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This paper shows that the highest weights of the K-types
of any irreducible admissible representation of SU(1, n) are
determined by certain restriction maps from u to u ∩ k coho-
mology. In particular, the image of these maps determines a
set of points in a Cartan subalgebra. It is proved that the
highest weights of the K-types are given by intersecting a
translate of the root lattice with the closed convex hull of the
points determined by the restriction maps.

1. Introduction.

A basic idea often employed in the study of representations of real reductive
Lie groups is the notion of a K-type. In particular, if G is a real reductive
Lie group, K its maximally compact subgroup, and X an admissible repre-
sentation of G, then the representations of K appearing in X are called the
K-types of X. The point is that compact groups are well understood and
provide a powerful tool in the analysis of noncompact groups. The classical
application of these ideas is Bargmann’s description in [1] of the represen-
tations of SL(2, R) based on the study on its SO(2)-types (see also [4], [2],
[3], and especially [6] for an extensive list).

In many cases formulas for the K-types are known. For instance Blat-
tner’s formula ([5]) provides a wonderfully explicit description of the K-types
of the discrete series (see [8] for a generalization). Unfortunately, even in
these cases the formulas are combinatorially complex and it is often hard to
determine whether a particular representation is a K-type.

A different approach, suggested by D. Vogan, is followed in [13]. There the
object of study is the closed convex hull of the set of highest weights of the K-
types. In the case of finite dimensional representations when G is SU(1, n)
or SO(1, n), an algebraic method is developed for finding the “edges” of this
closed convex hull. The point is that knowledge of just the edges is enough
to reconstruct the whole closed convex hull. This already provides fairly
sharp control of which representations can be K-types. Moreover, it can be
seen in [13] that intersecting a translate of the root lattice with the closed
convex hull recovers all the K-types.
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Let X be an irreducible admissible representation of G, write g for its
complexified Lie algebra, and choose a θ-stable parabolic subalgebra q =
l + u of g. The main algebraic tool used to construct the edges in [13] is a
restriction map on cohomology

τ : Hb(u, X) → Hb(u ∩ k, X).

In a sense that is made precise, it is shown there that the image of τ (as
q varies) determines all the edges (not lying in a Weyl chamber wall of K)
and therefore determines all the K-types.

This paper generalizes [13]. The main result is Theorem 9. It says that
the edges of the closed convex hull of the set of K-types of any irreducible
admissible representation of G = SU(1, n) are completely determined by the
image of τ (in fact, only two parabolics are needed). Corollary 3 completes
the circle by showing that all K-types may be recovered from this closed
convex hull by intersecting it with a translate of the root lattice of K. All
notation necessary to understand the precise result is contained in Section
6.

The layout of the paper is as follows: Section 2 sets up the notation,
Section 3 lists the K-types of the induced representations of G, Section 4
lists the infinitesimal characters and a reducibility criterion, Section 5 gives
the K-types of all irreducible representations of G, and Section 6 constructs
the K-types in terms of the image of τ .

2. Notation.

Let G = SU(1, n), n > 1, and write K ∼= U(n) for its maximally compact
subgroup embedded into G as

K =
{(

x
X

)
| x ∈ U(1), X ∈ U(n), xdet(X) = 1

}
.

Let g0 = su(1, n) be the Lie algebra of G and write g for its complexification.
This convention will be followed throughout the paper. For example, k0 is
the Lie algebra of K, isomorphic to u(n), and k is its complexification. Also
write θ for the standard Cartan involution and g = k+p for the corresponding
Cartan decomposition.

Let T be the Cartan subgroup of K (and G) consisting of all diagonal
matrices in G. If x = (x1, . . . xm) ∈ Rm, define its trace by tr(x) = x1 +
. . . xm. With this notation and the identification of it∗0 with it0 via the
standard dot product, the set of analytically integral weights on t is

T̂ =
{

(µ0, µ1, . . . µn) ∈
(

1
n + 1

Z
)n+1

| tr(µ) = 0,

µi − µj ∈ Z for 0 ≤ i < j ≤ n

}
.
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Viewing T as a Cartan subgroup of K, we say µ ∈ T̂ is positive and write
µ ∈ T̂+ if µ1 ≥ µ2 ≥ . . . µn. By taking highest weights, T̂+ parameterizes
the irreducible representations of K. We also write WK for the Weyl group
of K and WG for the Weyl group of G with respect to it0. WK acts on it0
as the set of all permutations of the last n coordinates and WG acts on it0
as the set of all permutations.

