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We study rational curves on the Tian-Yau complete inter-
section Calabi–Yau threefold (CICY) in P3 × P3. Existence
of positive dimensional families of nonsingular rational curves
is proved for every degree ≥ 4. The number of nonsingu-
lar rational curves of degree 1, 2, 3 on a general Tian–Yau
CICY is finite and enumerated. The number of curves of
these degrees are also enumerated for the special Tian–Yau
CICY. There are two 1-dimensional families of singular ratio-
nal curves of degree 3 on a general Tian–Yau CICY, making
this degree a turning point between finite and infinite num-
ber of curves. We also introduce a notion of equivalence of a
family of rational curves, and determine the equivalences of
the two 1-dimensional families on the Tian–Yau CICY. The
equivalences equal the predicted numbers of curves obtained
by a power series expansion of the solution of a Picard-Fuchs
equation that arises in superconformal field theory.

1. Introduction and basic definitions.

In the 1980’s the physicists started considering supersymmetric theories for
a 10-dimensional universe. In these theories a Calabi–Yau threefold is at-
tached to every point of the Minkowski time-space. Moreover, certain invari-
ants of this Calabi–Yau threefold are linked to observables in our universe.
For example, the number of generations of elementary particles is 3 (elec-
tron, muon, tauon) in our universe. The superstring theory yields that the
absolute value of the Euler number of the manifold must be twice the number
of generations. So physicists were hoping to find relatively easy examples of
manifolds with Euler number ±6. The first example was found by G. Tian
and S.-T. Yau ([23], [24]). Their starting point was the following complete
intersection Calabi–Yau threefold in P3 × P3:

X = Z
(∑

x3
i ,

∑
xiyi,

∑
y3

i

)
.

We shall call this the special Tian–Yau CICY. This variety has Euler number
−18. Furthermore, this variety allows a free action by a group G of order 3.
Hence, the quotient variety X/G is CY with Euler number −6.
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More generally, a Tian–Yau CICY is defined by:

X = Z(f1, f2, g) ⊆ P3
1 × P3

2

where f1, f2, g are polynomials of bidegrees (3, 0), (0, 3) and (1, 1) respec-
tively, and such that X is nonsingular. By a general Tian–Yau variety we
shall mean a generic choice of the polynomials f1, f2, g. We introduce the
following notation: F1 (resp. F2) is the cubic surface in P3

1 (resp. P3
2) defined

by the polynomial of bidegree (3, 0) (resp. (0, 3)). The variety G is defined
by the polynomial of bidegree (1, 1). In other words:

X = F1 × F2 ∩G.

All deformations of a general Tian–Yau variety as an abstract variety, are
realisable as polynomial deformations of the defining equations. The family
of Tian–Yau varieties in P3

1 × P3
2 is complete in this sense.

After the example of G. Tian and S.-T. Yau was found, an intensive
search for more examples of complete intersections in multiprojective space
was undertaken ([2], [3], [8], [9]). It is proven that no complete intersection
Calabi–Yau threefold X in multiprojective space would have |χ(X)| = 6.
As in the example given by G. Tian and S.-T. Yau one may look for some
group acting freely on the variety. Such groups are of course hard to find
and in many cases it is quite easy to prove that such groups cannot exist. In
fact, starting with the list of all the CICY threefold types (approximately
10,000) in multiprojective space, the final result was that there were at most
3 types (including the Tian–Yau CICY type) ([3]) that possibly could have
a free action by a group acting of the desired cardinality. Moreover, to the
present day a such group has only been found in the Tian–Yau case.

The quintic in P4 is the most studied Calabi–Yau threefold. Clemens
conjectured that there are only finitely many smooth rational curves on a
general quintic threefold for every degree. This has been proven for degrees
less than 10 ([13], [12]). The numbers have been computed for degrees less
than or equal to 4 using algebro-geometric techniques ([13], [6], [15]). Using
conformal field theory, one is able to predict the number of rational curves
of every degree. More precisely, the predicted numbers appear in a power
series expansion of the solution of a Picard-Fuchs equation. In the case of
the quintic in P4, the power series looks like:

F (q) = 5 +
∑

d

ndd
3 qd

1− qd
,

where nd is the (conjectured) number of rational curves of degree d. This
expansion first appeared in ([4]), and started off a new branch of mathemat-
ics trying to understand the mathematical implications of mirror symmetry.
Recently progress has been made in achiving this goal ([7], [16]). For a
further discussion and a more complete reference list, see ([17]).
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In general it is hard to determine when the number of curves of a given de-
gree is finite. We address this question in case of a general Tian–Yau CICY.
Every rational curve on a Tian–Yau variety has a bidegree, and a degree
via the Segre embedding in P15. Furthermore the Hilbert scheme Hilbdm+1

X

has a natural partition in open-closed disjoint subschemes Hilb(i,j)m+1
X with

i+ j = d.
Our main result is the following:

Theorem 1.1. Let X be a general Tian–Yau CICY. Let m > 3 be an in-
teger, and i ∈ {0, 1, 2, 3}. Then there exist positive dimensional families of
nonsingular rational curves of bidegree (m,m− i).

