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We prove that a positive entropy map of the product of
a Cantor Set and an arc (which covers a homeomorphism)
cannot be “embedded” into a near homeomorphism of the 2-
disk. Thus a theorem of M. Brown cannot be used to embed
the induced shift map on the corresponding inverse limit space
into a 2-disk homeomorphism.

1. Introduction.

In 1990, M. Barge and J. Martin [BM90] proved that the shift map on the
inverse limit space ([0, 1], f), for any map f : [0,1] — [0, 1], can be realized as
a global attractor in the plane. In 1960, M. Brown [Bro60] proved that the
inverse limit space of any near homeomorphism (Definition 1.2) of a compact
metric space is homeomorphic to the original space. M. Barge and J. Martin
prove that, for all such f, there exists an embedding A : [0,1] — D? such that
ho foh™! can be extended to a near homeomorphism of the 2-disk, D?. They
then use M. Brown’s theorem to extend the induced shift homeomorphism
on h([0,1]) to a homeomorphism of D?. With care in the construction of
the near homeomorphism of D2, the inverse limit space (h([0,1]), ho foh™1)
becomes a global attractor.

The main goal of this paper is to show that analogous techniques for maps,
F: Cx]0,1] — Cx]0,1], where C'is a Cantor set, F'(z,y) = (Fi(x), F2(z,y))
is a surjective map with positive topological entropy (Definition 1.4), and
F1 is a homeomorphism, do not work; no near homeomorphic extension of
ho Foh™! to D? exists for any embedding h : C x [0,1] — D? (Theorem
3.1). In our terminology, such F' cannot be “embedded” into any 2-disk
homeomorphism (Definition 1.1). In the proof of Theorem 3.1 one first
assumes that h is a “tame” embedding (Definition 3.1). But in recent work,
R. Walker proves that all embeddings of C' x [0, 1] into D? are tame [Wal].

Our study of maps of C'x [0, 1] and their embeddings has links to a central
problem in the dynamical systems of positive entropy homeomorphisms of
compact surfaces.

Does there exist a C positive entropy 2-disk diffeomorphism without shifts?
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In 1980, A. Katok [Kat80] proved that all C1*% « > 0, positive entropy
diffeomorphisms of a compact surface, have transverse homoclinic points. So
some power of such a diffeomorphism restricts to a shift map of finite type.
The next year M. Rees announced a minimal positive entropy homeomor-
phism of the 2-torus [Ree81]. So her homeomorphism has no periodic orbits
thus no shifts. Though not in print, it appears that techniques M. Rees used
can be adapted to build a positive entropy 2-disk homeomorphism which has
a fixed point and no other periodic orbits. The C! case remains open. In
1993, M. Barge and R. Walker built a chainable continuum which is the
inverse limit space of a map of a Cantor comb [BW93]. The map restricted
to each “tooth” was a tent map over an adding machine base map. The
induced shift homeomorphism has positive entropy but all periodic orbits
are period a power of 2. Thus no shifts are present. All chainable continua
can be embedded into the 2-disk [Bin62]. Although their Cantor comb map
can be embedded into a near homeomorphism of the 3-ball, it cannot be em-
bedded into a near homeomorphism of the 2-disk. (To prove this M. Barge
and R. Walker rely on properties of the adding machine base map.) So their
induced shift homeomorphism cannot be used to build a new Rees-type 2-
disk homeomorphism. By our Theorem 3.1, a much larger class of maps (all
positive entropy maps of C' x [0,1] which cover any homeomorphism) has
the same drawback.

In Section 2 we show that if F' : C' x [0,1] — C x [0,1] is a surjective
map such that F(z,y) = (Fi(z), Fa(z,y)), F1 is a homeomorphism and
Fy(xo,-) : [0,1] — [0,1] is nonmonotone (Definition 1.3) for some x¢, then
there exists no embedding of F' into a near homeomorphism (Definition of
the 2-disk). We will show this by assuming such a near homeomorphism
does exist and then obtaining a contradiction using a result of S. Schwartz
[Sch92] (Theorem 1.1) concerning nonmonotone maps.

Unless otherwise specified X, and Y are compact metric spaces. And
and mo on X X Y are the first and second coordinate projection maps.