Let A be the subalgebra of G defined by exp(a0) where a0 ⊆ p is the
subalgebra given by

a0 =

aν ≡

 0 ν
. . .

ν 0

 | ν ∈ R

 .

By conjugation, we may pull back the standard trace form on the diagonal
matrices to a so that aν1 · aν2 = 2ν1ν2. We use this to identify a and a∗. We
further identify C with a by mapping z ∈ C to az ∈ a. By the identification
of a and a∗, z acts on a by z · aν = 2zν.

Let Σ = Σ(g, a) be the restricted root system so Σ = {±1
2 ,±1} with mul-

tiplicities 2(n − 1) and 1, respectively. Set Σ+ = {1
2 , 1} and let P be the

corresponding parabolic subgroup with P = MAN its Langlands decompo-
sition. In particular,

M =


 x

X
x

 | x ∈ U(1), X ∈ U(n− 1), x2 det(X) = 1


and is a double cover of U(n− 1).

Let S be the Cartan subgroup of M consisting of all diagonal matrices in
M and write H = SA as a Cartan subgroup of G. The set of analytically
integral weights on S is

Ŝ =
{

(x0, x1, . . . xn) ∈ Rn+1 | x0 = xn, tr(x) = 0, x0 − x1 ∈
1
2

Z,

xi − xj ∈ Z for 1 ≤ i < j ≤ n− 1
}

=

{
(x0, x1, . . . xn) | x1 ∈

1
n + 1

Z, xi − xj ∈ Z for 1 ≤ i < j ≤ n− 1,

x0 = xn = −1
2

n−1∑
j=1

xj

}
.

We say x ∈ Ŝ is positive and write x ∈ Ŝ+ if x1 ≥ x2 ≥ . . . xn−1. By taking
highest weights, Ŝ+ parameterizes the irreducible representations of M .
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3. K-types of induced modules.

For µ ∈ T̂ , let V K
µ be the irreducible representation of K with extremal

weight µ. Use similar notation for irreducible representations of M . We
also write V K

µ |M to signify restriction to M . Since the branching law for
restriction from U(n) to U(n−1) is well known ([14]), it is easy to determine
how restriction works from K to M :

Theorem 1. Let µ = (µ0, µ1, . . . µn) ∈ T̂+. Then

V K
µ |M =

⊕
x∈Φµ

V M
x

where

Φµ = {(x0, x1, . . . xn) | x0 = xn, tr(x) = 0, xi − µ0 ∈ Z for 1 ≤ i ≤ n− 1,

µ1 ≥ x1 ≥ µ2 ≥ x2 ≥ . . . µn−1 ≥ xn−1 ≥ µn}.

By Frobenius reciprocity, we then have

Corollary 1. Let x = (x0, x1, . . . xn) ∈ Ŝ+. Then

IndK
M (V M

x ) =
⊕
µ∈Φx

V K
µ ,

where

Φx = {(µ0, µ1, . . . µn) | tr(µ) = 0, µi − x1 ∈ Z for 0 ≤ i ≤ n,

µ1 ≥ x1 ≥ µ2 ≥ x2 ≥ . . . µn−1 ≥ xn−1 ≥ µn}.

For Langlands parameters x ∈ Ŝ and ν ∈ a∗, write I(x, ν) for the nor-
malized induced module IndG

P (V M
x ⊗ eν). Since I(x, ν)|K ∼= IndK

M (V M
x ),

Corollary 1 describes the K-types of I(x, ν). If Re(ν) > 0, write J(x, ν) for
the unique irreducible Langlands quotient of I(x, ν).