There exist also positive dimensional families of nonsingular rational
curves of bidegrees (2, 2), (3, 3), (3, 2).

This has the following corollary:

Corollary 1.2. There exist positive dimensional families of nonsingular ra-
tional curves on a general Tian–Yau CICY for every degree n, n ≥ 4.

However, this abundance of curves for infinitely many bidegrees, does not
extend to all bidegrees, on the contrary, there are infinitely many bidegrees
that do not allow any rational curves at all:

Theorem 1.3. There are no curves of bidegree (m, 1) or (m, 0) on a general
Tian–Yau CICY for m ≥ 4.

The number rational curves on a general Tian–Yau CICY is finite only for
degrees 1 and 2. An explicit enumeration of rational curves of the various
bidegrees shows that these numbers are in agreement with the numbers
worked out by S. Hosono, A. Klemm, S. Theisen, S.-T. Yau ([11]) and by
V.V. Batyrev and D. van Straten ([1]) using the Picard-Fuchs equation.
The number of nonsingular rational curves of degree 3 is finite, but there
are also two 1-dimensional families of singular rational curves on a general
Tian–Yau CICY. We give an algebro-geometric definition of the equivalence
of a 1-dimensional family of rational curves, and apply this definition to the
two 1-dimensional families of degree 3 curves on a general Tian–Yau CICY.

The author would like to thank Ragni Piene for numerous discussions and
encouragements. Moreover, the author would like to thank Sheldon Katz
and Duco van Straten for sharing their insights concerning equivalences
of families of rational curves. A previous version of this work was part
of the author’s doctoral dissertation ([22]), written with support from the
Norwegian Research Council.

2. Preliminaries.

In this section we study the geometry and the rational curves of the variety
G = Z(

∑
αijxiyj). We start this section with two lemmas.
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Lemma 2.1. Set G = Z(
∑
αijxiyj) ⊆ P3

1 × P3
2 and let L be a line in P3

2

(resp. P3
1). Then there exists a unique maximal linear space V (L) in P3

1

(resp. P3
2) such that V (L)× L (resp. L× V (L)) is contained in G.

Proof. We prove the assertion in the case where the line L is in P3
2. Assume

L is defined by Z(y2, y3) ⊆ P3
2. Set Ḡ = G|P3

1×L, then Ḡ is defined in P3
1×L

by the following equation:∑
αi0xiy0 +

∑
αi1xiy1 = 0.

Obviously

V (L) = Z
(∑

αi0xi,
∑

αi1xi

)
is both maximal and unique.

Since we made no assumption on the αij ’s, we can always reduce to the
case where L is as above. �

Remark 2.2. In fact we proved more: Every point a ∈ P3
1 with the property

that a × L ⊂ G, is contained in V (L). Note also that all cases dimV (L) =
1, 2, 3 occur. The general case is clearly dimV (L) = 1. The definition of
V (L) depends on L as well as on G. We are primarily interested in the case
when dimV (L) = 1 for all L ⊆ P3

i , i = 1, 2.

Lemma 2.3. Let G = Z(
∑
αijxiyj). The matrix [αij ] is invertible if and

only if dimV (L) = 1 for all L ⊆ P3
i , i = 1, 2.

Proof. Assume that [αij ] is invertible. Introduce the notation xAyt =∑
αijxiyj , where x = (x0, . . . , x3), y = (y0, . . . , y3), and

A =

α00 . . . α03
...

...
α30 . . . α33

 .

We have to prove that for every line L in P3
1, V (L) is of minimal dimension.

Consider first the special case where L = Z(y2, y3) ⊆ P3
2. This gives

V (L) = Z
(∑

αi1xi,
∑

αi0xi

)
× L ⊆ P3

1 × P3
2.

Assume that V (L) is not of minimal dimension, i.e., dimZ(
∑
αi1xi,

∑
αi0xi)

≥ 2. This implies that
∑
αi1xi = λ

∑
αi0xi, giving αi1 = λαi0. In other

words, the first two columns are proportional, which contradicts that A is
of maximal rank.

The final step is reducing the general situation to the special case con-
sidered above. This is done in the following way: Choose any line L in
P3

2. It is possible to change the coordinates on the second factor, such
that L is equal to Z(y′2, y

′
3). Call this coordinate change matrix P (i.e.,
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(y′1, . . . , y
′
3)

t = P · (y1, . . . , y3)t). We make the following change of coordi-
nates on the first factor:

x′t = (A−1)tP tAtxt.

