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In this paper, we introduce a class of Lie algebras which
are subalgebras of generalized Cartan type S Lie algebras of
characteristic 0. We determine the necessary and sufficient
conditions for such Lie algebras to be simple. And we give all
derivations of such simple Lie algebras.

1. Introduction.

This paper is a sequel to the paper [7] in which generalized Cartan type S
Lie algebras tzS(A, T, ϕ) over a field F of characteristic 0 were studied. We
have tried to make this paper independent of other papers. So in Section 2,
we give a description of relevant Lie algebras and some basic facts which will
be used in this paper. In Section 3 we introduce a class of Lie algebras which
are subalgebras of generalized Cartan type S Lie algebras, and determine
the necessary and sufficient conditions for such Lie algebras to be simple.
We give all derivations of such simple Lie algebras in Section 4.

This research was carried out during the author’s visit to University of
Wisconsin-Madison. He wishes to thank Professor J.M. Osborn for his hos-
pitality and helpful discussions.

2. Notations and related Lie algebras.

In this section, for the convenience of the reader, we recall the relevant Lie
algebra definitions and some basic facts which will be used later in this
paper. Throughout this paper we assume that F is a field of characteristic
0, and that A is a nonzero abelian group written additively.

2.1 Generalized Witt algebras.

Let n be a positive integer, and t1, . . . , tn independent and commuting
indeterminates over F . Denote by Pn and Qn the polynomial algebra
F [t1, . . . , tn], and the Laurent polynomial algebra F [t±1

1 , . . . , t±1
n ] respec-

tively. By Wn = Wn(F ) we denote the Witt algebra, i.e., the Lie algebra of
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all formal vector fields

(2.1)
n∑

i=1

fi
∂

∂ti

with coefficients fi ∈ Qn. The bracket in Wn is[
f

∂

∂ti
, g

∂

∂tj

]
= f

∂(g)
∂ti

∂

∂tj
− g

∂(f)
∂tj

∂

∂ti
,

where f, g ∈ Qn, and i, j ∈ {1, 2, . . . , n}. The subalgebra W+
n = W+

n (F )
of Wn consisting of all vector fields (2.1) with polynomial coefficients, i.e.,
fi ∈ Pn, is known as the general Lie algebra, or the Lie algebra of Cartan
type W . For more details, please refer to [13]. It is well known that Wn and
W+

n are simple Lie algebras.

Let T be a vector space over F . We denote by FA the group algebra of
A over F . The elements tx , x ∈ A, form a basis of this algebra, and the
multiplication is defined by tx · ty = tx+y. We shall write 1 instead of t0.
The tensor product W = FA⊗F T is a free left FA-module in the natural
way. We denote an arbitrary element of T by ∂ (to remind us of differential
operators). For the sake of simplicity, we shall write tx∂ instead of tx ⊗ ∂.
We now choose a pairing ϕ : T × A → F which is F -linear in the first
variable and additive in the second one. For convenience we shall also use
the following notations:

ϕ(∂, x) = 〈∂, x〉 = ∂(x)

for arbitrary ∂ ∈ T and x ∈ A. W becomes a Lie algebra under the following
bracket:

(2.2) [tx∂1, t
y∂2] := tx+y(∂1(y)∂2 − ∂2(x)∂1),

for arbitrary x, y ∈ A and ∂1, ∂2 ∈ T . We refer to this algebra W =
W (A, T, ϕ) as a generalized Witt algebra.

The subspaces Wx = txT , x ∈ A, define an A-gradation of W , i.e., W is
the direct sum of the Wx’s, and [Wx,Wy] ⊂ Wx+y for all x, y ∈ A.