4. Character Equalities.

For x ∈ Ŝ+ and ν ∈ C, write λ for the infinitesimal character x + ρM + ν of
I(x, ν). After conjugating h to t, we may take λ ∈ t as

λ =
(
x0 + ν, x1 +

n

2
− 1, x2 +

n

2
− 2, . . . xn−1 −

n

2
+ 1, xn − ν

)
.(4.1)

We say λ is nonsingular if no two coordinates are the same.
Using the action of the Weyl group, it is straightforward to write down

all induced modules with the same infinitesimal character. The following
notation simplifies the results.
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Definition 1. Let s1 : Rn+1 × C → Rn+1 by s1(x, v) = x̂ where

x̂i =

 x0 + ν − n
2 if i = 0

xi if 1 ≤ i ≤ n− 1
xn − ν + n

2 if i = n.

For each a, b ∈ Z with 0 ≤ a < b ≤ n, define s2,a,b : Rn+1→ Rn+1 × C by
s2,a,b(x̂) = (x′, ν ′) where

x′i =


1
2(x̂a + x̂b − a + n− b) if i = 0, n
x̂i−1 + 1 if 1 ≤ i ≤ a
x̂i if a + 1 ≤ i ≤ b− 1
x̂i+1 − 1 if b ≤ i ≤ n− 1,

ν ′ =
1
2
(x̂a − x̂b − a + b)

and define sa,b : Rn+1×C → Rn+1×C by the composition s2,a,b◦s1. It is easy
to verify that the inverse, s−1

a,b, is determined by defining s−1
2,a,b(y

′, w′) = ŷ

where

ŷi =


y′i+1 − 1 if 0 ≤ i ≤ a− 1
y′0 + w′ − n

2 + a if i = a
y′i if a + 1 ≤ i ≤ b− 1
y′n − w′ + n

2 + b− n if i = b
y′i−1 + 1 if b + 1 ≤ i ≤ n

and defining s−1
1 (ŷ) = (y, w) where

w =
1
2
(ŷ0 − ŷn + n),

yi =

 ŷ0 − w + n
2 if i = 0

ŷi if 1 ≤ i ≤ n− 1
ŷn + w − n

2 if i = n.

Definition 2. For x ∈ Ŝ+ and ν ∈ C, define λ = λ(x, ν) to be

λ =
(
x0 + ν, x1 +

n

2
− 1, x2 +

n

2
− 2, . . . xn−1 −

n

2
+ 1, xn − ν

)
.

Observe that

λ1 > λ2 > . . . λn−1.

If ν ∈ R≥0, define c, d ∈ Z, 0 ≤ c < d ≤ n, so that λc > λ0 ≥ λc+1 and
λd−1 ≥ λn > λd. Define

(x̃, ν̃) = s−1
c,d(x, ν).

Observe that if λ̃ = λ(x̃, ν̃), then

λ̃0 ≥ λ̃1 > λ̃2 > . . . λ̃n−1 ≥ λ̃n.
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We say that ν ∈ C is non-negative if either Re(ν )̇ > 0 or both Re(ν) = 0
and Im (ν) ≥ 0. Since it is easy to see that I(x, ν) and I(x,−ν) have the
same infinitesimal character for x ∈ Ŝ+ and ν ∈ C, we may assume in the
theorem below that ν, ν ′ are non-negative without loss of generality. We will
use the notation from Definitions 1 and 2 without further comment. It is
then easy to check that:

Theorem 2. Fix x, x′ ∈ Ŝ+ and ν, ν ′ ∈ C both non-negative. If λ0−λ1 /∈ Z,
then I(x, ν) and I(x′, ν ′) have the same infinitesimal character if and only
if x = x′ and ν = ν ′. If λ0 − λ1 ∈ Z, then I(x, ν) and I(x′, ν ′) have the
same infinitesimal character if and only if (x′, ν ′) = sa,b(x̃, ν̃) for some a, b
with 0 ≤ a < b ≤ n.

Using Theorem 2, the Subrepresentation theorem, and the Langland’s
classification, it is easy to identify almost all the induced modules I(x, ν)
that are irreducible. The calculations later in this paper or a few R-group
calculations suffice to clear up the remaining ambiguities. But since this is
known (Kraljevic, [11], Proposition 1, §3 from [12], Theorems 7.5 and 8.7)
and not so important for the purpose of this paper, we simply state the
result.