This gives G = Z(
∑
αijx

′
iy
′
j) with respect to the new coordinates, since∑

αijxiyj = xAyt = (x′APA−1)A(P−1y′t) = x′Ay′t =
∑

αijx
′
iy
′
j .

The result now follows from the special case considered above.
We also observe that dimV (L) = 1 for all L, implies that all columns

must be linearly independent (by considering the lines Z(y2, y3), Z(y0, y3),
and Z(y0, y2)). This gives the implication the other way. �

When G is as in the previous proposition, we have a map:

l : Grass (1,P3) −→ Grass (1,P3)

defined by sending L to V (L). This map is obviously bijective, since l(l(L))=
L by definition. In this case, we shall write l(L) for V (L) to signify that it
is a line. Moreover, note that then the defining equation can be brought to
diagonal form

∑3
i=0 xiyi by a suitable change of coordinates on P3

1 and P3
2.

Proposition 2.4. Let G = Z(
∑
αijxiyj), where the matrix [αij ] is invert-

ible, and set Ḡ = G|P3×L. Then Ḡ is isomorphic to the blow-up of P3
1 in

l(L).

Proof. We can, without loss of generality, assume that Ḡ is defined by

Z(x1y2 − x2y1) ⊆ P3(x0, . . . , x3)× P1(y1, y2)

(by change of coordinates). Then l(L) is defined by x1 = x2 = 0. It is
enough to check the statement locally, take for instance x0 = 1. Then we
have

Z(x1y2 − x2y1) ⊆ A3 × P1.

This is in fact the blow-up of A3 with center Z(x1, x2) ([10], II.7.12.1, p.
163). �

Corollary 2.5. Let G = Z(
∑
αijxiyj), where the matrix [αij ] is invertible,

and let Ǧ = G|H×L, where H is a hyperplane and L is a line. Let π : Ḡ −→
P3

1 denote the blow-up of P3
1 in l(L). Then Ǧ is isomorphic to π−1(H). If

l(L) * H, then Ǧ is isomorphic to H blown up in the point H ∩ l(L).

We end this section by a proposition that we will use extensively in the
following sections. For its formulation we need a definition.

Definition 2.6. A rational curve in P3
1 × P3

2 is of type (m̄, n̄) if the image
of the first (resp. second) projection is of degree m (resp. n).
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Proposition 2.7. Let L be a line in P3
2, and let C1 be a rational curve

of degree m in P3
1. Furthermore, let G = Z(

∑
αijxiyj), where the matrix

[αij ] is invertible, and denote G|P3
1×L by Ḡ. Let C be the unique irreducible

component of D = C1 × L ∩ Ḡ such that π1(C) = C1, where π1 is the
projection map on the first factor. Let i = lg(C1 ∩ l(L)). Then C is a
rational curve of bidegree (m,m− i) and of type (m̄, 1̄). Furthermore, every
rational curve of bidegree (m,n) and of type (m̄, 1̄) must arise in this way.

Proof. The variety Ḡ is isomorphic to the blow-up of P3
1 with center l(L), so

C is by definition the strict transform of C1. Moreover, D = C∪E1∪· · ·∪Ei,
where E1, · · · , Ei are the exceptional fibers corresponding to the intersection
points p1, . . . , pi in C1 ∩ l(L). The curve C is rational ([10], V.3.7, p. 389).
The degree on the second factor drops by one for each intersection point
counted with multiplicity, giving the desired bidegree.

The converse follows by reversal of the above argument. �

We have the following important corollary:

Proposition 2.8. Let G = Z(
∑
αijxiyj), where the matrix [αij ] is in-

vertible. Then there are no nonsingular rational curves of bidegree (m, 0),
m ≥ 3, on G.

Proof. Assume for contradiction that C is a nonsingular rational curve of
bidegree (m, 0), m ≥ 3 on G, i.e., C = C1 × {p}, where C1 is a nonsingular
rational curve in P3

1 and p is a point in P3
2. Fix a line L in P3

2 passing through
p. By the proof Proposition 2.7 l(L) has to be an m-secant to the curve C1.
This is impossible since a nonsingular rational curve of degree m has at most
an (m− 1) secant for m ≥ 3. �

3. The number of rational curves of degree less than 4 on a
general Tian–Yau CICY.

In this section we compute the number of nonsingular rational curves on a
general Tian–Yau CICY for degrees less than 4. In the end of this section
we describe two 1-dimensional families of singular rational curves of degree
3.