It follows from (2.2) that ad(∂) acts on Wx as a scalar ∂(x). Hence
each ∂ ∈ T is ad-semisimple, and T is a torus (i.e., an abelian subalgebra
consisting of ad-semisimple elements). In fact T is the only maximal torus
of W (see [3, Lemma 4.1]). Kawamoto proved in [11] that the Lie algebra
W = W (A, T, ϕ) is simple if and only if A 6= 0 and ϕ is nondegenerate in
the sense that the conditions

(2.3) 〈∂, x〉 = 0,∀ ∂ ∈ T ⇒ x = 0

and

(2.4) 〈∂, x〉 = 0,∀ x ∈ A ⇒ ∂ = 0

hold.
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Note that (2.3) implies that A is torsion free. This implies that FA is an
integral domain and it implies that the invertible elements of FA have the
form atx, where a ∈ F ∗, x ∈ A.

There is a natural structure of a left W -module on FA, namely the struc-
ture is such that

(2.5) tx∂ · ty = ∂(y)tx+y

for x, y ∈ A and ∂ ∈ T. Also we have the natural left FA-module structure
on W . These two module structures are related by the identity

(2.6) [fu, gv] = f(u · g)v − g(v · f)u + fg[u, v]

where f, g ∈ FA and u, v ∈ W are arbitrary. The W -module structure on
FA gives rise to a homomorphism

(2.7) W → Der (FA)

because each w ∈ W acts on FA as a derivation. Clearly (2.7) is also a
homomorphism of FA-modules. For more details about W (A, T, ϕ), please
refer to [3].

2.2 Generalized Cartan type W Lie algebras.

Suppose that W = W (A, T, ϕ) denotes a simple generalized Witt algebra.
Let I be an index set, d : I → T an injective map, and write di = d(i) for
i ∈ I. We say that d is admissible if the following two conditions hold:

(Ind) di, i ∈ I, are linearly independent;
(Int) di(A) = Z for all i ∈ I.

We assume throughout that an admissible d has been fixed. We set

A+
d = {x ∈ A : di(x) ≥ 0, ∀i ∈ I},

A0
d = {x ∈ A : di(x) = 0, ∀i ∈ I},

Ad,i = {x ∈ A : di(x) = −1; dj(x) ≥ 0, ∀j ∈ I\{i}},

A#
d,i = {x ∈ A : di(x) = −1; dj(x) = 0, ∀j ∈ I\{i}},

Ad = A+
d ∪ (∪i∈IAd,i) .

We now introduce some subalgebras of W :

W+
d =

∑
x∈A+

d

Wx;

Wd,i =

 ∑
x∈Ad,i

Ftx

 · di, i ∈ I;
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and

Wd = Wd(A, T, ϕ) = W+
d +

∑
i∈I

Wd,i.

We also introduce the subalgebra FA+
d of FA, which is the span of all

elements tx with x ∈ A+
d . Since W is a left FA-module, we can view W also

as a left FA+
d -module. Then it is easy to see that the subspaces W+

d and
Wd are FA+

d -submodules of W .

By restricting the action of W on FA, we can view FA as a left Wd-
module, and then FA+

d is a Wd-submodule of FA. When d is fixed, and
there is no danger of confusion, we shall write

A+, Ai, A#
i , W+, Wi, FA+

instead of
A+

d , Ad,i, A#
d,i, W+

d , Wd,i, FA+
d ,

respectively. The following Theorem is proved in [5].

Theorem 2.1. The Lie algebra Wd is simple if and only if the following
conditions hold:

(i) if ∂ ∈ T and ∂(x) = 0 for all x ∈ Ad, then ∂ = 0;
(ii) if x ∈ Ad, then di(x) = 0 for almost all i ∈ I;
(iii) A#

i 6= ∅ for all i ∈ I.

The simple Lie algebra Wd is called an algebra of generalized Cartan type
W . For more details on the Lie algebra Wd, please refer to the papers [5]
and [12].

2.3 Generalized Cartan type S Lie algebras.

It is well known that the classical divergence Div:Wn → F [t±1
1 , . . . , t±1

n ]
maps

∑n
i=1 fi

∂
∂ti

to
∑n

i=1
∂(fi)
∂ti

. The kernel S̃n of Div is a subalgebra of
Wn. The algebra Sn = (S̃n)′′ and S+

n = Sn ∩W+
n are called Lie algebras of

Cartan type S.