Theorem 3. For x ∈ Ŝ+ and ν ∈ C, let λ be the character λ(x, ν). Then
I(x, ν) is reducible if and only if λ0 − λ1 ∈ Z and either λ0 − λc+1 6= 0 or
λ0 − λd−1 6= 0.

Note that reducibility always implies ν ∈ 1
2Z.

5. K-types of Langlands quotients.

In this section we record the K-types of each irreducible representation of
G. The Langland’s classification says that every irreducible representation
is a discrete series representation, limit of discrete series representation, an
irreducible tempered representation of the form I(x, iν) with x ∈ Ŝ+ and
ν ∈ R≥0, or one of the J(x, ν) with x ∈ Ŝ+ and ν ∈ C with Re(ν) > 0.
Hence Corollary 1 and Theorem 3 yield the K-types of most irreducible
representations. The only ones yet to be determined are the discrete series,
limit of discrete series, and the irreducible quotients J(x, ν) in the cases
where I(x, ν) is reducible.

We begin by studying the reducible I(x, ν) with nonsingular character.
They may be parameterized as follows. Fix λ with λ0 > λ1 > . . . λn and
λi − λj ∈ Z, 0 ≤ i < j ≤ n. Choose the unique x ∈ Ŝ+ and ν ∈ 1

2Z>0 so
that λ = λ(x, ν). Write

Ia,b(λ) = I(sa,b(x, ν))

and

Ja,b(λ) = J(sa,b(x, ν))
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for a, b ∈ Z with 0 ≤ a < b ≤ n. In particular, I0,n(λ) = I(x, ν). By Section
4, the set of all Ia,b(λ) encompass the set of all reducible principal series
representations (Re(ν) > 0) with nonsingular character.

The set of discrete series representations of G may be parameterized as
follows. Let ωa ∈ WG, 0 ≤ a ≤ n, be defined by

ωa(t0, t1, . . . tn) = (ta, t0, t1 . . . ta−1, ta+1, . . . tn).

For each λ from the previous paragraph, write

Ja,a(λ)

for the discrete series representation with infinitesimal character ωaλ associ-
ated to the G chamber determined by ωaλ. The set of all Ja,a(λ) encompass
all discrete series representations.. Define Λa to be the highest weight of its
lowest K-type. It is easy to verify that

(Λa)i =

 x̂a + n− 2a if i = 0
x̂i−1 + 1 if 1 ≤ i ≤ a
x̂i − 1 if a + 1 ≤ i ≤ n

(5.1)

and that the K-types of Ja,a(λ) are contained in the cone Λa + Ca where

Ca = {(t0, t1, . . . tn) | tr(t) = 0, t1, . . . ta ∈ R≥0, ta+1, . . . tn ∈ R≤0}.(5.2)

Using Corollary 1, it easy to explicitly write the K-types for each Ia,b(λ)
and to check the following.

Corollary 2. Fix λ with λ0 > λ1 > . . . λn and λi − λj ∈ Z, 0 ≤ i < j ≤ n.
Let a, b ∈ Z with 0 ≤ a < b ≤ n. The K-types of Ia,b(λ) occur with
multiplicity one. Ia,b(λ) and Ia′,b′(λ) have K-types in common if and only
if (a′, b′) ∈ {(a + ε1, b + ε2) | ε1, ε2 ∈ {0,±1}, 0 ≤ a′ < b′ ≤ n}.

In the case n = 2, using only the Langlands classification, the information
about K-types already determined, and a basic embedding result on discrete
series ([9]), it is possible to give the semisimplification of each Ia,b(λ) and to
deduce the K-types of each Ja,b(λ). However, things become too complicated
for this line of reasoning to be sufficient for larger n. Thus we use the
following well known description of the composition series of Ia,b(λ) (see
[11] Proposition 3, §7, [12] Theorem 7.5, [15]).

