∈ e ∩ ∂iFα ∩ ∂kFβ. Thus when we travel around ∂iFα, the labels appear
in the order 1, . . . , nβ , . . . , 1, . . . , nβ (repeated 4(r1, r2) times).

Now fix an orientation on Fα, and let each inner component ∂iFα of ∂Fα

have the induced orientation. Two inner components of ∂Fα are said to be
parallel if they, when given the induced orientation by Fα, are homologous on
T ; otherwise they are antiparallel. Two vertices of Γα are said to be parallel
if the corresponding inner components of ∂Fα are parallel; otherwise they
are antiparallel.

Parity rule [2]. An edge connects parallel vertices of Γα if and only if it
connects antiparallel vertices of Γβ.

Two edges of Γα are said to be parallel if they, together with some arcs in
∂Fα, bound a disk in Fα. A cycle σ in Γα is a subgraph of Γα homeomorphic
to a circle. The length of a cycle is the number of edges contained in it. A
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cycle σ in Γα is called a Scharlemann cycle if it bounds a disk face of Γα

and the edges of σ connect parallel vertices of Γα, and have the same two
labels at their ends. A length two Scharlemann cycle is called an S-cycle. A
length two cycle σ′ =

{
e′
1, e

′
2

}
in Γα is called an extended S-cycle if there is

an S-cycle σ =
{
e1, e2

}
in Γα such that e′

i and ei are adjacent parallel edges
in Γα, i = 1, 2.

Let x be a vertex of Γα. An edge of Γβ is called an x-edge if it has label
x at one of its two ends. We denote by Γx

β the subgraph of Γβ consisting of
all the vertices of Γβ and the x-edges connecting parallel vertices of Γβ. A
disk face D of Γx

β is called an x-face.

Lemma 2.1. Let W be a compact, irreducible, ∂-irreducible 3-manifold,
and let A0 be a non-separating annulus properly embedded in W . Then
A0 is essential in W .

Proof. Let D be a compressing disk of A0. If one component of ∂A0 is essen-
tial on ∂W , then W is ∂-reducible, a contradiction. If the two components
of ∂A0 are trivial on ∂W , then W contains a non-separating 2-sphere. Thus
W is reducible, a contradiction.

Now let D be a ∂-compressing disk of A0, such that ∂D = a ∪ b, where
a is an arc on A0, and b is an arc on ∂W . If the two components of ∂A0

bounds an annulus A1 on ∂W , and b ⊂ A1, then A0 ∪A1 is non-separating
in W , and the surface obtained by doing a 2-surgery on A0 ∪A1 along D is
a non-separating 2-sphere in W . Thus W is reducible, a contradiction. If
not, then the band connected sum of the two components of ∂A0 along b
on ∂W , say C, bounds a disk in W , and C is essential on ∂W . Thus W is
∂-reducible, a contradiction. �

Lemma 2.2. If Γα contains a Scharlemann cycle, then Fβ is separating.

Proof. By Lemma 2.1 of [5], F1 is separating when Γ2 contains a Scharle-
mann cycle.

Now let σ be a Scharlemann cycle of Γ1 with label pair
{
1, 2

}
, D be the

disk face bounded by σ in Γ1, and let A1 be the annulus bounded by ∂1F2

and ∂2F2 on T , such that the interior of A1 is disjoint from A. Let Di be
the disks in A bounded by ∂iF2, and let T

′
= (A−D1 ∪D2)∪A1. Then T

′

is a punctured torus. Let A
′
be the surface obtained by doing a 2-surgery

on T
′
along D, then A

′
is an annulus in M(r2), such that |A′ ∩ V2| < n2. If

F2 is non-separating, then A
′
is also non-separating. By Lemma 2.1, A

′
is

essential, contradicting the minimality of n2. �

Lemma 2.3. Let σ be a Scharlemann cycle of Γ1, then the edges in σ can
not lie in a disk of A.

Proof. Suppose, otherwise, that the edges in σ lie in a disk of A. Then
M(r2) contains a lens space as a factor (by the proof of Lemma 2.8 of [1]).
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Since ∂M(r2) 6= φ, M(r2) is reducible, contradicting our assumptions on
M(r2). �

Proposition 2.4. Γα can not contain two Scharlemann cycles with distinct
label pairs.