Proposition 3.1. The numbers Ni,j of nonsingular rational curves of bide-
gree (i, j) on a general Tian–Yau variety are finite for i + j ≤ 3 and are
given by:

N0,1 = N1,0 = 81
N0,2 = N2,0 = 81

N1,1 = 729
N1,2 = N2,1 = 2187
N3,0 = N0,3 = 0.
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Proof. All curves of bidegree (1, 0) have to be of the form L× {b} where L
is a line on F1 and b is a point on F2. The condition that this (1, 0) also
should be contained in G, gives three possible values for the point b given a
line L on F1. Since F1 has 27 lines, the number of (1, 0) curves is 3 ·27 = 81.
A (2, 0) curve is of the form C1 × {b} ⊆ H × {b}, where C is a conic in a
hyperplane H in P3

1. It follows that H ∩F1 = C1∪L, since F1 is of degree 3.
Hence, the number of (2, 0) curves has to be equal to the number of (1, 0)
curves, which is 81. The intersection L′ × L ∩G is obviously an irreducible
rational curve of bidegree (1, 1), and every rational curve of bidegree (1, 1)
has to arise in this way. Hence, the number of bidegree (1, 1) curves is equal
to the number of pairs (L′, L) where L′ ⊆ F1 and L ⊆ F2. The number of
such pairs is 27 · 27 = 729.

We now want to find the number of rational curves of bidegree (2, 1).
Denote the lines on Fi by Lk

i where k ∈ {1, . . . , 27}. In the generic situation
l(Lk

2)∩Lk′
1 = ∅ for all k, k′ ∈ {1, . . . , 27}. Since there are only finitely many

planes H in P3
1 such that H ∩F1 is the union of three lines, the l(Lk

2) are in
the general situation not contained in any of these planes. This gives that
for each 1-dimensional family of conics and for each l(Lk

2) we get three planes
such that l(Lk

2) intersects a conic contained in the intersection of F1 and the
plane. By Proposition 2.7 each of these cases gives rise to one bidegree (2, 1)
curve and every bidegree (2, 1) curve has to arise this way. This gives the
total number of bidegree (2, 1) curves: 3 · 27 · 27 = 2187.

Finally, there are no nonsingular rational curves of bidegree (3, 0) or (0, 3)
by Proposition 2.8. �

Corollary 3.2. Let Nd denote the number of nonsingular rational curves
of degree d on a general Tian–Yau variety. Then

N1 = 162, N2 = 891, N3 = 4374.

Remark 3.3. In Section 4 we will prove that there are positive dimensional
families of nonsingular rational curves for every degree higher than 3. Hence
the list in Corollary 3.2 is complete. The curves of degree 1 and 2 are nec-
essarily nonsingular. However, there exist singular rational curves of degree
3. These have to be of bidegree (3, 0), since the (2, 1) curves necessarily had
to be nonsingular by the proof of Proposition 3.1.

We shall show that a general Tian–Yau variety contains two 1-dimensional
families of singular rational curves of degree 3. Suppose C is a rational curve
of bidegree (3, 0). By Proposition 2.8, the curve C has to be singular. Hence,
C has to be a plane rational curve of degree 3, i.e., a nodal or cuspidal
cubic curve. After a suitable change of coordinates we may assume that
G = Z(

∑
i xiyi). The curve C is of the form C1×{p}, where C1 is on F1 and

p = (p0, p1, p2, p3) is a point on F2. Furthermore, C1 ⊆ Hp = Z(
∑

i pixi).
By Bezout’s theorem, F1 ∩Hp is of degree 3, so C1 = F1 ∩Hp. Finally, that
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F1 ∩ Hp is a singular cubic implies that Hp is a tangent hyperplane, i.e.,
Hp ∈ F ′

1 ⊆
(
P3

1

)′, the dual variety of F1. We may identify the set of (3, 0)
curves (not necessary irreducible) on X with the set:

{(Hp, p) ⊆ F ′
1 × F2} ⊆ P3′

1 × P3
2
∼= P3

2 × P3
2

hence with F ′
1×F2∩∆, where ∆ denotes the diagonal. This set is isomorphic

to F ′
1 ∩ F2 ∈ P3

2.
Hence, we can represent the complete family of bidegree (3, 0) rational

curves as a curve in P3. We denote this curve by Γ.
Since degF ′

1 = 12, deg Γ = 3 · 12 = 36. Note that Γ is a (local) complete
intersection, so the dualising sheaf is given by:

ωΓ
∼= ∧2NΓ/P3 ⊗ ωP3 |Γ.