Theorem 4. Fix λ with λ0 > λ1 > . . . λn and λi − λj ∈ Z, 0 ≤ i < j ≤ n.
Let a, b ∈ Z with 0 ≤ a < b ≤ n. The socle filtration of Ia,b(λ) is

Ja,b(λ)
� �

Ja,b−1(λ) Ja+1,b(λ)
� �

Ja+1,b−1(λ)

where the bottom row does not occur if a + 1 = b.
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Combining this theorem with our knowledge of the K-types allows us to
prove:

Lemma 1. Fix λ with λ0 > λ1 > . . . λn and λi − λj ∈ Z, 0 ≤ i < j ≤ n.
Let 0 ≤ a ≤ b ≤ n. Then Ja,b(λ) and Ja′,b′(λ) have a K-type in common if
and only if a = a′ and b = b′.

Proof. Corollary 1 and Equations 5.1 to 5.2 imply that if either a and a′ or
b and b′ differ by more than one, then they have no K-types in common. On
the other hand, if either differs by one, then Theorem 4 allows us to embed
Ja,b and Ja′,b′ into some Ia′′,b′′ and Ia′′′,b′′′ where either a′′ and a′′′ or b′′ and
b′′′ differ by more than one so that Corollary 1 again says that they have no
K-types in common. �

This allows us to determine the K-types for each Ja,b(λ) (which includes
the discrete series).

Theorem 5. Fix λ with λ0 > λ1 > . . . λn and λi − λj ∈ Z, 0 ≤ i < j ≤ n.
Let a, b ∈ Z with 0 ≤ a ≤ b ≤ n. The K-types of Ja,b(λ) appear with
multiplicity one. Choose the unique x ∈ Ŝ+ and ν ∈ 1

2Z>0 such that λ =
λ(x, ν). The highest weights of the K-types of Ja,b(λ) are

{(µ0, µ1, . . . µn) | tr(µ) = 0, µi − x1 ∈ Z for 0 ≤ i ≤ n,

µ1 ≥ x̂0 + 1 ≥ . . . µa ≥ x̂a−1 + 1 > x̂a ≥ µa+1 ≥ x̂a+1 ≥ . . .

≥ µb ≥ x̂b > x̂b+1 − 1 ≥ µb+1 ≥ x̂b+2 − 1 ≥ . . . µn−1 ≥ x̂n − 1 ≥ µn}.
This notation includes the natural collapsing of certain µ. For instance, if
a = b the above inequalities reduce to

µ1 ≥ x̂0 + 1 ≥ . . . µa ≥ x̂a−1 + 1 > x̂a

x̂a > x̂a+1 − 1 ≥ µa+1 ≥ x̂a+2 − 1 ≥ . . . µn−1 ≥ x̂n − 1 ≥ µ.

Proof. This follows using Lemma 1, Theorem 4, and Corollary 1. For in-
stance, the K-types of Ja,b for 0 < a ≤ b < n are the K-types that occur in
both Ia−1,b and Ia,b+1. The other cases are handled similarly. �

We turn our attention to the reducible I(x, ν) with singular character.
They may be parameterized as follows. Fix λ with λ0 > λ1 > . . . λc =
λc+1 > . . . λn, 0 ≤ c ≤ n − 1, and λi − λj ∈ Z, 0 ≤ i < j ≤ n. Choose the
unique x ∈ Rn+1 and ν ∈ 1

2Z>0 so that λ = λ(x, ν). Write

I−a,c+1(λ) = I(sa,c+1(x, ν))

J−a,c+1(λ) = J(sa,c+1(x, ν))

for each 0 ≤ a < c and

I+
c,b(λ) = I(sc,b(x, ν))

J+
c,b(λ) = J(sc,b(x, ν))
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for each c + 1 < b ≤ n.
The set of discrete series representations of G may be parameterized as

follows. Continue with the same λ from the previous paragraph and recall
the elements ωa ∈ WG from the discussion of the discrete series. Write

J−c,c+1(λ)

for the limit of discrete series representation with infinitesimal character
λ corresponding to the chamber determined by ωc. It is immediate that
Equation 5.1 (with a = c) gives the lowest K-type and that Equation 5.2
describes a cone containing all of its K-types. Similarly write