Definition 1.1. A map f : X — X can be embedded into the map F :
Y — Y if there exists a topological embedding h : X — Y such that
F|h(X) :hofohfl.

Definition 1.2. A map f: X — Y is called a near homeomorphism pro-
vided there exists a sequence {f; : X — Y'}2°, of homeomorphisms which
uniformly converge to f.

Definition 1.3. A map f : X — Y is monotone provided f~(V) is con-
nected, whenever V' C Y is connected.

Theorem 1.1 (S. Schwarts [Sch92]). Suppose that X is a locally connected
compact metric space. If f : X — X is a near homeomorphism then f is
monotone.
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As mentioned, in Section 3 we show that if F' : C' x [0,1] — C x [0,1]
is a surjective map with positive topological entropy (Definition 1.4), which
is embedded in the 2-disk, then F' cannot be extended to a near homeo-

morphism of the disk. The proof uses theorems of R. Bowen (Theorem 1.2)
[Bow71] and M. Barge (Theorem 1.3) [Bar87].

Definition 1.4 (Topological Entropy). Suppose that F/: X xY — X xY
is a surjective map and has the form F(x,y) = (Fi(x), F2(z,y)). Fix z¢ and
let € >0. A set E CY is (n,e)-separated by F|7T1_1(x0) if for all yo,y1 € F,

Yo 7 y1, d(maF*(20,y0), T2 F*(20,91)) > € for some k € [0,n), where d is the
Y —metric. Since Y is compact and n < oo, card F < 0o. Let the maximum
number of (n, €)-separated orbits for each € be

E C Y such that }
1 (xo)

s(n, €) = max {card E ’ E is (n,€) — separated by F| -

Now, let the growth rate of s(n,€) (or e-topological entropy) be

htop <F|7r_1(330)7 e) = lim sup

n—oo

log s(n, €)
—

Lastly we let € — 0 and define topological entropy for F| w1 (20)"

B (Fleg o) = T oy (Flee)-

The topological entropy hiop (F1) of the homeomorphism Fj is defined
similarly (see [Bow71]).

Theorem 1.2 (R. Bowen [Bow71]). If F: X XY — X XY has the form
F(z,y) = (Fi(x), Fy(z,y)) then

huop (F) < huop (F1) + sup { oy (Fl.10) }

If hiop (F1) = 0 then hiop (F) = 52}3 {htop (F\ 1 >}

Theorem 1.3 (M. Barge [Bar87]). If F : X x [0,1] — X x [0,1] has the
form F(z,y) = (Fi(z), Fa(z,y)), F2(z,-) : [0,1] — [0,1] is monotone for
each x and hiop (F1) = 0, then hiop (F) = 0.

2. Nonmonotone Maps of the Cantor Set Cross the Interval.

2.1. Preliminaries. Let C' C [0,1] be a Cantor set. Let C' x [0, 1] and
{a} x [0,1] € R? for a € C. The goal of this section is to prove Theorem
2.1 to follow. But first some preliminaries.

2.1.0.1. Assume F : C x [0,1] — C x [0,1] is a surjective map that has the
form

Fleyy) = (Fi(a), Fa(a, y))
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where F} : C — C is a homeomorphism. Furthermore, for a given o € C,
F>(ap,y) = t(y) where t : [0,1] — [0,1] is a continuous nonmonotone map
(see Figure 1 for an example). Let Ao = Fi ().

1 pommopm oo

0 m $1 T so M 1

Figure 1. Example of a nonmonotone map.

It will be needed later, that because ¢ is nonmonotone we can find a point
that has at least two points in the the pre-image that can be seperated by
disjoint epsilon balls. We introduce this idea at this point so that we can
use the notation developed here throughout.

2.1.0.2. Since t is nonmonotone and continuous, there is an a € (0, 1) such
that t~'(a) is closed and not connected. Thus, there is an interval (m, M) C
[0,1] \ t71(a) such that a = t(m) = t(M), and t([m, M]) = [a,b] (or [b,a])
for some b # a. Without loss of generality we will assume that a < b. Let
7 € t71(b). By the intermediate value theorem, t([m, M]) = [t(m),t(7)].
Now choose ¢ = % (a+b). Since ¢ is continuous there are s; € (m,7) and
sg € (1, M) such that ¢ = t(s1) = t(s2) (see Figure 1).

