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We prove that a positive entropy map of the product of
a Cantor Set and an arc (which covers a homeomorphism)
cannot be “embedded” into a near homeomorphism of the 2-
disk. Thus a theorem of M. Brown cannot be used to embed
the induced shift map on the corresponding inverse limit space
into a 2-disk homeomorphism.

1. Introduction.

In 1990, M. Barge and J. Martin [BM90] proved that the shift map on the
inverse limit space ([0, 1], f), for any map f : [0, 1] → [0, 1], can be realized as
a global attractor in the plane. In 1960, M. Brown [Bro60] proved that the
inverse limit space of any near homeomorphism (Definition 1.2) of a compact
metric space is homeomorphic to the original space. M. Barge and J. Martin
prove that, for all such f , there exists an embedding h : [0, 1] → D2 such that
h◦f ◦h−1 can be extended to a near homeomorphism of the 2-disk, D2. They
then use M. Brown’s theorem to extend the induced shift homeomorphism
on h([0, 1]) to a homeomorphism of D2. With care in the construction of
the near homeomorphism of D2, the inverse limit space (h([0, 1]), h◦f ◦h−1)
becomes a global attractor.

The main goal of this paper is to show that analogous techniques for maps,
F : C×[0, 1] → C×[0, 1], where C is a Cantor set, F (x, y) = (F1(x), F2(x, y))
is a surjective map with positive topological entropy (Definition 1.4), and
F1 is a homeomorphism, do not work; no near homeomorphic extension of
h ◦ F ◦ h−1 to D2 exists for any embedding h : C × [0, 1] → D2 (Theorem
3.1). In our terminology, such F cannot be “embedded” into any 2-disk
homeomorphism (Definition 1.1). In the proof of Theorem 3.1 one first
assumes that h is a “tame” embedding (Definition 3.1). But in recent work,
R. Walker proves that all embeddings of C × [0, 1] into D2 are tame [Wal].

Our study of maps of C×[0, 1] and their embeddings has links to a central
problem in the dynamical systems of positive entropy homeomorphisms of
compact surfaces.

Does there exist a C1 positive entropy 2-disk diffeomorphism without shifts?
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In 1980, A. Katok [Kat80] proved that all C1+α, α > 0, positive entropy
diffeomorphisms of a compact surface, have transverse homoclinic points. So
some power of such a diffeomorphism restricts to a shift map of finite type.
The next year M. Rees announced a minimal positive entropy homeomor-
phism of the 2-torus [Ree81]. So her homeomorphism has no periodic orbits
thus no shifts. Though not in print, it appears that techniques M. Rees used
can be adapted to build a positive entropy 2-disk homeomorphism which has
a fixed point and no other periodic orbits. The C1 case remains open. In
1993, M. Barge and R. Walker built a chainable continuum which is the
inverse limit space of a map of a Cantor comb [BW93]. The map restricted
to each “tooth” was a tent map over an adding machine base map. The
induced shift homeomorphism has positive entropy but all periodic orbits
are period a power of 2. Thus no shifts are present. All chainable continua
can be embedded into the 2-disk [Bin62]. Although their Cantor comb map
can be embedded into a near homeomorphism of the 3-ball, it cannot be em-
bedded into a near homeomorphism of the 2-disk. (To prove this M. Barge
and R. Walker rely on properties of the adding machine base map.) So their
induced shift homeomorphism cannot be used to build a new Rees-type 2-
disk homeomorphism. By our Theorem 3.1, a much larger class of maps (all
positive entropy maps of C × [0, 1] which cover any homeomorphism) has
the same drawback.

In Section 2 we show that if F : C × [0, 1] → C × [0, 1] is a surjective
map such that F (x, y) = (F1(x), F2(x, y)), F1 is a homeomorphism and
F2(x0, ·) : [0, 1] → [0, 1] is nonmonotone (Definition 1.3) for some x0, then
there exists no embedding of F into a near homeomorphism (Definition of
the 2-disk). We will show this by assuming such a near homeomorphism
does exist and then obtaining a contradiction using a result of S. Schwartz
[Sch92] (Theorem 1.1) concerning nonmonotone maps.

Unless otherwise specified X, and Y are compact metric spaces. And π1

and π2 on X × Y are the first and second coordinate projection maps.

Definition 1.1. A map f : X → X can be embedded into the map F :
Y → Y if there exists a topological embedding h : X → Y such that
F |h(X) = h ◦ f ◦ h−1.

Definition 1.2. A map f : X → Y is called a near homeomorphism pro-
vided there exists a sequence {fk : X → Y }∞k=1 of homeomorphisms which
uniformly converge to f .

Definition 1.3. A map f : X → Y is monotone provided f−1(V ) is con-
nected, whenever V ⊂ Y is connected.