J+
c,c+1(λ)

for the limit of discrete series representation with infinitesimal character λ
corresponding to the chamber determined by ωc+1. It is immediate that
Equations 5.1 and 5.2 (with a = c + 1) describe its K-types. The set of all
J±c,c+1(λ) encompass all the limits of discrete series. Moreover, it is possible
to check that I(sc,c+1(x, ν)) (notice sc,c+1(ν) = 0) splits as a direct sum of
J−c,c+1(λ)

⊕
J+

c,c+1(λ).
The composition series of I(x, ν) is also well know in the singular setting

(see [11] Proposition 3, §7, [12] Theorem 7.5) and closely parallels Theorem
4.

Theorem 6. Fix λ with λ0 > λ1 > . . . λc = λc+1 > . . . λn, 0 ≤ c ≤ n − 1,
and λi − λj ∈ Z, 0 ≤ i < j ≤ n. For 0 ≤ a < c, the socle filtration of
I−a,c+1(λ) is

J−a,c+1(λ)
�

J−a+1,c+1(λ).

For c + 1 < b ≤ n, the socle filtration of I+
c,b(λ) is

J+
c,b(λ)

�
J+

c,b−1(λ).

As in Theorem 5, Theorem 6 allows us to immediately determine the K-
types for each J−a,c+1(λ) and J+

c,b(λ) (which includes the limits of discrete
series).

Theorem 7. Fix λ with λ0 > λ1 > . . . λc = λc+1 > . . . λn, 0 ≤ c ≤ n − 1,
and λi − λj ∈ Z, 0 ≤ i < j ≤ n. Choose the unique x ∈ Rn+1 and ν ∈ 1

2Z>0
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so that λ = λ(x, ν). For 0 ≤ a ≤ c, the K-types of J−a,c+1(λ) are

{(µ0, µ1, . . . µn) | tr(µ) = 0, µi − x1 ∈ Z for 0 ≤ i ≤ n,

µ1 ≥ x̂0 + 1 ≥ . . . µa ≥ x̂a−1 + 1 > x̂a ≥ µa+1 ≥ x̂a+1 ≥
. . . µc ≥ x̂c ≥ µc+1 ≥ x̂c+2 − 1 ≥ . . . µn−1 ≥ x̂n − 1 ≥ µn}.

For c + 1 ≤ b ≤ n, the K-types of J+
c,b(λ) are

{(µ0, µ1, . . . µn) | tr(µ) = 0, µi − x1 ∈ Z for 0 ≤ i ≤ n,

µ1 ≥ x̂0 + 1 ≥ . . . µc ≥ x̂c−1 + 1 ≥ µc+1 ≥ x̂c+1 ≥ . . .

µb ≥ x̂b > x̂b+1 − 1 ≥ µb+1 ≥ x̂b+2 − 1 ≥ . . . µn−1 ≥ x̂n − 1 ≥ µn}.
Corollary 1 and Theorems 5 and 7 give the K-types for all irreducible

representations of G.

6. Restriction of Cohomology.

We begin this section by recalling some notation from [13].

Definition 3. Fix a (g,K) module X and a θ-stable parabolic subalgebra
q = l+ u of g where l is the Levi component and u is the nilradical of q. Let
τ be the map on cohomology

τ : Hb(u, X) → Hb(u ∩ k, X)

induced by restricting Hom(
∧b u, X) → Hom(

∧b u ∩ k, X).

Write ∆+(k, t) for the positive roots of k corresponding to the choice of
T̂+ and write ρK for the half sum these roots.

Definition 4. Fix a (g,K) module X and a θ-stable parabolic subalgebra
q = l + u of g. Let ν be the highest weight of an L ∩ K representation
appearing in Hb(u∩ k, X) and choose w ∈ WK so that w(ν +ρK) is positive.
Define

νK = w(ν + ρK)− ρK .

By Kostant’s Borel-Weil theorem ([10]), V K
νK

appears in X|K . We say that
νK is the associated K-type to the L ∩K-type ν.