Using NΓ|P3
∼= OΓ(d1)⊕OΓ(d2), where d1 = 12 and d2 = 3 are the degrees

of F ′
1 and F2 respectively, we get

degωΓ = 2pa − 2 = (d1 + d2 − 4)d1d2 = 396

so that the arithmetic genus, pa, of Γ is 199.
Finally, we want to determine the singularities of the curve Γ. The dual

surface F ′
1 has a double curve of degree 1

2d(d−1)(d−2)(d3−d2−d−12) = 27
(see e.g. [18]), where d = degF1 = 3. The nodes on Γ are precisely the
intersection points between F2 and the double curve on F ′

1. Let δ denote
the number of nodes. Then

δ = 3 · 27 = 81.

The surface F ′
1 also has a cuspidal edge of degree 4d(d−1)(d−2) = 24 ([18]).

The cusps on Γ are the intersection points between F2 and this curve. Let
κ denote the number of cusps, then

κ = 3 · 24 = 72.

Hence the geometric genus, pg, of Γ is given by pg = pa − δ − κ = 46.
In the end of this section we will give a definition of the equivalence, that

apply to our two 1-dimensional families. We start out by reviewing the
definition given by S. Katz of the equivalence of a family of rational curves
([14]). Let X be a Calabi–Yau threefold and let H be a k-dimensional
nonsingular family of nonsingular rational curves on X. Consider

D −−−→ H ×X

π

y
H

where D is the total space of the family and π is the projection on the
first factor. Let ND/H×X denote the normal bundle of D in H × X. The



CURVES ON A CALABI-YAU VARIETY 423

equivalence, e(H), of the family H is then defined to be:

e(H) = deg ck(R1π?ND/H×X).

We are interested in determining the equivalence of a family of mildly sin-
gular curves, say local complete intersection curves with at most node and
cusp singularities. Furthermore, we shall allow the base space of the family
to have the same kind of mild singularities. Because of the singularities, we
can not apply Katz’ notion of equivalence directly. It is easy to see that
R1π?ND/H×X is not a vector bundle in general.

Let C be a local complete intersection curve in X. Let I be its defining
ideal. The sheaf I/I2 is locally free, hence so is the normal sheaf NC/X =
(I/I2)′. The adjunction formula says:

∧2NC/X ⊗ ωX |C ∼= ωC

where ωC is the dualising sheaf. Since X is Calabi–Yau, this gives:

∧2NC/X
∼= ωC .

Furthermore, since NC/X is a rank 2 bundle, we have the following perfect
pairing NC/X

∼= N ′
C/X ⊗ ∧2NC/X . Hence

NC/X
∼= N ′

C/X ⊗ ωC .

By Serre Duality we get:

(5) H1(NC/X) ∼= H1−1(N ′
C/X ⊗ ωC)′ ∼= H0(NC/X)′.

Consider a family π : D → H of local complete intersection curves with at
most cusps and nodes on X. The relative version of the isomorphism (5) is

(6) R1π?ND/H×X
∼= Hom (π∗ND/H×X ,OH).

Assuming that (6) holds and that the Kodaira-Spencer map

Ω1
H
′ −→ π∗ND/H×X

is an isomorphism (e.g., if H is a component of the Hilbert scheme), we
obtain Kodaira-Spencer

R1π?ND/H×X
∼= Hom (π?ND/H×X ,OH) ∼= Hom (Ω1

H
′
,OH) = Ω1

H
′′
.

In the cases we are interested in, R1π?ND/H×X is not necessarily isomorphic
to Ω1

H
′′, and Ω1

H
′′ is not a vector bundle. When H = Γ is a curve, we can

modify Ω1
H
′′ so as to obtain a vector bundle on the normalisation of Γ, and

it is this bundle we shall use to define the equivalence of Γ.
We want to associate a number to our family of (3, 0)-curves. This family

is not a component of the Hilbert scheme of curves. However, it parametrises
all equivalence classes of maps from P1 −→ X of degree 3, when we identify
maps with the same image. We would like to define the equivalence using a
vector bundle on Γ.
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We shall associate a vector bundle to Ω1
Γ
′′ in a natural way. The curve Γ

is singular and Ω1
Γ
′′ is not isomorphic to Ω1

Γ. However, the canonical map
Ω1

Γ −→ Ω1
Γ
′′ is surjective. (This is easily seen by local computations at

cusps and nodes of Γ.) Let Γ̃ denote the normalisation of Γ and let ψ be
the natural map:

ψ : Γ̃ −→ Γ.

We have the following exact sequence of sheaves on Γ̃:

(7) ψ?Ω1
Γ −→ Ω1eΓ −→ Ω1eΓ/Γ

−→ 0.

Let Ω denote the image of ψ?Ω1
Γ in Ω1eΓ, i.e.,

(8) 0 −→ Ω −→ Ω1eΓ −→ Ω1eΓ/Γ
−→ 0.