Theorem 1.1 (S. Schwarts [Sch92]). Suppose that X is a locally connected
compact metric space. If f : X → X is a near homeomorphism then f is
monotone.
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As mentioned, in Section 3 we show that if F : C × [0, 1] → C × [0, 1]
is a surjective map with positive topological entropy (Definition 1.4), which
is embedded in the 2-disk, then F cannot be extended to a near homeo-
morphism of the disk. The proof uses theorems of R. Bowen (Theorem 1.2)
[Bow71] and M. Barge (Theorem 1.3) [Bar87].

Definition 1.4 (Topological Entropy). Suppose that F : X × Y → X × Y
is a surjective map and has the form F (x, y) = (F1(x), F2(x, y)). Fix x0 and
let ε > 0. A set E ⊂ Y is (n, ε)–separated by F |π−1

1 (x0) if for all y0, y1 ∈ E,

y0 6= y1, d(π2F
k(x0, y0), π2F

k(x0, y1)) > ε for some k ∈ [0, n), where d is the
Y –metric. Since Y is compact and n < ∞, card E < ∞. Let the maximum
number of (n, ε)-separated orbits for each ε be

s(n, ε) = max
{

card E

∣∣∣∣ E ⊂ Y such that
E is (n, ε)− separated by F |π−1

1 (x0)

}
.

Now, let the growth rate of s(n, ε) (or ε-topological entropy) be

htop

(
F |π−1

1 (x0), ε
)

= lim sup
n→∞

log s(n, ε)
n

.

Lastly we let ε → 0 and define topological entropy for F |π−1
1 (x0).

htop

(
F |π−1

1 (x0)

)
= lim

ε→0
htop

(
F |π−1

1 (x0), ε
)

.

The topological entropy htop (F1) of the homeomorphism F1 is defined
similarly (see [Bow71]).

Theorem 1.2 (R. Bowen [Bow71]). If F : X × Y → X × Y has the form
F (x, y) = (F1(x), F2(x, y)) then

htop (F ) ≤ htop (F1) + sup
x∈X

{
htop

(
F |π−1

1 (x)

)}
.

If htop (F1) = 0 then htop (F ) = sup
x∈X

{
htop

(
F |π−1

1 (x)

)}
.

Theorem 1.3 (M. Barge [Bar87]). If F : X × [0, 1] → X × [0, 1] has the
form F (x, y) = (F1(x), F2(x, y)), F2(x, ·) : [0, 1] → [0, 1] is monotone for
each x and htop (F1) = 0, then htop (F ) = 0.

2. Nonmonotone Maps of the Cantor Set Cross the Interval.

2.1. Preliminaries. Let C ⊂ [0, 1] be a Cantor set. Let C × [0, 1] and
{α} × [0, 1] ⊂ R2 for α ∈ C. The goal of this section is to prove Theorem
2.1 to follow. But first some preliminaries.

2.1.0.1. Assume F : C × [0, 1] → C × [0, 1] is a surjective map that has the
form

F (α, y) = (F1(α), F2(α, y))
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where F1 : C → C is a homeomorphism. Furthermore, for a given α0 ∈ C,
F2(α0, y) = t(y) where t : [0, 1] → [0, 1] is a continuous nonmonotone map
(see Figure 1 for an example). Let λ0 = F1(α0).

1

0 1m M

b

a

τs1 s2

c

Figure 1. Example of a nonmonotone map.

It will be needed later, that because t is nonmonotone we can find a point
that has at least two points in the the pre-image that can be seperated by
disjoint epsilon balls. We introduce this idea at this point so that we can
use the notation developed here throughout.

2.1.0.2. Since t is nonmonotone and continuous, there is an a ∈ (0, 1) such
that t−1(a) is closed and not connected. Thus, there is an interval (m, M) ⊂
[0, 1] \ t−1(a) such that a = t(m) = t(M), and t([m,M ]) = [a, b] (or [b, a])
for some b 6= a. Without loss of generality we will assume that a < b. Let
τ ∈ t−1(b). By the intermediate value theorem, t([m,M ]) = [t(m), t(τ)].
Now choose c = 1

2 (a + b). Since t is continuous there are s1 ∈ (m, τ) and
s2 ∈ (τ,M) such that c = t(s1) = t(s2) (see Figure 1).

2.1.0.3. By the continuity of F , for any ε > 0 there is a δ1 = δ1(ε) > 0
such that F (x, y) ∈ Bε(λ0, t(y)) when d(α0, x) < δ1 and y ∈ [0, 1]. Suppose
K1 = K1(ε) ∈ N is such that 1

K1
< δ1.

Let D = {(x, y) ∈ R2|x2 + y2 ≤ 4}. Now let h0 : C × [0, 1] → D
be an arbitrary topological embedding. Then there is a homeomorphism
h1 : D → D such that (h1 ◦h0)(α0, y) = (α0, y) and (h1 ◦h0)(λ0, y) = (λ0, y)
for all y ∈ [0, 1]. So h1 “straightens out” h0(α0 × [0, 1]) and h0(λ0 × [0, 1])
in a strong sense. Notice that C × [0, 1] → D.