Definition 5. Fix a (g,K) module X. Let C be the closed convex hull in it∗0
of the set of highest weights of the K-types appearing in X. Given µ ∈ T̂+ a
K-type of X, we say that µ lies on the geometric edge of the set of K-types
of X if it lies on the boundary of C as a subset of it∗0.

It is hoped that the associated K-types to the L ∩ K-types appearing
in the image of τ describe the K-types lying on geometrical edges (as long
the edge is not completely contained in a Weyl chamber wall of K). Thus
it is hoped that knowledge of the image of τ completely determines C and
therefore goes a long way towards describing all the K-types.
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Definition 6. Fix a (g,K) module, X. If µ ∈ T̂+, the multiplicity of µ in
X, m(µ), is the multiplicity of V K

µ in X|K . Extend this definition as follows.
For µ ∈ T̂ with µ + ρK singular, define me(µ) = 0. For µ ∈ T̂ with µ + ρK

nonsingular, there exists a unique w ∈ WK so that w(µ + ρK) − ρK ∈ T̂+.
Define

me(µ) = (−1)l(w)m(w(µ + ρK)− ρK)

where l(w) is the length of w in WK .

If b is any Lie algebra and b′ is a toral subalgebra, write ∆(b, b′) for the
set of roots of b with respect to b′.

Definition 7. Fix a (g,K) module X and a θ-stable parabolic subalgebra
q = l + u of g. Choose any w ∈ WK so that

w∆(u ∩ k, t) ⊆ ∆+(k, t)

and write

m = min{dim(u ∩ p), l(w) + 1}.

Given a K-type µ ∈ T̂ of X, we say that µ lies on an algebraic q-edge of the
set of K-types if

me(µ + 2ρA) = 0

for every nonempty collection A consisting of elements in ∆(u∩p, t) of order
at most m (here 2ρA is the sum of the roots in A).

Theorem 8. Fix a (g,K) module X and a θ-stable parabolic subalgebra
q = l + u of g. If µ ∈ T̂ is a K-type of X lying on an algebraic q-edge, then
there is another θ-stable parabolic and an L ∩ K-type ν in the image of τ
whose associated K-type is µ.

Proof. By Theorem 3.4 in [13] (using the notation in Definition 7 above),

τ : H l(w)(wu, X) → H l(w)(wu ∩ k, X)

is surjective on the L∩K-types ν = w(µ+ρK)−ρK . Choosing w of minimal
length, we may assume that ν appears in H l(w)(wu ∩ k, X) (by Lemma 2.2
in [13]) and therefore that ν appears in the image of τ . But since νK = µ,
we are done. �

We now apply Theorem 8 to the irreducible representations of G to show
that the geometric edge can be constructed from the image of τ .

Theorem 9. Let X be an irreducible representation of G = SU(1, n). Then
any K-type of X lying on a geometric edge is the associated K-type to an
L ∩ K-type lying in the image of τ : H∗(u, X) → H∗(u ∩ k, X) for some
θ-stable parabolic subalgebra q = l + u of g.
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Proof. The idea of the proof is to use the explicit description of K-types
(Corollary 1 and Theorems 5, 7, and 3) and to show that every K-type
of X lying on a geometric edge lies on an algebraic q-edge for some θ-
stable parabolic subalgebra q = l + u of g. Theorem 8 then finishes the
proof. Since this is merely a matter of coming up with q and checking the
appropriate definitions, we only give the details in the case of X = Ja,b(λ)
with λ0 > λ1 > . . . λn, λi − λj ∈ Z for 0 ≤ i < j ≤ n, and a, b ∈ Z
with 0 ≤ a ≤ b ≤ n. The argument in the other cases is identical. Let
µ ∈ T̂+. Then µ is a K-type of Ja,b(λ) if and only if it satisfies the integrality
condition in Theorem 5 and ξ−i ≥ µi ≥ ξ+

i , 1 ≤ i ≤ n, where ξ±i (possibly
equal to ±∞) are identified explicitly in Theorem 5. It is easy to verify that
ξ+
i−1 ≥ ξ−i . Thus µ lies on a geometric edge if and only if either ξ−i = µi

or µi = ξ+
i , for some i, 1 ≤ i ≤ n. Write E±

i , respectively, for the set of
K-types lying on a geometric edge satisfying either ξ±i = µi, respectively.
Let εi = (0, . . . , 0, 1, 0, . . . 0) with i zeros before the one and let εi,j = εi−εj

be the usual root vector in ∆(g, t). For each edge define q±i = l±i + u±i to be
the θ-stable parabolic subalgebra of g generated by ±εi. In particular,