2.1.0.3. By the continuity of F, for any € > 0 there is a §; = d1(e) > 0
such that F' (z,y) € Be(Xo,t(y)) when d(ap,z) < 01 and y € [0, 1]. Suppose
K1 = Ki(e) € N is such that z- < d1.

Let D = {(z,y) € R%|2? + y? < 4}. Now let hy : C x [0,1] — D
be an arbitrary topological embedding. Then there is a homeomorphism
hi: D — D such that (hyohg)(ao,y) = (g, y) and (hiohg)(Ao,y) = (Mo, y)
for all y € [0,1]. So hy “straightens out” hg(ag x [0, 1]) and ho(Ag x [0,1])
in a strong sense. Notice that C' x [0,1] — D.

2.1.0.4. By the uniform continuity of hy o hg, for all € > 0 there is a J =
d2(€) > 0 such that for all y € [0,1], hy o ho(x,y) € Be(ap,y) and h; o
ho(2',y) € Be(Xo,y), for all (z,y) € Bs,)(ao,y) and (2',y) € Bsye) (Mo, y)-
Let Ky = Ks(¢) € N be such that I% < 09.
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2.1.0.5. With a,b defined as in [2.1.0.2], let d = min{a,1 — b, |a — b|}. For
0 <e < % choose 0 < 8§y < min {4 (eo), d2(eo), %}. So in particular
[2.1.0.3] and [2.1.0.4] are satisfied. Note that t([m, M]) C [eg, 1 — €o]. Let
Ko > max{Ki(ep), K2(€o)} be such that I% < dp. Since C' is perfect, there
is a sequence {ay} C C such that ap — «ag as k — oo, and oy x [0,1] C
Ns,(ap x [0,1]), for all k > Ky. Let \y = Fi(ag). (Note that N(S) is
a d—neighborhood of S.) It follows that Ay — Ao as kK — oo and A\, X
[0,1] C N (Ao x [0,1]) for all k > K. For a possibly larger Ky, also called
Ky, and o € Be,(No,c), k& > Kp, there exist ¢i(k) and g2(k) such that
{0k, x(K)} € F~ (or), q1(k) € By, (a0, 51) and ga(k) € Br, (a0, 52).
We now state our first theorem.

2.1.1. Nonmonotone Nonextension Theorem.

Theorem 2.1. Let F': C'x[0,1] — Cx[0,1] be a map of the form F(a,y) =
(Fi(o), Fo(a,y)) where Fy : C — C is a homeomorphism. Furthermore,
assume Fy(a, ) : [0,1] — [0, 1] is surjective but not monotone for some «.

Then there exists no extension of hgo F o hal to a mear homeomorphism of
the disk D, for any topological embedding hy : C x [0,1] — D.

Proof. Assume h, Ky, €o, 00, {ax}, { \c},q1(k), and ¢2(k) are defined as in
[2.1.0.1-5]. Suppose that Hy : D — D is a near homeomorphism such
that H0|h0(C><[0,1}) = hgoFo hal. And let Hy : D — D be given by
Hi = hioHyo h;l. Thus H; is also a near homeomorphism. So the
diagram in Figure 2 commutes.

F
Cx[0,1] — Cx][0,1]
ho ho
Y HO Y
D — D
h1 ha
Y Hl Y
D — D

Figure 2. Commuting Diagram.

2.1.1.1. Let A(a) = hyohgo (o x [0,1]) for all &« € C. By [2.1.0.3] hiohg is a
homeomorphism and if ({a} x [0,1]) ({A} x [0,1]) = @ (when « # \), then
A(a)NA(A) = 0. Let €5 be the horizontal line {y = 3}. And let £5(k) =
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A(ar) £ and E/\(k) A(Xg) (N €3. Because hy o hg (ay,0) € Bs,(ao,0),
hiohy(ag,1) € B5O(Oég, 1), and A(ay) is connected, then £3(k) # 0 and all
k > Ky (see Figure 3 and [2.1.0.2]). Similarly E/\( ) # 0, for all B € [eg, 1 —¢0]
and k > Kj. Note that if p € E)‘(k:) for given k > Ky then p € B¢, (Ao, 5).