2.1.0.4. By the uniform continuity of h1 ◦ h0, for all ε > 0 there is a δ2 =
δ2(ε) > 0 such that for all y ∈ [0, 1], h1 ◦ h0(x, y) ∈ Bε(α0, y) and h1 ◦
h0(x′, y) ∈ Bε(λ0, y), for all (x, y) ∈ Bδ2(ε)(α0, y) and (x′, y) ∈ Bδ2(ε)(λ0, y).
Let K2 = K2(ε) ∈ N be such that 1

K2
< δ2.
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2.1.0.5. With a, b defined as in [2.1.0.2], let d̂ = min{a, 1 − b, |a− b|}. For
0 < ε0 < d̂

100 choose 0 < δ0 ≤ min
{
δ1(ε0), δ2(ε0), M−m

100

}
. So in particular

[2.1.0.3] and [2.1.0.4] are satisfied. Note that t([m,M ]) ⊂ [ε0, 1 − ε0]. Let
K0 ≥ max{K1(ε0),K2(ε0)} be such that 1

K0
< δ0. Since C is perfect, there

is a sequence {αk} ⊂ C such that αk → α0 as k → ∞, and αk × [0, 1] ⊂
Nδ0(α0 × [0, 1]), for all k > K0. Let λk = F1(αk). (Note that Nδ(S) is
a δ−neighborhood of S.) It follows that λk → λ0 as k → ∞ and λk ×
[0, 1] ⊂ Nε0(λ0 × [0, 1]) for all k > K0. For a possibly larger K0, also called
K0, and ok ∈ Bε0(λ0, c), k > K0, there exist q1(k) and q2(k) such that
{q1(k), q2(k)} ⊂ F−1 (ok), q1(k) ∈ Bδ0 (α0, s1) and q2(k) ∈ Bδ0 (α0, s2).

We now state our first theorem.

2.1.1. Nonmonotone Nonextension Theorem.

Theorem 2.1. Let F : C×[0, 1] → C×[0, 1] be a map of the form F (α, y) =
(F1(α), F2(α, y)) where F1 : C → C is a homeomorphism. Furthermore,
assume F2(α0, ·) : [0, 1] → [0, 1] is surjective but not monotone for some α0.
Then there exists no extension of h0 ◦ F ◦ h−1

0 to a near homeomorphism of
the disk D, for any topological embedding h0 : C × [0, 1] → D.

Proof. Assume h, K0, ε0, δ0, {αk}, {λk}, q1(k), and q2(k) are defined as in
[2.1.0.1-5]. Suppose that H0 : D → D is a near homeomorphism such
that H0|h0(C×[0,1]) = h0 ◦ F ◦ h−1

0 . And let H1 : D → D be given by
H1 = h1 ◦ H0 ◦ h−1

1 . Thus H1 is also a near homeomorphism. So the
diagram in Figure 2 commutes.

h0h0

h1h1

F

H0

H1

C × [0, 1]C × [0, 1]

DD

DD

??

-

-

??
-

Figure 2. Commuting Diagram.

2.1.1.1. Let Λ(α) = h1 ◦h0 (α× [0, 1]) for all α ∈ C. By [2.1.0.3] h1 ◦h0 is a
homeomorphism and if ({α}× [0, 1])

⋂
({λ}× [0, 1]) = ∅ (when α 6= λ), then

Λ(α)
⋂

Λ(λ) = ∅. Let `β be the horizontal line {y = β}. And let `α
β(k) =
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Λ(αk)
⋂

`β and `λ
β(k) = Λ(λk)

⋂
`β . Because h1 ◦ h0 (αk, 0) ∈ Bδ0(α0, 0),

h1 ◦ h0 (αk, 1) ∈ Bδ0(α0, 1), and Λ(αk) is connected, then `α
β(k) 6= ∅ and all

k ≥ K0 (see Figure 3 and [2.1.0.2]). Similarly `λ
β(k) 6= ∅, for all β ∈ [ε0, 1−ε0]

and k ≥ K0. Note that if p ∈ `λ
β(k) for given k ≥ K0 then p ∈ Bε0(λ0, β).

Λ(αk)Λ(α0)

ℓβ

ℓα
β(k)

Bδ0(α0, 0)

Bδ0(α0, 1)

Λ(λk)Λ(λ0)

ℓλ
β(k)

Bǫ0(λ0, 0)

Bǫ0(λ0, 1)

Figure 3. Intersection of Λ(αk) with `β .

Lemma 2.1 follows from the continuity of h1, h0, and π1.

Lemma 2.1. Choose pk ∈ `α
β(k) for each k. Then π1pk → α0 as k →∞.

Notice that π1(h1 ◦ h0)
(
αk,

1
2

)
6= α0 for sufficiently large k. So either

card
{

k

∣∣∣∣π1

(
h1 ◦ h0

(
αk,

1
2

))
> α0

}
= ∞

or

card
{

k

∣∣∣∣π1

(
h1 ◦ h0

(
αk,

1
2

))
< α0

}
= ∞.