∆(q±, t) = {εr,s | ± εi · εr,s ≥ 0 where 0 ≤ r, s ≤ n, r 6= s}

and ∆(u±∩p, t) = {∓ε0,i} so that dim(u±∩p) = 1. There are two motivating
factors behind this choice of q±. The first condition is that l± is supposed to
describe the direction of E±; i.e., if µ, µ′ ∈ E± then their difference should
be in the span of the roots of l±. The second condition is that u± should
point towards the outside of the K-types; i.e., if µ ∈ E± then the sum of
µ and any non-zero root in u± should not be a K-type. It is easy to check
that q± is the largest parabolic satisfying these both conditions.

Let w± ∈ WK be defined by the cyclic permutations w+ = (1, 2, . . . i)
and w− = (n, n − 1, . . . i). Then l(w+) = i − 1 and l(w−) = n − i. These
elements are chosen so that w±∆(u± ∩ k, t) ⊆ ∆+(k, t). In particular, ω+q+

is generated by ε1 and ω−q− is generated by εn. Let µ be a K-type in
E±. Then µ lies on the algebraic q±-edge if and only if me(µ ∓ ε0,i) = 0.
In fact, we prove a much stronger statement that is special to SU(1, n):
that me(µ ∓ rε0,i) = 0 for any r ∈ R>0. For this it suffices to set y =
ω(µ∓ rε0,i +ρK)−ρK for any ω ∈ WG and show that y cannot be a K-type
of Ja,b.

It is convenient to shift everything by ρK . Therefore write µ̃ for µ + ρK

and employ similar notation for ξ and y. Thus assume we have ξ̃± satisfying
ξ̃+
k−1 > ξ̃−k , 1 ≤ k ≤ n, µ̃ satisfying ξ̃−k ≥ µ̃k ≥ ξ̃+

k and either ξ̃±i = µ̃i, and
ỹ = ω(µ̃ ∓ rε0,i) with r > 0. We show there is always some k, 1 ≤ k ≤ n,
so that ỹk fails to lie between ξ̃±k . View ω as a permutation and consider
the case where ω(i) = i first. In this case ỹi = µ̃i ∓ r and therefore fails
to lie between ξ̃−i and ξ̃+

i . On the other hand, say ω(i) = j 6= i. Then
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ỹj = µ̃i and therefore lies between ξ̃±i . However, this makes it impossible
for ỹj to lie between ξ̃±j since ξ̃±i and ξ̃±j are disjoint intervals. This finishes
the proof. �

Corollary 3. Let X be any irreducible representation of SU(1, n). Let qi =
li +ui, i = 1, n, be the two maximal proper θ-stable parabolic subalgebras of g
generated by ε1 and −εn, respectively. Let E be the set of associated K-types
to the L ∩K-types in the images of

τ : H∗(ui, X) → H∗(ui ∩ k, X).

Then the closed convex hull of the set of highest weights of the K-types of
X is equal to the closed convex hull of E. Moreover, µ ∈ t∗ is a K-type of
X if and only if µ lies in the closed convex hull of E and differs from some
element of E by an element of the root lattice of g.

Proof. This follows immediately from the Theorem 9 (noting that all the
parabolics used in the proof were K conjugate to either q1 or qn) and the
explicit description of K-types. �

While this is a strong statement, the generalization to other groups cannot
always be as nice. In particular, “gaps” may appear in the set of K-types.
But in any case, it is still conjectured that the image of τ is enough to
describe the closed convex hull of the set of K-types.
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