Proof. By Theorem 2.4 of [5], Γ2 can not contain two Scharlemann cycles
with distinct label pairs.

Now suppose, otherwise, that Γ1 contains two Scharlemann cycles σ1 and
σ2, with label pairs

{
x, y

}
and

{
x

′
, y

′}
respectively, such that

{
x, y

}
6={

x
′
, y

′}
. By Lemma 2.2, n2 is even.

Now consider the edges of σ1 and σ2 as they lie in Γ2, joining the vertices
x, y and x

′
, y

′
. By Lemma 2.3, there exists an annulus E ⊂ A, such that

1) one component of ∂E is one component of ∂A, say ∂1A, and another
component of ∂E is contained in intA;

2) the number of vertices of Γ2 in E is at most n2/2;
3) intE contains the edges of one of the two Scharlemann cycles, say σ1,

and the corresponding vertices x, y.
Let E

′
be an annulus containing x

′
, y

′
and the edges of σ2, such that one

component of ∂E
′
is the remaining component of ∂A, say ∂2A, and another

component of ∂E
′

is contained in intA. If
{
x, y

}
∩

{
x

′
, y

′}
= φ, then we

may assume E ∩ E
′
= φ.

Now let D be the face of Γ1 bounded by σ1, let H be the 3-cell in V2

between the consecutive meridional disks of V2 corresponding to x and y,
and let N be a regular neighborhood of E ∪ H ∪ D in M(r2). Then the
frontier of N is an annulus A

′
properly embedded in M(r2), whose two

boundary components are ∂1A ×
{
−1

}
and ∂1A ×

{
1
}
, and the union of

N and D0 × [−1, 1] along ∂1A × [−1, 1] is a punctured lens space whose
fundamental group has order the length of σ1, where D0 is a disk. Similarly,
let D

′
be the face of Γ1 bounded by σ2, let H

′
be the 3-cell in V2 between

the consecutive meridional disks of V2 corresponding to x
′
, y

′
, and let N

′

be a regular neighborhood of E
′ ∪ H

′ ∪ D
′
. Then the frontier of N

′
is an

annulus A
′′

properly embedded in M(r2), whose two boundary components
are ∂2A ×

{
−1

}
and ∂2A ×

{
1
}
, and the union of N

′
and D0 × [−1, 1]

along ∂2A × [−1, 1], say M1, is a punctured lens space whose fundamental
group has order the length of σ2, where D0 is a disk. We may assume that
N ∩ N

′
= φ (moving ∂N slightly off A if

{
x, y

}
∩

{
x

′
, y

′} 6= φ). We claim
that A

′
is essential in M(r2).

Suppose, otherwise, that A
′
is not essential in M(r2). Since M(r2) is ∂-

irreducible, A
′
is incompressible in M(r2). Now let D1 be a ∂-compressing

disk of A
′
, such that ∂D1 = a ∪ b, a ⊂ ∂M(r2), and b ⊂ A

′
.

Case 1. a ⊂ ∂1A× [−1, 1].
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Now either M(r2) is reducible, or the union of N and D0 × [−1, 1] along
∂1A× [−1, 1] is a 3-cell, a contradiction.

Case 2. a ⊂ ∂M(r2)− ∂1A× (−1, 1).
If ∂M−∂1A×(−1, 1) is not an annulus, then either M(r2) is reducible, or

M(r2) is ∂-reducible, a contradiction. If ∂M − ∂1A× (−1, 1) is an annulus,
then ∂M(r2) is a torus, and the union of M(r2)− intN and D0 × [−1, 1]
along ∂M − ∂1A × (−1, 1) is a 3-cell, but it contains M1 as a factor, a
contradiction.

By construction, |A′ ∩ V2| = |A∩ V2| − 2, contradicting the minimality of
n2. �

Lemma 2.5. (1) Γ2 contains no extended S-cycle.
(2) Γ2 contains at most n1/2+1 mutually parallel edges connecting parallel

vertices.
(3) Γ2 contains at most n1 − 1 mutually parallel edges.
(4) If Γ1 contains a great cycle, then Γ1 contains a Scharlemann cycle.
(5) If nα ≥ 3, and Γβ contains two distinct Scharlemann cycles σ1 and

σ2, then the edges of σ1 are disjoint from the edges of σ2.