850 (Oé(), 0) Beo ()\0, O)

Figure 3. Intersection of A(ay) with £g.

Lemma 2.1 follows from the continuity of h1, hg, and 7.

Lemma 2.1. Choose py, € (5(k) for each k. Then mipy — oo as k — oc.

Notice that 71 (hy o hg) (ozk, %) # «g for sufficiently large k. So either

card{kz T <h10h0 <ak,;>) > ao} =00
1
T <h10h0 (ak,2>> <Oé()} = 00.

2.1.1.2.  So without loss of generality we may assume there exist distinct
{kn},2 such that k, — oo as n — oo, and

1
sl (hl o hgy <O¢kn, 2)) > .

2.1.1.3. For the sake of simplicity we denote ag, by an, Alayg,) by Alan),
A(Ak,) by A(\,) and €8 by €.

or

card {k
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Lemma 2.2. Let Ny be such that k, > Kq for all n > Ny. Then

A(an)ﬂ{ <x ;) < ao} ~ 0.

Proof. Fix n > Ny and assume there exists
x < Oéo} ,

meeon{(-])

and let py = (h1 o hg (akn, %)) . By [2.1.1.2] m1(p2) > 0. Let A be the arc in
A(ay,) with end points p; and ps. By [2.1.1.1], p1,p2 € B, (ozo, %) So by
[2.1.0.5],

d((h1 0 o)~ (p1), (h1 © ho) ™ (p2)) < do.
Since A(ay,) [ A(ag) = 0, then using a Jordan Curve argument, it follows

A {(a0, y)ly > 1 or y < 0} # 0.

Let ps € AN {(0,y)|y > 1 or y < 0}. So d(p1,p3) > % But because p3 € A,
either

T 0 (h1ohg) t(p1) < w20 (h1ohg) H(ps) < w20 (h1ohg) *(p2)

or
ma 0 (h1 o o) (p2) < w20 (h1 o hg) *(p3) < w20 (h1ohy) (p1).

In either case d((hy o ho) ™ (p1), (h1 0 ho) "1 (p3)) < 8. And so d(p1, p3) < €o
which is a contradiction. O

2.1.1.4. Assume n > Ny. Let g, : [0,1] — A(ay,) be the parameterization
of A(ay,) defined by ¢n(8) = hi o ho (ap, ). Using 7, m from [2.1.0.2]
Alan) Ny # 0 and A(an)(Vlm # O (see Figure 4) so by Lemma [2.2]
and the connectivity of A(a,,) there is a largest [, call it G, , such that
gn(By) € . Let an, = gn(B;,) (see Figure 4). Similarly there is a smallest
B, call it 8,7, such that g, (3;) € . Let by, = gn(5;).

2.1.1.5. If necessary, renumber the k,’s so that if k,, < k,41 then m(a,) >
m1(an+1). It follows by an argument similar to that of Lemma [2.2] that
7m1(bn) > 71 (bpy1). (Because hy o hy may have scrambled the C x [0, 1] order
in the first coordinate, it may be necessary to relabel the k,,’s so that A(ay,,)
to be “between” A(ay,_,) and A(ay,,,).)

Considering [2.1.1.5] and [2.1.1.2] and to simplify the notation assume

1
card {k|7r1 (hy o ho) <ak, 2> > ao} =00

and 7 (ag) > m1(ak41) for all k.
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Alay,)

bn = gn(BF)
/

— 57—

] 0o
k an = gn(By)

Figure 4. First and Last Intersections.

Using [2.1.1.4], for k > Ny define the four curves I (k,m), I (k,7), Ji—_1,
and Ji41 in the following manner (see Figure 5). Let I (k,m) be the line
segment in ¢, between ay,1 and ax_1 and I (k,7) be the line segment in ¢,
between bg1 and by_1. Let

Je-1={gs1(B8) |8, <B< B, }, and
i1 = {9k+1(5)|5i#1 <pB< 52#1}-

br+1 \\\\\\§f(7’;i////// b1
Jer1 T —  Jra
k41 //////// ’ \\\\\\\\\ ag—1

Figure 5. The Boundary of Ry.