2.1.1.2. So without loss of generality we may assume there exist distinct
{kn}∞n=1 such that kn →∞ as n →∞, and

π1

(
h1 ◦ h0

(
αkn ,

1
2

))
> α0.

2.1.1.3. For the sake of simplicity we denote αkn by αn, Λ(αkn) by Λ(αn),
Λ(λkn) by Λ(λn) and `kn

β by `n
β.
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Lemma 2.2. Let N0 be such that kn ≥ K0 for all n ≥ N0. Then

Λ(αn)
⋂ {(

x,
1
2

)∣∣∣∣ x < α0

}
= ∅.

Proof. Fix n ≥ N0 and assume there exists

p1 ∈ Λ(αn)
⋂ {(

x,
1
2

)∣∣∣∣ x < α0

}
,

and let p2 =
(
h1 ◦ h0

(
αkn , 1

2

))
. By [2.1.1.2] π1(p2) > 0. Let A be the arc in

Λ(αn) with end points p1 and p2. By [2.1.1.1], p1, p2 ∈ Bε0

(
α0,

1
2

)
. So by

[2.1.0.5],
d((h1 ◦ h0)−1(p1), (h1 ◦ h0)−1(p2)) < δ0.

Since Λ(αn)
⋂

Λ(α0) = ∅, then using a Jordan Curve argument, it follows

A
⋂
{(α0, y)|y > 1 or y < 0} 6= ∅.

Let p3 ∈ A
⋂
{(0, y)|y > 1 or y < 0}. So d(p1, p3) > 1

2 . But because p3 ∈ A,
either

π2 ◦ (h1 ◦ h0)−1(p1) < π2 ◦ (h1 ◦ h0)−1(p3) < π2 ◦ (h1 ◦ h0)−1(p2)

or

π2 ◦ (h1 ◦ h0)−1(p2) < π2 ◦ (h1 ◦ h0)−1(p3) < π2 ◦ (h1 ◦ h0)−1(p1).

In either case d((h1 ◦ h0)−1(p1), (h1 ◦ h0)−1(p3)) < δ0. And so d(p1, p3) < ε0
which is a contradiction. �

2.1.1.4. Assume n ≥ N0. Let gn : [0, 1] → Λ(αn) be the parameterization
of Λ(αn) defined by gn(β) = h1 ◦ h0 (αn, β). Using τ , m from [2.1.0.2]
Λ(αn)

⋂
`τ 6= ∅ and Λ(αn)

⋂
`m 6= ∅ (see Figure 4) so by Lemma [2.2]

and the connectivity of Λ(αn) there is a largest β, call it β−n , such that
gn(β−n ) ∈ `m. Let an = gn(β−n ) (see Figure 4). Similarly there is a smallest
β, call it β+

n , such that gn(β+
n ) ∈ `m. Let bn = gn(β+

n ).

2.1.1.5. If necessary, renumber the kn’s so that if kn < kn+1 then π1(an) >
π1(an+1). It follows by an argument similar to that of Lemma [2.2] that
π1(bn) > π1(bn+1). (Because h1 ◦h0 may have scrambled the C× [0, 1] order
in the first coordinate, it may be necessary to relabel the kn’s so that Λ(αkn)
to be “between” Λ(αkn−1) and Λ(αkn+1).)

Considering [2.1.1.5] and [2.1.1.2] and to simplify the notation assume

card
{

k|π1 (h1 ◦ h0)
(

αk,
1
2

)
> α0

}
= ∞

and π1(ak) > π1(ak+1) for all k.
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bn = gn(β+
n

)

an = gn(β−

n
)

ℓm

ℓτ

Λ(αn)

Λ(α0)

Figure 4. First and Last Intersections.

Using [2.1.1.4], for k ≥ N0 define the four curves I (k, m), I (k, τ), Jk−1,
and Jk+1 in the following manner (see Figure 5). Let I (k, m) be the line
segment in `m between ak+1 and ak−1 and I (k, τ) be the line segment in `τ

between bk+1 and bk−1. Let

Jk−1 =
{
gk−1(β)

∣∣β−k−1 ≤ β ≤ β+
k−1

}
, and

Jk+1 =
{
gk+1(β)

∣∣β−k+1 ≤ β ≤ β+
k+1

}
.

bk+1
bk−1

I (k, τ)

ak+1 ak−1

I (k, m)

Jk+1 Jk−1

Figure 5. The Boundary of Rk.

Lemma 2.3. I (k, τ)
⋃

Jk−1
⋃

I (k, m)
⋃

Jk+1 is a simple closed curve.