The sheaf Ω can be considered as a “modification” of Ω1
Γ
′′ in the following

way. Consider the following commutive diagram:

ψ?Ω1
Γ −−−→ ψ?Ω1

Γ
′′y y

Ω1eΓ ∼−−−→ Ω1eΓ′′
.

We define the equivalence e(Γ) of Γ as the (degree of the) first Chern class
of the image of ψ?Ω1

Γ
′′ in Ω1eΓ′′. Note that ψ?Ω1

Γ −→ ψ?Ω1
Γ
′′ is surjective and

Ω1eΓ ∼= Ω1eΓ′′, hence the image is isomorphic to Ω.
We get

e(Γ) = c1(Ω) = c1(Ω1eΓ)− deg Ω1eΓ/Γ
(9)

= 2pg(Γ̃)− 2−#cusps.

Since the geometric genus is 46 and the number of cusps is 72, we get,

e(Γ) = 2 · 46− 2− 72 = 18.

Remark 3.4. This number is equal to the predicted number of curves cal-
culated by S. Hosono, A. Klemm, S. Theisen and S.-T. Yau ([11], p. 521)
and by D. van Straten and V. V. Batyrev ([1]). A general hypersurface of
bidegree (3, 3) in P2×P2 also has a 1-dimensional family of singular rational
curves of bidegree (3, 0). Applying the above definition of equivalence to
this family gives the number 162. This agrees with the conjectured number
in [11].
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4. Rational Curves of higher degree on a general Tian–Yau
CICY.

In this section we study rational curves of degree higher than 3 on a general
Tian–Yau CICY. We consider certain linear systems on P2, and use them to
prove the existence of positive dimensional families of curves of every degree
greater than 3 on a general Tian–Yau CICY. In the first part of the section
we refine this study, and give results concerning existence of rational curves
of various bidegrees.

We want to give a constructive proof of Theorem 1.1, and we start out
by two preliminary lemmas.

Lemma 4.1. Fix a point p in P2 and let d ≥ 3. The linear system of curves
of degree d, with a point of order (d − 1) at p, is of dimension 2d, and a
generic member is an irreducible rational curve.

Proof. The dimension of the linear system of curves of degree d is
(
d+2
2

)
−1.

The condition that a curve has a given point p as a multiple point of order
(d− 1), is equivalent to the vanishing of the (d− 1) first partial derivatives
at p. This gives 1 + · · ·+ (d− 1) conditions on the coefficients, and the first
statement follows. To prove prove the second statement it suffices to show
that there exists an irreducible rational curve in the linear system. One can
construct one in the following way: Let

f : P1 −→ Pd,

f(u, v) = (ud, ud−1v, . . . , vd).

Let C = f(P1) ⊆ Pd. Choose d − 1 points on C. These = points span a
linear subspace L of dimension (d − 2). Let L′ ⊂ L be a linear subspace
with the following properties: dim L′ = d − 3 and L′ = ∩C = ∅, and let
π : Pd −→ P2 be the projection from the linear subspace L′. Then Ĉ = π(C)
is a curve with the desired properties. �

Lemma 4.2. Let F be a nonsingular cubic surface in P3. For every natural
number m ≥ 3, there exists a 2-dimensional family of nonsingular rational
curves of degree m on F .

Proof. The hypersurface F is isomorphic to P2 blown up in six points p0, . . . ,
p5. Consider the linear system σ0 of curves of degree d ≥ 3, and with a
multiple point of order (d − 1) at p0 in P2. We denote a generic curve
of σ0 by C0. The strict transform of C0 is a rational curve C1 of degree
2d + 1. Since the dimensions of the linear systems considered down on
P2 is at least 6 by the preceding lemma, the statement is proved for odd
degrees 7, 9, 11, . . . . For even degrees we take a sublinear system σ1 of σ0,
by demanding the curve to pass through p1 once. The strict transform of
a generic curve is a rational curve of degree 2d. The dimensions of these
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families of curves are at least 5. In the same manner we can take curves that
in addition to the requirements above also pass though p2 and so on. In each
case the dimension drops by no more than one. Hence, we have inclusions
σ0 ⊃ σ1 ⊃ . . . ⊃ σt ⊃ . . . ⊃ σ5. (The linear system σt constist of curves
of degree d passing through the points p1, . . . , pt.) This gives the desired
results for the remaining degrees 3, 4, 5. In the case m = 3 (corresponding
to d = 3 and t = 4) the dimension is at least equal to 2. �

Now we give a constructive proof of Theorem 1.1.

Proof of the theorem. LetX = F1×F2∩G be a general Tian–Yau CICY, and
let L be one of the 27 lines on F2. Let q1, q2, q3 be the points of intersection
of l(L) and F1. Furthermore, fix a blowing down of the exceptional divisors
π : F1 −→ P2, and let q̄i = π(qi) for i = 1, 2, 3. We shall use the linear
systems of curves in P2 considered in Lemma 4.1 and in Lemma 4.2.