Lemma 2.3. I (k,7)JJJx—1 U (k,m)J Jk+1 is a simple closed curve.

Proof. Since A(ag—1) [ Alagt1) = 0 we have Jp_1 () i1 = 0. By [2.1.1.1]
I(k,m)I(k,7) =0. And by [2.1.1.4] we have that

ap—1 = Jp_1 ﬂ[(k:,m) and agy1 = Jrt1 m[(kz,m)
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and
br—1 = Jp—1 [ 1 (k,7) and bepy = Jpgr [ |1 (k, 7).

And so the lemma follows. O

Let Ry be the closed and bounded set with boundary

I (k,m) U Jr—1 U I (k,7) U Jk1

(see Figure 5). Recall from [2.1.0.2] that s; € [m, 7] and from [2.1.1.1] that
05 (k) = Ao) N s, (see Figure 3).

Lemma 2.4. R, (/3 (k) # 0.

Proof. Let ), be the arc {gr(8)|0 <3< B} Let S = RiNmy' [s1,7]
(see Figure 6). So 0Sk D I (k,7) and by [2.1.1.5] by, € I (k,7). But by is
not an endpoint of I (k,7) because the endpoints of I (k,7) are by_; and
bg+1. And so there is an n > 0 such that if p € B, (by) and m2(p) < 7 then
p € int Sk. Now, if ¢ € v \ {bx} then ma(q) < % And since 7, connects
hiohg (ag,0) to by, we have that (v, () By(bx)) \ {bx} # 0. Thus there exists
Po € Y& [\ By(bi)(intSy. Let Ay C i be the arc with endpoints py and
hi o hg (g, 0) (see Figure 6).

Al
( 0) '__\ﬁ Bn(bk)

J/n £ Po
Sk
A,

Ly

1 Ry N£2, (k)
l,

Figure 6. The Arc A;.

Because pg € intSk and hj o hg (ag,0) € Si then Ax(9Sr # 0. Since
Ak ﬂA(Ozk_l) = @, Ak ﬂA(ak—H) = @, Ak ﬂf (n, T) = () and Esl m R, C aSk,
we have that Ay (ls, (Ri # 0, or R (43, (k) # 0. O

2.1.1.6. Note that since £3 (k) (ORy = () then (5 (k) C intRy.
Lemma 2.5. [A(ag) (VHy' (hioho (M, y))] =0 for k #1.
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Proof. Suppose that p € A(ay)(VHy "' (h1ohg(M,y)) for k # 1. Then
Hl(p) = hy o hyg ()\k,y) But HlA(Oél) = A()\l) Thus H; (,0) S A()\l) So
hi o ho (Mg, y) € Alag) Or (A, y) € Cy,. Which contradicts, [2.1.1.1] since
k1. 0

Proof of Theorem 2.1 continued. By Lemma [2.4] there exists pi(k) €
ReN 43, (k) for all k > No. By [2.1.0.5] (k1 o ko) *(p1(k)) € Bs, (v, 51).
Using [2.1.0.5], let o = F o (hy o hg)~(p1(k)). So there exists {q1(k),
q2(k)} C F~1(og) such that qi(k) € Bs, (ao,s1) and g2(k) € Bs, (a0, 82)
Choose q1 (k) so that pi(k) = hy o ho(q1(k)). And let pa(k) = hi o ho(qa(k))
and 1, = hy o ho(og) (see Figure 7). Because Hy o hj o hg = hyohyo F
then {p1(k), pa(k)} € Hy'(ry). By the size of § chosen in [2.1.0.5], pa(k) €
850 (Ot(), 82) §Z Rk

Recall that Hy and H; are near homeomorphisms. Near homeomorphisms
are monotone on locally connected compact metric spaces ([Sch92]). Thus
pre-images of connected sets under H; are connected. So H; Y(ry) is a
connected set which contains pa(k) ¢ Ry and by [2.1.1.6] p1(k) € intRy.
Then H;'(rg) NORy # 0. By Lemma [2.5] either H;*(ry) NI (k,7) # 0
or H'(ri) NI (k,m) # 0. So there is an infinite sequence {pk, } such that
either py, € I (k,T) ﬂHfl(rkj) or py; € I(k,m)ﬂH{l(rkj) for all j (see
Figure 7).