Proof. Since Λ(αk−1)
⋂

Λ(αk+1) = ∅ we have Jk−1
⋂

Jk+1 = ∅. By [2.1.1.1]
I (k,m)

⋂
I (k, τ) = ∅. And by [2.1.1.4] we have that

ak−1 = Jk−1

⋂
I (k, m) and ak+1 = Jk+1

⋂
I (k, m)



EXTENDING MAPS OF A CANTOR SET 377

and
bk−1 = Jk−1

⋂
I (k, τ) and bk+1 = Jk+1

⋂
I (k, τ) .

And so the lemma follows. �

Let Rk be the closed and bounded set with boundary

I (k, m)
⋃

Jk−1

⋃
I (k, τ)

⋃
Jk+1

(see Figure 5). Recall from [2.1.0.2] that s1 ∈ [m, τ ] and from [2.1.1.1] that
`α
s1

(k) = Λ(αk)
⋂

`s1 (see Figure 3).

Lemma 2.4. Rk
⋂

`α
s1

(k) 6= ∅.

Proof. Let γk be the arc
{
gk(β)|0 ≤ β ≤ β+

k

}
. Let Sk = Rk

⋂
π−1

2 [s1, τ ]
(see Figure 6). So ∂Sk ⊃ I (k, τ) and by [2.1.1.5] bk ∈ I (k, τ). But bk is
not an endpoint of I (k, τ) because the endpoints of I (k, τ) are bk−1 and
bk+1. And so there is an η > 0 such that if p ∈ Bη(bk) and π2(p) < τ then
p ∈ int Sk. Now, if q ∈ γk \ {bk} then π2(q) < 1

2 . And since γk connects
h1 ◦h0 (αk, 0) to bk, we have that (γk

⋂
Bη(bk))\{bk} 6= ∅. Thus there exists

p0 ∈ γk
⋂
Bη(bk)

⋂
intSk. Let Ak ⊂ γk be the arc with endpoints p0 and

h1 ◦ h0 (αk, 0) (see Figure 6).

ℓs1

ℓτ

Ak

Rk

⋂
ℓα
s1

(k)

Sk

Bη(bk)

ℓm

Λ(α0)

p0

Figure 6. The Arc Ak.

Because p0 ∈ intSk and h1 ◦ h0 (αk, 0) 6∈ Sk then Ak
⋂

∂Sk 6= ∅. Since
Ak

⋂
Λ(αk−1) = ∅, Ak

⋂
Λ(αk+1) = ∅, Ak

⋂
I (n, τ) = ∅ and `s1

⋂
Rk ⊂ ∂Sk,

we have that Ak
⋂

`s1

⋂
Rk 6= ∅, or Rk

⋂
`α
s1

(k) 6= ∅. �

2.1.1.6. Note that since `α
s1

(k)
⋂

∂Rk = ∅ then `α
s1

(k) ⊂ intRk.

Lemma 2.5.
[
Λ(αl)

⋂
H−1

1 (h1 ◦ h0 (λk, y))
]

= ∅ for k 6= l.
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Proof. Suppose that ρ ∈ Λ(αl)
⋂

H−1
1 (h1 ◦ h0 (λk, y)) for k 6= l. Then

H1(ρ) = h1 ◦ h0 (λk, y) But H1Λ(αl) = Λ(λl). Thus H1 (ρ) ∈ Λ(λl) So
h1 ◦ h0 (λk, y) ∈ Λ(αl) Or (λk, y) ∈ Cλl

. Which contradicts, [2.1.1.1] since
k 6= l. �

Proof of Theorem 2.1 continued. By Lemma [2.4] there exists p1(k) ∈
Rk

⋂
`α
s1

(k) for all k ≥ N0. By [2.1.0.5] (h1 ◦ h0)−1(p1(k)) ∈ Bδ0 (α0, s1).
Using [2.1.0.5], let ok = F ◦ (h1 ◦ h0)−1(p1(k)). So there exists {q1(k),
q2(k)} ⊂ F−1(ok) such that q1(k) ∈ Bδ0 (α0, s1) and q2(k) ∈ Bδ0 (α0, s2).
Choose q1(k) so that p1(k) = h1 ◦ h0(q1(k)). And let p2(k) = h1 ◦ h0(q2(k))
and rk = h1 ◦ h0(ok) (see Figure 7). Because H1 ◦ h1 ◦ h0 = h1 ◦ h0 ◦ F
then {p1(k), p2(k)} ∈ H−1

1 (rk). By the size of δ0 chosen in [2.1.0.5], p2(k) ∈
Bδ0 (α0, s2) 6⊂ Rk.

Recall that H0 and H1 are near homeomorphisms. Near homeomorphisms
are monotone on locally connected compact metric spaces ([Sch92]). Thus
pre-images of connected sets under H1 are connected. So H−1

1 (rk) is a
connected set which contains p2(k) 6∈ Rk and by [2.1.1.6] p1(k) ∈ intRk.
Then H−1

1 (rk)
⋂

∂Rk 6= ∅. By Lemma [2.5] either H−1
1 (rk)

⋂
I (k, τ) 6= ∅

or H−1
1 (rk)

⋂
I (k, m) 6= ∅. So there is an infinite sequence {ρkj

} such that
either ρkj

∈ I (k, τ)
⋂

H−1
1 (rkj

) or ρkj
∈ I (k, m)

⋂
H−1

1 (rkj
) for all j (see

Figure 7).