Consider first m ≥ 3 and i = 0. By Lemma 4.2 we have linear systems
σt with t base points p1, . . . , pt. A general member of this linear system
does not pass through any of the q̄i, i.e., it gives rise to a rational curve
of bidegree (m,m) on X by Proposition 2.7. Since these linear systems
are all positive dimensional, we get positive dimensional families of bidegree
(m,m), for m > 2, on X.

In order to prove the statement in the case m ≥ 3 and i = 1, we take
sublinear systems σt1 of the σt considered above, by assigning the basepoint
q1. The dimension of σt1 is dimσt − 1. Lemma 4.2 then gives dimσt1 ≥ 1,
and the result follows.

For i = 2 we take sublinear systems of σt1 , by assigning q̄2 as an additional
base point. By the same reasoning as above this gives positive dimensional
families, using Prop. 2.7, Lemma 4.1 and Lemma 4.2 for m > 3.

Finally, the case i = 3 is treated analogously by considering sublinear sys-
tems of σt by assigning q̄1, q̄2, q̄3 as base points. Using Prop. 2.7, Lemma 4.1
and Lemma 4.2 we obtain positive dimensional families of bidegree (m,m−3)
curves for m > 3.

In the proof of Proposition 3.1 we gave all rational curves of bidegree
(2, 1). They were realised as degenerations of a 1-dimensional family of
bidegree (2, 2) rational curves of type (2̄, 1̄), constructed from a pencil of
planes in P3 containing a line in F1. (In fact, this shows that there are
exactly 27 1-dimensional families of bidegree (2, 2) and of type (2̄, 1̄).) �

Theorem 4.3. A general Tian–Yau CICY contains no nonsingular rational
curves of bidegree (m,m− i) and of type (m̄, 1̄), for m ≥ i ≥ 4.

Proof. An i-secant of a curve when i ≥ 4, has to be contained in F1, by
Bezout’s theorem. In other words, it has to be one of the 27 lines, but for
a general Tian–Yau CICY, none of the 27 l(L)’s are among the 27 lines on
F1. �
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Remark 4.4. Note that Theorem 1.3 follows directly from the proof of
Theorem 4.3.

The last theorem states the non-existence of rational curves of certain
bidegrees on a general Tian–Yau CICY. However, there may exist nongeneral
Tian–Yau CICYs with rational curves of these bidegrees.

Proposition 4.5. Let d ≥ 3 and let t ∈ {0, 1, 2, 3, 4, 5}. There exist vari-
eties of Tian–Yau CICY type with positive dimensional families of nonsin-
gular rational curves of bidegree (2d+ 1− t, d+ 2− t).

Proof. In Lemma 4.1 and Lemma 4.2 we constructed the linear systems of
curves σt. The strict transforms of these curves have a (d − 1)-secant, E0,
the exceptional divisor corresponding to p0. Furthermore, the degree of the
strict transform of a general member of σt is 2d+1−t. If Fi is a nonsingular
cubic surface in P3

i , denote by Lk
i , k ∈ {1, . . . , 27}, the 27 lines on Fi. Now,

choose a pair of cubic surfaces F1, F2 and a G = Z(
∑
αijxiyj), such that

the matrix [αij ] is invertible, and with the property that there exists a pair
of lines Lj

1 and Ln
2 such that l(Ln

2 ) = Lj
1. Applying Proposition 2.7 gives the

desired result. �

Remark 4.6. All of these curves are of type (m̄, 1̄), except for the case
d = 3, t = 5, which gives a bidegree (2, 0) curve.

Clemens’ conjecture states that a general quintic threefold in P4 contains
a finite number of smooth rational curves for every degree. The conjecture
has been proven for degrees less than 10 ([13], [12]). Corollary 1.2 states
the existence of positive dimensional families of nonsingular rational curves
for every degree ≥ 4 on a general Tian–Yau CICY.

5. Curves of degree 1, 2 and 3 on the special Tian–Yau CICY.

In this section we are going to study rational curves of degree less than 4 on
the special Tian–Yau variety.

Proposition 5.1. The numbers Ni,j of nonsingular rational curves of bide-
gree (i, j) on a general Tian–Yau variety are finite for i + j ≤ 3 and are
given by:

N0,1 = N1,0 = 81
N0,2 = N2,0 = 81

N1,1 = 567
N1,2 = N2,1 = 972
N3,0 = N0,3 = 0.