Proof. (1) is Lemma 2.3 of [9]. (2) is Lemma 2.4 of [9]. (3) is Lemma
2.6 of [1]. See also [4, Proposition 1.3]. (4) is Lemma 2.6.2 of [2]. (5)
Suppose, otherwise, that one edge of σ1 is contained in σ2. Then nα = 2, a
contradiction. �

Lemma 2.6. Let y be a vertex of Γβ.
(1) If Γα contains a n-sided y-face, such that 2 ≤ n ≤ 3, then Γα contains

a Scharlemann cycle.
(2) If Fβ is separating, and Γα contains a y-face f , then Γα contains a

Scharlemann cycle in f .

Proof. (1) Suppose that Γα contains a n-sided y-face, such that 2 ≤ n ≤ 3.
Then Γα contains a great cycle. By Lemma 2.5(4), Γα contains a Scharle-
mann cycle. (2) is Lemma 2.2 of [5]. �

3. Reduced graph.

Let G be a graph in a surface S. The reduced graph of G is the graph
obtained from G by amalgamating each complete set of mutually parallel
edges of G to a single edge.

Lemma 3.1. One of Γ1 and Γ2 satisfies
(∗). Each vertex is incident to an edge connecting it to an antiparallel

vertex.

This follows immediately from the proof of [9, Lemma 2.6].
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Let Gα be the subgraph of Γα consisting of all the vertices of Γα and the
edges connecting parallel vertices. We first suppose that Γ2 has property
(∗). A component F

′
of G2 is called an extremal component if there is a disc

D in Â such that D∩G2 = F
′
, where Â is the 2-sphere obtained by capping

off the two components of ∂A with disks. In this case F = D ∩ Γ2 is a
graph in D. If e is an edge in Γ2 connecting a vertex of F

′
to an antiparallel

vertex, then e ∩D is an edge of F connecting that vertex to ∂D. Such an
edge is called a boundary edge of F . Property (∗) means that each vertex
of F belongs to a boundary edge.

Lemma 3.2. Let Γ be a graph in a disk with no 1-sided disk face or two
sided disk face, such that every vertex of Γ belongs to a boundary edge, then
either Γ contains only one vertex, or there are at least two vertices of valency
at most 3, each of which belongs to a single boundary edge.

This follows immediately from the proof of [2, Lemma 2.6.5].

Lemma 3.3. If Γ2 has property (∗), then there exists at least one vertex of
Γ2, such that among the families of ends around it, there are at most two
families which are ends of edges connecting it to parallel vertices. Further-
more, if there are two such families, they are successive.

Proof. Since G2 contains at least two extremal components, there is an ex-
tremal component F

′
of G2, such that the correspond disc D of F

′
in Â

contains at most one component of ∂A, say ∂1A, and the remaining com-
ponent of ∂A is disjoint from D. Thus F contains at most one 1-sided disk
face. Furthermore, if F contains a 1-sided disk face f1, then ∂1A ⊂intf1.
Let F̄ be the reduced graph of F in D. Let S be the graph obtained from
F̄ by removing the edge bounding f1. (Let S = F̄ when F̄ contains no
1-sided disk face.) Then S contains no 1-sided disk face, and it contains at
most one 2-sided disk face. Furthermore, if S contains a 2-sided disk face
f2, then ∂1A(⊂intf1) ⊂intf2. Let S̄ be the reduced graph of S in D. Let
D0 be the disk bounded by ∂1A in D, and let F̄0 be the reduced graph of F
in D−intD0.

To prove the lemma, we need only to prove that F̄0 contains a vertex of
valency at most 3, which belongs to a boundary edge. If F

′
contains only

one vertex v, then v has valency 3 in F̄0, and it belongs to a boundary edge.
If F

′
contains two vertices, then the one which does not belong to the edge

bounding f1, has valency at most 3 in F̄0. Assume now that F
′
contains at

least three vertices.
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Case 1. S contains no 2-sided disk face.
By Lemma 3.2, S contains at least two vertices of valency at most 3, say

v1 and v2, each of which belongs to a single boundary edge.
Suppose that ∂1A is contained in a fat edge l of S (as in Fig. 1). If

vi /∈
{
v

′
, v

′′}
, i =1, or 2, then vi has valency at most 3 in F̄0. If

{
v1, v2

}
={

v
′
, v

′′}
, then the edges incident to one of v1 and v2 are as in one of Figures

2-4.
(1) the edges incident to one of v1 and v2 are as in Fig. 2.
Let S

′
be the graph obtained from S by taking the union of v1, l and v2

as a fat vertex, say v. Then S
′
contains no 1-sided disk face or 2-sided disk

face. By Lemma 3.2, S
′
contains at least two vertices of valency at most 3,

each of which belongs to a single boundary edge, and the one which is not
equal to v, has valency at most 3 in F̄0.
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(2) the edges incident to one of v1 and v2 are as in one of Figures 3-4.
Now l1 ∪ v1 ∪ l∪ v2 ∪ l2 separates D into two discs D