Suppose that W = W (A, T, ϕ) is a simple generalized Witt algebra. The
divergence div: W → FA is the F -linear map such that

(2.8) div (tx∂) = ∂(x)tx

holds for all x ∈ A and ∂ ∈ T . It has the following two properties:

(2.9) div (fw) = fdiv (w) + w · f
and

(2.10) div [u, v] = u · div (v)− v · div (u)
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where u, v, w ∈ W and f ∈ FA are arbitrary. The latter property shows
that div is a derivation of W with values in the W -module FA. Since
div : W → FA is a derivation of degree 0, its kernel S̃ := ker (div) is a
homogeneous subalgebra of W :

(2.11) S̃ = ⊕x∈A S̃x , S̃x := S̃ ∩Wx.

For x ∈ A define the F -linear function x̂ : T → F by x̂(∂) = ∂(x). The
condition (2.3) shows that, if T ∗ is the dual space of T , the Z-linear map
A → T ∗ sending x 7→ x̂ is injective. If Tx := ker(x̂), then we have S̃x = txTx.
Hence S̃0 = W0 = T and, for x 6= 0, S̃x is a hyperplane of Wx. In particular,
if dim T = 1, then S̃ = T . To avoid trivialities, we shall assume always that
dim T > 1.

Let S̄ := (S̃)′ be the derived algebra of S̃. Note that the notation here is
different from that in [7]. We know (see [7]) that

S̄ = ⊕x 6=0 S̃x.

More generally, the subspaces tzS̃, z ∈ A, are subalgebras of W and their
derived algebras are given by

(2.12) (tzS̃)′ = tzS̄ =
∑
x 6=z

txTx−z.

If dim T ≥ 3, all the subalgebras tzS̄ are simple. If dim T = 2, then S̄
itself is simple while the shifted algebras tzS̄ , z 6= 0, are not. Their derived
algebras

(tzS̄)′ =
∑

x 6=z,2z

txTx−z, z 6= 0,

are simple.
We shall refer to the subalgebras S(A, T, ϕ, z) := tzS̄ if dim T ≥ 3, and

S(A, T, ϕ, z) := (tzS̄)′ if dim T = 2, as Lie algebras of generalized Cartan
type S. The Lie algebras S(A, T, ϕ, z) have the A-gradation:

S(A, T, ϕ, z) =

{
⊕x∈A\{z}t

xTx−z, if dim T > 2,

⊕x∈A\{z,2z}t
xTx−z, if dim T = 2.

These algebras were studied in papers: [6] when dim T = 2 and z = 0, [4]
when dimT = 2 and z 6= 0, and [7] when dim T ≥ 3.

2.4 Generalized Block algebras.

We shall denote by Hom (A,F ) the F -vector space of all additive (i.e., Z-
linear) maps A → F . We now fix an additive map α : A → F and a
skew-symmetric bi-additive map ϕ : A×A → F .

Let L = L(A,α, ϕ) be the vector space over F having a basis consisting
of all symbols ex, x ∈ A. We make L into a (non-associative) algebra over
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F by defining F -bilinear multiplication L× L → L by

(2.13) [ex, ey] = f(x, y)ex+y, x, y ∈ A,

where

(2.14) f(x, y) = ϕ(x, y) + α(x− y).

If α = 0, then L is a Lie algebra. These Lie algebras were studied in [8]. It
was shown by Albert and Frank [1] that, under the assumption that α 6= 0,
L is a Lie algebra if and only if there exists another additive map β : A → F
such that ϕ = α ∧ β, i.e.,

(2.15) ϕ(x, y) = α(x)β(y)− β(x)α(y).