L p1(k)

Alay)

Figure 7. Subsequence and Pre-image.

Now by Lemma [2.1] either py, — h1 o ho (ag,T) or pg; — h1 o hg (a0, m)
as j — oo. Since H; is continuous for all j, either

Hlpkj — H1 o hl o ho (Oéo,T) or Hlpkj — H1 o hl o h() (ao,m) .
Because H{ o hy o hg = hy o hg o F', then either
Tkj — h1 o ho ()\0,15(7')) or Tlcj — h1 o h() ()\[),t(m)) .
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Since hi o hg is a homeomorphism either
ok; — (Ao, b)  or o, — (Mo, a)

which is a contradiction since {ox;} C Be, (Ao, ¢)- O

3. Positive Entropy Maps of C x [0, 1].

3.1. Introduction. Let C' C R be a Cantor set. In this chapter we use the
results of Chapter 2 to prove the following;:

Theorem 3.1. Let F : C x [0,1] — C x [0,1] be a surjective map such
that F(a,y) = (Fi(a), Fx(a,y)), where Fy : C' — C is a homeomorphism. If
hiop (F') > 0 then there exists no topological embedding hy : C' x [0,1] — D C
R? such that hgo F o hal extends to a near homeomorphism of the disk D.

Recall that m; : C x [0,1] — C is the projection map onto the first
coordinate. By work of R. Bowen [Bow71] we know that hip (F) <

hiop (F1) + Sug{htop (F\ﬂ;1(a)>}. It has been shown by M. Barge and
ac

R. Walker [BW93] that any near homeomorphism that extends hg o F o
hy 1 to the disk must preserve a certain local order on the set of fibers
{ho (a x [0,1]) |a € C'}. But we will show that if h¢op (F1) > 0 no such local
order is preserved. So in fact hop (F1) = 0. Using [Bow71] and a result
of M. Barge [Bar87], if hiop (F') > 0 then for some ayg € C, Fy(ag,-) is a
nonmonotone map. Thus by Theorem 2.1, hgo F' o by ! cannot be extended
to a near homeomorphism of the disk.

3.2. Proof of Theorem 3.1.

Definition 3.1 (Tame Embedding). ho : C' x [0,1] — D C R is a tame
embedding provided there is a homeomorphism hy : D — D such that for all
a € C, hyohgy({a} x[0,1]) = ({a’} x [0,1]) for some {a’}. If hy is a tame
embedding, using a theorem of E. Moise [Moi77], we may further require
that hy has the property: hy o ho({a},i) = ({a'},i) for all @ and i = 0, 1.

For more information concerning tame embeddings see [Rus73] or
[Bin54].

3.2.1. Proof of Theorem 3.1. All topological embeddings of C' x [0, 1]
into D? are tame [Wal]. So it is enough to prove the theorem for all tame
embeddings, hg.

Let hy be as in Definition 3.1. Denote by A the set hy o ho (C x [0, 1])
and by A(a) the set hy o hg (a x [0,1]). Note that 71 (A(a)) = @’ for some
a’ € R. Assume there is a near homeomorphism H : D — D such that on
C x1I,hiohgoF = H ohyohg. Before continuing with the proof, we stop
to define a local ordering on {A(a)|a € C'} and prove a lemma.
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3.2.2. Order Definitions and Lemmas. Here we show that H preserves
the local order of fibers as defined by M. Barge and R. Walker [BW93],
which we will write as <p,,. And it will follow that F; : C' — C'is a “local
order preserving homeomorphism.”

Note: Since hy is tame one could use the order on {A(a)|a € C} induced
by 71 in place of <p,. That is, A(a) < A(b) if m1A(a) < mA(b). Although
hi-dependent, this order may be more natural than the <, order, and is
locally equivalent to it. But in order to show that H preserves such a local
order on fibers, one must cycle through the definition of <y, in any case.