′
and D

′′
. Since ∂1A

is contained in l, the graph S ∩D
′
contains no 1-sided disk face or 2-sided

disk face. If S ∩D
′
contains only one vertex v, then v has valency at most

3 in F̄0. If S ∩ D
′

contains at least two vertices, then S ∩ D
′

contains at
least two vertices of valency at most 3, each of which belongs to a single
boundary edge, and the one which is not equal to v, has valency at most 3
in F̄0.

Now we suppose that ∂1A is not contained in a fat edge. Since S contains
no 2-sided disk face, the one of v1 and v2 which does not belong to the edge
bounding f1, has valency at most 3 in F̄0.

Case 2. S contains a 2-sided disk face f2.
Now ∂1A ⊂intf2. That means that ∂1A is contained in a fat edge of S̄.

By Lemma 3.2, S̄ contains at least two vertices of valency at most 3, each
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of which belongs to a single edge. Using S̄ to take place of S in Case 1, we
can proof that F̄0 contains a vertex of valency at most 3, which belongs to
a boundary edge. �

Proposition 3.4. If Γ2 has property (∗), then Γ2 contains at least one ver-
tex, such that around it, all the endpoints of edges connecting it to parallel
vertices are successive, and there are at most n1 + 2 of them.

Proof. This follows immediately from Lemma 2.5(2) and Lemma 3.3. �

Proposition 3.5. If Γ2 does not have property (∗), then Γ1 contains at
least one vertex, such that around it, all the endpoints of edges connecting
to parallel vertices are successive, and there are at most n2 − 1 of them.

Proof. By Lemma 3.1, Γ1 has property (∗). Now let F
′

be an extremal
component of G1, and let D be the corresponding disc. In this case F =
D∩Γ1 is a graph in D. By Lemma 3.2, F̄ contains at least one vertex, say x,
of valency at most 3, which belongs to a single boundary edge. That implies
that in Γ1, there are at most two families of parallel edges connecting x to
parallel vertices, and if there are two such families, then they are successive.
Since Γ2 does not have property (∗), Γ2 contains one vertex, such that each
of the edges incident to it connects it to a parallel vertex. That implies that
all edges in Γ1 with this vertex as a label connect nonparallel vertices, hence
the above two families of parallel edges contains at most n2 − 1 edges. �

4. The proof of Theorem 1.

Let G be a graph on a surface S. In this section, we shall denote by V the
number of vertices of G, E the number of edges of G and F the number of
disk faces of G. By the Euler characteristic formula, V − E + F ≥ χ(S).

Proposition 4.1. If n2 = 1, then 4(r1, r2) ≤ 1.

Proof. Suppose, otherwise, that 4(r1, r2) ≥ 2. Since n2 = 1, Γ2 contains
only one vertex, say x. It is easy to see that x has valency 2 in Γ̄2. Hence
Γ2 contains n1 mutually parallel edges, contradicting Lemma 2.5(3). �

Proposition 4.2. If n2 = 2, then 4(r1, r2) ≤ 2.

Proof. Suppose, otherwise, that 4(r1, r2) ≥ 3. Since n2 = 2, each vertex of
Γ̄2 has valency 4 as in Fig. 5 (otherwise Γ2 contains n1 mutually parallel
edges). By Lemma 2.5(2), l1 and l2 contains at most n1 + 2 edges. If l1 and
l2 occupy at most n1 + 1 edges, then one of l3 and l4 occupies at least n1

mutually parallel edges, contradicting Lemma 2.5(3).
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Figure 5.

Now we suppose that that l1 and l2 occupy n1+2 edges. Then Γ2 contains
an S-cycle. By Lemma 2.2, F1 is separating, and n1 ≥ 4. By Lemma 2.5(3),
each of l3 and l4 occupies n1 − 1 edges.