Proof. The number of rational curves of bidegree (1, 0) and (2, 0) are com-
puted in the same way as in Proposition 3.1. The number of (1, 1) curves is
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equal to the number of irreducible intersections L′×L∩G, where L′ ⊆ F1 and
L ⊆ F2, by Proposition 2.7. We have 729 pairs of lines to consider. Com-
putation gives 567 irreducible intersections, hence 567 (1,1) curves. The
number of rational curves of bidegree (2, 1) is a little more complicated to
obtain. First, notice that there is no rational curves of bidegree (2, 1) and
of type (1̄, 1̄). Assume for contradiction that there is one, and denote it by
C. Let Li = πi(C). Choose a plane H in P3

1 such that L1 ⊆ H. Since
H×L2∩G is the blow-up of H in l(L2) and L1 6= l(L2), D = L1×L2∩G is
of dimension one. Assume that L1 ∩ l(L2) = ∅, then L1

∼= D. This implies
that C’s degree on the first factor is at most 1. Assume that L1 ∩ L2 6= ∅,
then D consists of a curve C̄ the strict transform of L1, and an exceptional
divisor E. The curve C has to be contained in C̄, since it is dominant on
the first factor. This implies that C = C̄. This implies that C’s degree on
the first factor is 1.

In view of Proposition 2.7, to give a rational curve of bidegree (2, 1) is
equivalent to giving a conic C in F1 and a line L in F2 such that l(L) intersect
C in one point. Any conic C in P3 is contained in a unique hyperplane H,
so F1 ∩ H = C ∪ L′, where L′ is a line in F1. Conversely, every line L′

determines a pencil of planes. The lines on the Fermat cubic F2 are:

yn0 + αiyn1 = yn2 + αjyn3 = 0,

where the ni ∈ {0, 1, 2, 3} and are all different. Let L be y0 + αiy1 =
y2 + αjy3 = 0, then l(L) ∩ F1 = (1, αi,−αl,−αj+l) for l ∈ {0, 1, 2}.

Consider one line in F1, say: L′ = Z(x0 + x3 = x1 + αx3). The pencil is
then given by: Ha = Z(ax0 + α2x1 + x2 + aX3) (where we allow a = ∞).
Let Ca be defined by: Ha ∩ F1 = Ca ∪ L.

Demanding a point in l(L)∩F1 to be in Ha, gives the following condition
on a: a(1−αj+l) = αl−αi−2. There are 27 cases to consider: i, j, l may take
values in {0, 1, 2}. A case by case study gives that only 12 of these give a
rational curve of bidegree (2, 1), i.e., where l(L) intersects an irreducible Ca

once. This accounts for 9 lines on F1 (9 different pairs (i, j)). A similar study
of the remaining 18 lines, gives 24 rational curves of the desired bidegree
(out of 54 candidates). Hence the number of rational curves of bidegree
(2, 1) is 36. Note that all these curves are mapped to L ⊆ F2 by the second
projection. By symmetry the total number of rational curves of bidegree
(2, 1) is 27 · 36 = 972. �

Corollary 5.2. Let Nd denote the number of nonsingular rational curves
of degree d on a general Tian–Yau variety. Then

N1 = 162, N2 = 729, N3 = 1944.

Remark 5.3. The numbers of curves of bidegree (0, 1), (1, 0) and (1, 1) have
been calculated previously, using similar techniques ([5], [19]).
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Corollary 5.4. There exist positive dimensional families of rational curves
on the special Tian–Yau CICY for every degree n, n ≥ 4.

Proof. This is a corollary of the proof of Corollary 1.2. The construction
of curves relied on the use of Proposition 2.7, i.e. on the fact that G =
Z(

∑
ij αijxiyj), where the matrix [αij ] is invertible, which is clearly satisfied

in this case. The last necessary ingredient in the proof is that none of the
l(L), where L is one of the 27 lines of F2, are tangent to the surface F2.
This is easily checked for the special Tian–Yau CICY. The rest of the proof
is identical to the proof of Theorem 1.1. �

Remark 5.5. By comparing Corollary 5.2 with Corollary 3.2, we see that
the number of curves of degree 2 and 3 on the special Tian–Yau variety are
different from the corresponding numbers for the general Tian–Yau variety.
For example for degree 2, the difference stems from the number of (1, 1)
curves. The difference between the numbers of (1, 1) curves on the general
and the special is 729 − 567 = 162. This difference is explained by the
fact that we have 162 reducible intersections of type L1 × L2 ∩ G (where
Li ⊆ Fi) on the special Tian–Yau variety, and none on the general Tian–
Yau variety. A reducible intersection L1×L2 ∩G gives one (1, 0) curve and
one (0, 1) curve. It is easy to see that every rational curve of bidegree (1, 0)
is contained in precisely two distinct intersections of the type L1 × L2 ∩G.
Hence, we get 81 (1, 0) curves. By Proposition 5.1 we know that these are
in fact the only ones.
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