Barge-Walker order:

Definition 3.2. For a,b € C suppose that v_ and 4 are arcs in the plane
with the properties:

v— has endpoints hiohg (a,0) and hiohg (b,0), and y_ is otherwise disjoint
from A(a)|JA(b); v+ has endpoints hy o hg (a,1) and hy o hg (b, 1) and 4 is
otherwise disjoint from A(a)|JA(b); and

(-Un) N (02 x{5}) =0

Such arcs v_ and 74 will be called admissible arcs joining A(a) and A(b).

Definition 3.3. Given a,b € C, a # b, then A(a) <p, A(D) if there are
admissible arcs joining A(a) and A(b), as above, and the orientation y_ —
A(b) — v+ — A(a) is positive (counterclockwise) on the simple closed curve

- UAD)Uv+ UA(a). (See Figure 8.)

s
Ala)
-3
A(b)
- >7_ ~_

Figure 8. Barge-Walker Ordering on Cantor Fibers.

Definition 3.4. <x is a local ordering on X if for all x € X there is a
d > 0 such that <y is an order relation on Bs(x). (X,<x) is a locally
ordered metric space.



EXTENDING MAPS OF A CANTOR SET 381

In [BW93] it is shown that if a and b are sufficiently close, a # b, then
such admissible arcs exist. So either A(a) <p, A(b) or A(b) <pw Ala).
Furthermore <, is a local ordering on A = {A(a) |a € C'} where we use the

metric d(A(a), A(b)) = d(a,b).
Definition 3.5. Let a,b € C. Then a <¢ b provided A(a) <p, A(D).

It follows from the proceeding remark and that hy o hg is uniformly con-
tinuous, that <¢ is a local ordering on C.

Definition 3.6. Let (X, <x) and (Y, <y) be locally ordered metric spaces.
Let G : (X, <x) — (Y, <y) be a homeomorphism. G is a local order preserv-
ing homeomorphism, if there is a § > 0 such that if zg, 21 € X, |zg—x1| < 9,
and zg <x 1, then G(z¢) <y G(x1).

Denote by [z,y] = {z € Clz <¢ z <¢ y}. We next show <¢ on C is
R-like in the following sense.

Lemma 3.1. Given € > 0 there is a 6 > 0 such that if x,y € C and
|z —y| < 9, then for all z € [z,y], |v — 2| < € and |y — 2| <e.

Proof. Suppose that z,y,z € C and x <¢ z <¢ y. By Definition 3.5 there
are admissible arcs 7;", 7, , 75 , and v, such that A(z) — v — A(z) — v
and A(y) — 75 — A(z) — v, have positive orientation.

Sublemma 3.1. For e > 0 there is a §; > 0 such that if
A(2) (N, (A(w)) # 0

then |x — z| < e.

Proof. By the continuity of (hy o hg)~!, if € > 0 there is a d; > 0 such that
if d(p,q) < 81 where p,q € A then d((h1 © ho)~*(p), (h1 © ho)~*(q)) < €. So
if A(z) N5, (A(x)) # 0 there is p € A(x), ¢ € A(z) such that d(p,q) < ;.
Thus |z —2| = |m1((h1oho) ™! (p)) —m1((h1oho) ! ()] < d((h1oho) ™' (p), (h1o
ho)~'(q)) < e. O

Choose d; > 0 smaller so that if
A(z) [\ N5, (A(z)) # 0 and
A(2) [\ N5, (A(y)) #0

then |z — z| < eand |y — 2| <e.

By the continuity of (hq o hg) there is § > 0 such that if [z — y| < 6 then
A@) © N, (A(y)) and A(y) C Ny, (A(z)).

Suppose that A(z) (N5, (A(x)) Ns, (A(y)) = 0. So either mA(z) <
mA(z) or mA(y) < mA(2). Thus either A(z) — 7 — A(x) — ~; has
negative orientation or A(z) — 75 — A(y) — 75 has positive orientation
which contradicts z <¢ 2z <¢ y.
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Thus A(2) N5, (A(z)) # 0 and A(z) N5, (A(y)) # 0. So by the choice
of § then |z — z| < € and |y — 2| < € as desired. O

Lemma 3.2. Let f: (C,<¢) — (C,<c) be a local order preserving home-
omorphism. Then there is a § > 0 such that if |x — y| < 0 then f([z,y]) =

[f (@), £ (y)].