Λ(α0)

Λ(αk)

p1(k)

p2(k)

ρk

H−1

1
(rk)

Figure 7. Subsequence and Pre-image.

Now by Lemma [2.1] either ρkj
→ h1 ◦ h0 (α0, τ) or ρkj

→ h1 ◦ h0 (α0,m)
as j →∞. Since H1 is continuous for all j, either

H1ρkj
→ H1 ◦ h1 ◦ h0 (α0, τ) or H1ρkj

→ H1 ◦ h1 ◦ h0 (α0,m) .

Because H1 ◦ h1 ◦ h0 = h1 ◦ h0 ◦ F , then either

rkj
→ h1 ◦ h0 (λ0, t(τ)) or rkj

→ h1 ◦ h0 (λ0, t(m)) .
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Since h1 ◦ h0 is a homeomorphism either

okj
→ (λ0, b) or okj

→ (λ0, a)

which is a contradiction since {okj
} ⊂ Bε0 (λ0, c). �

3. Positive Entropy Maps of C × [0, 1].

3.1. Introduction. Let C ⊂ R be a Cantor set. In this chapter we use the
results of Chapter 2 to prove the following:

Theorem 3.1. Let F : C × [0, 1] → C × [0, 1] be a surjective map such
that F (a, y) = (F1(a), F2(a, y)), where F1 : C → C is a homeomorphism. If
htop (F ) > 0 then there exists no topological embedding h0 : C× [0, 1] → D ⊂
R2 such that h0 ◦ F ◦ h−1

0 extends to a near homeomorphism of the disk D.

Recall that π1 : C × [0, 1] → C is the projection map onto the first
coordinate. By work of R. Bowen [Bow71] we know that htop (F ) ≤
htop (F1) + sup

a∈C

{
htop

(
F |π−1

1 (a)

)}
. It has been shown by M. Barge and

R. Walker [BW93] that any near homeomorphism that extends h0 ◦ F ◦
h−1

0 to the disk must preserve a certain local order on the set of fibers
{h0 (a× [0, 1]) |a ∈ C }. But we will show that if htop (F1) > 0 no such local
order is preserved. So in fact htop (F1) = 0. Using [Bow71] and a result
of M. Barge [Bar87], if htop (F ) > 0 then for some a0 ∈ C, F2(a0, ·) is a
nonmonotone map. Thus by Theorem 2.1, h0 ◦ F ◦ h−1

0 cannot be extended
to a near homeomorphism of the disk.

3.2. Proof of Theorem 3.1.

Definition 3.1 (Tame Embedding). h0 : C × [0, 1] → D ⊂ R is a tame
embedding provided there is a homeomorphism h1 : D → D such that for all
a ∈ C, h1 ◦ h0 ({a} × [0, 1]) = ({a′} × [0, 1]) for some {a′}. If h0 is a tame
embedding, using a theorem of E. Moise [Moi77], we may further require
that h1 has the property: h1 ◦ h0({a}, i) = ({a′}, i) for all a and i = 0, 1.

For more information concerning tame embeddings see [Rus73] or
[Bin54].

3.2.1. Proof of Theorem 3.1. All topological embeddings of C × [0, 1]
into D2 are tame [Wal]. So it is enough to prove the theorem for all tame
embeddings, h0.

Let h1 be as in Definition 3.1. Denote by Λ the set h1 ◦ h0 (C × [0, 1])
and by Λ(a) the set h1 ◦ h0 (a× [0, 1]). Note that π1 (Λ(a)) = a′ for some
a′ ∈ R. Assume there is a near homeomorphism H : D → D such that on
C × I, h1 ◦ h0 ◦ F = H ◦ h1 ◦ h0. Before continuing with the proof, we stop
to define a local ordering on {Λ(a) |a ∈ C } and prove a lemma.
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3.2.2. Order Definitions and Lemmas. Here we show that H preserves
the local order of fibers as defined by M. Barge and R. Walker [BW93],
which we will write as <bw. And it will follow that F1 : C → C is a “local
order preserving homeomorphism.”

Note: Since h0 is tame one could use the order on {Λ(a)|a ∈ C} induced
by π1 in place of <bw. That is, Λ(a) < Λ(b) if π1Λ(a) < π1Λ(b). Although
h1-dependent, this order may be more natural than the <bw order, and is
locally equivalent to it. But in order to show that H preserves such a local
order on fibers, one must cycle through the definition of <bw in any case.