Case 1. ∂1F2 and ∂2F2 are parallel.
Let x be a vertex of Γ1. By the parity rule, Γx

2 contains at least six (3n2)
edges. Since Γ̄2 has four edges, Γx

2 contains a 2-sided disk face. By Lemma
2.5(1) and Lemma 2.5(3), Γ2 contains an S-cycle, one label of which is x,
for any given vertex x in Γ1. Since n1 ≥ 3, Γ2 contains two Scharlemann
cycles with distinct label pairs, contradicting Proposition 2.4.

Case 2. ∂1F2 and ∂2F2 are antiparallel.
Let Γ be the subgraph of Γ1 consisting of all the vertices of Γ1 and the

edges in l3. Since F1 is separating, Γ is not connected. By the Euler char-
acteristic formula, Γ contains a disk face. By the proof of Proposition 1.3 of
[4], M contains an essential annulus, a contradiction. �

In the following arguments, we shall assume that nα ≥ 3.

Proposition 4.3. If Γ2 has property (∗), then 4(r1, r2) ≤ 2.

Proof. Suppose, otherwise, that 4(r1, r2) ≥ 3. By Proposition 3.4, there
exists a vertex of Γ2, say y, such that Γy

1 contains at least 2n1 + l edges,
where l ≥ −2. By the Euler characteristic formula, Γy

1 contains at least
n1 + l +2 ≥ n1 disk faces. Since there are n1 adjacent edges at y connecting
it to antiparallel vertices, there is a great y-cycle in Γ1. By Lemma 2.5(4), Γ1

contains a Scharlemann cycle. By Lemma 2.2, F2 is separating. By Lemma
2.6(2) and Proposition 2.4, Γ1 contains at least n1 Scharlemann cycles with
the same label pair, say

{
1, 2

}
. Now suppose that Γ1 contains m Scharle-

mann cycles with label pair
{
1, 2

}
. Then m ≥ n1. By Lemma 2.5(5), Γ1

1

contains at least 2m edges. By the Euler characteristic formula, Γ1
1 contains
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at least 2m− n1 + 2 ≥ m + 2 disk faces. By Lemma 2.6(2), Γ1 contains at
least m + 2 Scharlemann cycles. Thus Γ1 contains two Scharlemann cycles
with distinct label pairs, contradicting Proposition 2.4. �

Proposition 4.4. If Γ2 does not have property (∗), then 4(r1, r2) ≤ 2.

Proof. Suppose, otherwise, that 4(r1, r2) ≥ 3. By Proposition 3.5, there
exists a vertex of Γ1, say x, such that Γx

2 contains 2n2 + l edges, where l ≥ 1.
By the Euler characteristic formula, Γx

2 contains at least n2 + l disk faces.
By the parity rule and Proposition 3.5, there are n2 − l vertices of Γ2, each
of which is incident to an edge connecting it to an antiparallel vertex. That
means that there are at least n2 − l edges of Γx

2 , each of which is on the
boundary of only one disk face of Γx

2 . We claim that Γx
2 contains either a

2-sided disk face, or a 3-sided disk face.
If Γx

2 contains no 2-sided disk face or 3-sided disk face. Then 4F ≤
2(2n2 + l)− (n2 − l). Thus F ≤ 3/4(n2 + l) < n2 + l, a contradiction.

Now by Lemma 2.6(1), Γ2 contains a Scharlemann cycle. By Lemma
2.2, F1 is separating. By Lemma 2.6(2) and Proposition 2.4, Γ2 contains at
least n2 + l Scharlemann cycles with the same label pair, say

{
1, 2

}
. Now

suppose that Γ2 contains m Scharlemann cycles with label pair
{
1, 2

}
. Then

m ≥ n2 + l, where l ≥ 1. By Lemma 2.5(5), Γ1
2 contains at least 2m edges.

By the Euler characteristic formula, Γ1
2 contains at least m + l disk faces.

By Lemma 2.6(2), Γ2 contains at least m + l Scharlemann cycles. Thus
Γ2 contains two Scharlemann cycles with distinct label pairs, contradicting
Proposition 2.4. �

Theorem 1 follows immediately from Propositions 4.1-4.4.
I am grateful to the referee for his suggestions.
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