Proof. By Definition 3.6 there is an € > 0 such that for any z,y € C if
|r —y| <e¢, and = <¢ y then f(x) <¢ f(y). By Lemma 3.1 there isa § > 0
such that if z <¢ 2z <¢ y and | — y| < 6 then |x — z| < e and |y — 2| <e.
Thus f(z) <c¢ f(2) and f(z) <¢ f(y). O

The proof of the following lemma was suggested by M. Barge.

Lemma 3.3. Let f : (C,<) — (C,<) be a local order preserving homeo-
morphism. Then hiop (f) = 0.

Proof. Recall that S C C is an (n,€)-spanning set, for f if for all z € C
there is a y € S such that |f*(z) — f*(y)] < e for all k = 0,1,2,...n — 1.

. log card S(n, ¢ .
Then (hiop)e (f) = limsup & ( ), and hiop (f) = l% (htop)e (f)-
Choose 0 as in Lemma 3.2 and suppose that S C C is an (n, €)-spanning

set where 0 < € < § (6 from the lemma). Let X be a finite set of C' that is
e-dense, let N = card X. Before proceeding with the proof of Lemma 3.3
we prove the following sublemma.

Sublemma 3.2. SUf_”(X) is an (n + 1, €)-spanning set.

Proof. Let x € C. Suppose that y € S is such that |f*(z) — f*(y)| < € for
k =0,1,2,...n — 1. Thereis a z € X such that either z € [f"(z), f"(y)]
or z € [f™(y), f*(z)], and such that |f"(x) — z| < e. Then we have that
F™(z) € SU f™(X) and z satisfies |f*(z) — fF(2)| < efor k=0,1,2,...n
as desired. O

Continuing with proof of Lemma 3.3, it follows from Sublemma 3.2 that
there exists a constant K > 0 such that for all n, card S(n.) < K + nN.
Thus,

htop (f) = l%(htop)s (f)
b log card S(n,¢)

= lim limsu
e—0 npnoco n
log(K N
= lim lim sup M = 0.
e—0 npnoco n

Lemma 3.4. Either H or H? locally preserves <p, on {A(a)la € C}.
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Proof. By Theorem 2.1, H|y () is monotone for all ¢ € C'. Fix ap € C' and
assume that hy o hg({a} x {i}) C ¢; and H o hy o ho({ag} x {i}) C ¢; for
i = 0or 1. (The other cases are similar.) For all a # ag there exists an
admissible arc, v, linking hy o ho({ap} x {0}) to hy o hg({a} x {0}) and an
admissible arc, v, linking hy o ho({ap} x {1}) to hy o ho({a} x {1}). Now
H is monotone on the simple closed curve I' = A(ag) U, UA(a) U~
Thus H can be approximated by a homeomorphism H' : D — D such that
H'Aao) = H(Aay)), H'AMa) = H(A(a)), Hyy = H(y,), and Ho; —
H (). So the orientation of H(T') is identical to the orientation of H'(T').
For a sufficiently close to ag H' (or (H')?) preserves <, between A(ag) and
A(a) [BW93]. Thus H (or (H)?) does so as well. O

Proof of Theorem 3.1 continued. We now complete the proof of Theorem 3.1.
First suppose that I} and F? do not locally preserve <c. Then by Definition
3.5 H and H? cannot locally preserve <, on the fibers {A(a)| a € C},
contradicting Lemma 3.4.

Next suppose F} locally order preserves <¢. Then by Lemma 3.3 we have
that hyop (F1) = 0. And if F2 locally preserves <, then htop (Ff) =0, thus

iop (F1)=0. S0 by BowT1] hiop (F) = hiop (F)+5up { hiop (Floory)) | =
acC 1

sug {htop (F‘ﬂ_l—l(a))}. But if Atop (F7) > 0 there is an ap € C such that
ac

htop <F|7r1_1(a0)) > 0. Thus by Theorem 1.3 ([Bar87]) Fs|q,x[o,1] is not

monotone. So by Theorem 2.1 no such near homeomorphism extension H
of hi o hgo F o (hyohg)™! exists. O
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