Barge-Walker order:

Definition 3.2. For a, b ∈ C suppose that γ− and γ+ are arcs in the plane
with the properties:

γ− has endpoints h1◦h0 (a, 0) and h1◦h0 (b, 0), and γ− is otherwise disjoint
from Λ(a)

⋃
Λ(b); γ+ has endpoints h1 ◦ h0 (a, 1) and h1 ◦ h0 (b, 1) and γ+ is

otherwise disjoint from Λ(a)
⋃

Λ(b); and(
γ−

⋃
γ+

) ⋂ (
[0, 2]×

{
1
2

})
= ∅.

Such arcs γ− and γ+ will be called admissible arcs joining Λ(a) and Λ(b).

Definition 3.3. Given a, b ∈ C, a 6= b, then Λ(a) <bw Λ(b) if there are
admissible arcs joining Λ(a) and Λ(b), as above, and the orientation γ− →
Λ(b) → γ+ → Λ(a) is positive (counterclockwise) on the simple closed curve
γ−

⋃
Λ(b)

⋃
γ+

⋃
Λ(a). (See Figure 8.)

γ+

γ
−

Λ(b)

Λ(a)

π1(Λ(b)) = T (b)π1(Λ(a)) = T (a)

{

y =
1

2

}

Figure 8. Barge-Walker Ordering on Cantor Fibers.

Definition 3.4. <X is a local ordering on X if for all x ∈ X there is a
δ > 0 such that <X is an order relation on Bδ(x). (X, <X) is a locally
ordered metric space.
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In [BW93] it is shown that if a and b are sufficiently close, a 6= b, then
such admissible arcs exist. So either Λ(a) <bw Λ(b) or Λ(b) <bw Λ(a).
Furthermore <bw is a local ordering on Λ = {Λ(a) |a ∈ C } where we use the
metric d(Λ(a),Λ(b)) = d(a, b).

Definition 3.5. Let a, b ∈ C. Then a <C b provided Λ(a) <bw Λ(b).

It follows from the proceeding remark and that h1 ◦ h0 is uniformly con-
tinuous, that <C is a local ordering on C.

Definition 3.6. Let (X, <X) and (Y, <Y ) be locally ordered metric spaces.
Let G : (X, <X) → (Y, <Y ) be a homeomorphism. G is a local order preserv-
ing homeomorphism, if there is a δ > 0 such that if x0, x1 ∈ X, |x0−x1| < δ,
and x0 <X x1, then G(x0) <Y G(x1).

Denote by [x, y] = {z ∈ C|x ≤C z ≤C y}. We next show <C on C is
R-like in the following sense.

Lemma 3.1. Given ε > 0 there is a δ > 0 such that if x, y ∈ C and
|x− y| < δ, then for all z ∈ [x, y], |x− z| < ε and |y − z| < ε.

Proof. Suppose that x, y, z ∈ C and x <C z <C y. By Definition 3.5 there
are admissible arcs γ+

1 , γ−1 , γ+
2 , and γ−2 such that Λ(z) → γ+

1 → Λ(x) → γ−1
and Λ(y) → γ+

2 → Λ(z) → γ−2 have positive orientation.

Sublemma 3.1. For ε > 0 there is a δ1 > 0 such that if

Λ(z)
⋂
Nδ1(Λ(x)) 6= ∅

then |x− z| < ε.

Proof. By the continuity of (h1 ◦ h0)−1, if ε > 0 there is a δ1 > 0 such that
if d(p, q) < δ1 where p, q ∈ Λ then d((h1 ◦ h0)−1(p), (h1 ◦ h0)−1(q)) < ε. So
if Λ(z)

⋂
Nδ1(Λ(x)) 6= ∅ there is p ∈ Λ(x), q ∈ Λ(z) such that d(p, q) < δ1.

Thus |x−z| = |π1((h1◦h0)−1(p))−π1((h1◦h0)−1(q))| ≤ d((h1◦h0)−1(p), (h1◦
h0)−1(q)) < ε. �

Choose δ1 > 0 smaller so that if

Λ(z)
⋂
Nδ1(Λ(x)) 6= ∅ and

Λ(z)
⋂
Nδ1(Λ(y)) 6= ∅

then |x− z| < ε and |y − z| < ε.
By the continuity of (h1 ◦ h0) there is δ > 0 such that if |x− y| < δ then

Λ(x) ⊂ Nδ1(Λ(y)) and Λ(y) ⊂ Nδ1(Λ(x)).
Suppose that Λ(z)

⋂
Nδ1(Λ(x))

⋂
Nδ1(Λ(y)) = ∅. So either π1Λ(z) <

π1Λ(x) or π1Λ(y) < π1Λ(z). Thus either Λ(z) → γ+
1 → Λ(x) → γ−1 has

negative orientation or Λ(z) → γ+
2 → Λ(y) → γ−2 has positive orientation

which contradicts x <C z <C y.
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Thus Λ(z)
⋂
Nδ1(Λ(x)) 6= ∅ and Λ(z)

⋂
Nδ1(Λ(y)) 6= ∅. So by the choice

of δ then |x− z| < ε and |y − z| < ε as desired. �

Lemma 3.2. Let f : (C,<C) → (C,<C) be a local order preserving home-
omorphism. Then there is a δ > 0 such that if |x − y| < δ then f([x, y]) =
[f(x), f(y)].

Proof. By Definition 3.6 there is an ε > 0 such that for any x, y ∈ C if
|x− y| < ε, and x <C y then f(x) <C f(y). By Lemma 3.1 there is a δ > 0
such that if x <C z <C y and |x − y| < δ then |x − z| < ε and |y − z| < ε.
Thus f(x) <C f(z) and f(z) <C f(y). �

The proof of the following lemma was suggested by M. Barge.

Lemma 3.3. Let f : (C,<) → (C,<) be a local order preserving homeo-
morphism. Then htop (f) = 0.

Proof. Recall that S ⊂ C is an (n, ε)-spanning set, for f if for all x ∈ C
there is a y ∈ S such that |fk(x) − fk(y)| < ε for all k = 0, 1, 2, . . . n − 1.

Then (htop)ε (f) = lim sup
n→∞

log card S(n, ε)
n

, and htop (f) = lim
ε→0

(htop)ε (f).

Choose δ as in Lemma 3.2 and suppose that S ⊂ C is an (n, ε)-spanning
set where 0 < ε ≤ δ (δ from the lemma). Let X be a finite set of C that is
ε-dense, let N = card X. Before proceeding with the proof of Lemma 3.3
we prove the following sublemma.

Sublemma 3.2. S
⋃

f−n(X) is an (n + 1, ε)-spanning set.

Proof. Let x ∈ C. Suppose that y ∈ S is such that |fk(x) − fk(y)| < ε for
k = 0, 1, 2, . . . n − 1. There is a z ∈ X such that either z ∈ [fn(x), fn(y)]
or z ∈ [fn(y), fn(x)], and such that |fn(x) − z| < ε. Then we have that
f−n(z) ∈ S

⋃
f−n(X) and z satisfies |fk(x)− fk(z)| < ε for k = 0, 1, 2, . . . n

as desired. �

Continuing with proof of Lemma 3.3, it follows from Sublemma 3.2 that
there exists a constant K > 0 such that for all n, card S(n.ε) ≤ K + nN .
Thus,

htop (f) = lim
ε→0

(htop)ε (f)

= lim
ε→0

lim sup
n→∞

log card S(n, ε)
n

= lim
ε→0

lim sup
n→∞

log(K + nN)
n

= 0.

�

Lemma 3.4. Either H or H2 locally preserves <bw on {Λ(a)|a ∈ C}.
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Proof. By Theorem 2.1, H|Λ(c) is monotone for all c ∈ C. Fix a0 ∈ C and
assume that h1 ◦ h0({a} × {i}) ⊂ `i and H ◦ h1 ◦ h0({a0} × {i}) ⊂ `i for
i = 0 or 1. (The other cases are similar.) For all a 6= a0 there exists an
admissible arc, γ−a linking h1 ◦ h0({a0} × {0}) to h1 ◦ h0({a} × {0}) and an
admissible arc, γ+

a linking h1 ◦ h0({a0} × {1}) to h1 ◦ h0({a} × {1}). Now
H is monotone on the simple closed curve Γ = Λ(a0)

⋃
γ−a

⋃
Λ(a)

⋃
γ+

a .
Thus H can be approximated by a homeomorphism H ′ : D → D such that
H ′Λ(a0) = H(Λ(a0)), H ′Λ(a) = H(Λ(a)), Hγ−a = H(γ−a ), and Hγ+

a =
H(γ+

a ). So the orientation of H(Γ) is identical to the orientation of H ′(Γ).
For a sufficiently close to a0 H ′ (or (H ′)2) preserves <bw between Λ(a0) and
Λ(a) [BW93]. Thus H (or (H)2) does so as well. �

Proof of Theorem 3.1 continued. We now complete the proof of Theorem 3.1.
First suppose that F1 and F 2

1 do not locally preserve <C . Then by Definition
3.5 H and H2 cannot locally preserve <bw on the fibers {Λ(a)| a ∈ C},
contradicting Lemma 3.4.

Next suppose F1 locally order preserves <C . Then by Lemma 3.3 we have
that htop (F1) = 0. And if F 2

1 locally preserves <C , then htop

(
F 2

1

)
= 0, thus

htop (F1)=0. So by [Bow71] htop (F ) = htop (F1)+sup
a∈C

{
htop

(
F |π−1

1 (a)

)}
=

sup
a∈C

{
htop

(
F |π−1

1 (a)

)}
. But if htop (F ) > 0 there is an a0 ∈ C such that

htop

(
F |π−1

1 (a0)

)
> 0. Thus by Theorem 1.3 ([Bar87]) F2|a0×[0,1] is not

monotone. So by Theorem 2.1 no such near homeomorphism extension H
of h1 ◦ h0 ◦ F ◦ (h1 ◦ h0)−1 exists. �
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