We shall assume throughout that such a β exists, i.e. that L is a Lie algebra.
We also assume that

(2.16) Kα ∩Kβ = 0,

where Kµ denotes the kernel of µ for any additive map µ : A → F . Let
L2 = [L,L] be the derived subalgebra of L and Z the center of L. The
Lie algebra L = L2/Z is simple [4, Theorem 2.5], and we shall also write
L(A,α, ϕ) for L.

We refer to the Lie algebras L = L(A,α, ϕ) as generalized Block algebras.

Suppose that β ∈ Hom (A,F ) can be chosen so that (2.15) holds and

(2.17) β(A) = Z.

We now define the subset Aβ ⊂ A by

(2.18) Aβ = {x ∈ A : β(x) ≥ −1} ,

and denote by Lβ the subspace of L with a basis consisting of all ex with
x ∈ Aβ . It follows that Lβ is a subalgebra of L.

We shall denote by Lβ or Lβ(A,α, ϕ) the quotient algebra Lβ/Z. The
Lie algebra Lβ is simple. For more details about L(A,α, ϕ) and Lβ(A,α, ϕ),
please refer to [4] and [8].

3. Lie algebra Sd(A, T, ϕ, z).

Now we are ready to introduce our main object, the Lie algebra Sd(A, T, ϕ, z).
We assume that a generalized Witt algebra W = W (A, T, ϕ), a generalized
Cartan type W Lie algebra Wd = Wd(A, T, ϕ) ⊂ W , a generalized Car-
tan type S Lie algebra S(A, T, ϕ, z) ⊂ W are given, and we also assume
throughout the paper that all of these algebras are simple. Our hypotheses
here imply that dim T ≥ 2. We define

Sd(A, T, ϕ, z) := Wd ∩ S(A, T, ϕ, z).
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Then Sd = Sd(A, T, ϕ, z) is a subalgebra of W . We shall also call the algebra
Sd a generalized Cartan type S Lie algebra. It is clear that Sd has an A-
gradation with the following components of degree x ∈ A:

(Sd)x =

{
0, for x = z

(txTx−z) ∩Wd, for x ∈ A \ {z}

if dim T > 2,

(Sd)x =

{
0, for x = z or x = 2z

(txTx−z) ∩Wd, for x ∈ A \ {z, 2z}

if dim T = 2. It follows that (Sd)x = 0 for all x /∈ Ad.

For convenience, by 〈U1〉 we denote the subspace of the vector space V
generated by U1 ⊂ V .

Theorem 3.1. Suppose that the Lie algebras W = W (A, T, ϕ), Wd =
Wd(A, T, ϕ) ⊂ W , and S = S(A, T, ϕ, z) ⊂ W are given, and that all of
them are simple. Then Sd(A, T, ϕ, z) is simple if and only if the following
conditions hold:

(a) di(z) = −1 for all i ∈ I;
(b) I is finite.

Proof. For simplicity we write L = Sd(A, T, ϕ, z), so Lx = (Sd)x for x ∈ A.

(⇒) Suppose that L is simple. We shall first show that (a) is true. For
contradiction we assume that there exists an element in I, say 1, such that
d1(z) 6= −1. If txd1 ∈ W1∩L (for definition of W1 see Section 2.2), we know
that d1(x) = −1 and d1(x − z) = 0, so −1 = d1(x) = d1(z) 6= −1. It is a
contradiction. Then W1∩L = 0, i.e., Lx = 0 for all x ∈ A1. Theorem 2.1(iii)
assures that we can choose y ∈ A with −y ∈ A#

1 . So y ∈ A+
d . If z 6= y, then

Ly = tyTy−z 6= 0. Let J = ⊕x : d1(x)>1Lx. If z = y, we see that L3y 6= 0,
let J = ⊕x : d1(x)>3Lx. It is easy to verify that J is a nonzero proper ideal
of L in both cases, which contradicts the simplicity of L. Consequently (a)
holds.

On the other side we have −z ∈ A+
d . From Theorem 2.1(ii) it follows that

I is finite. So (b) is true.

(⇐) Suppose (a) and (b) hold. We write I = {1, 2, · · · , n}. We know
that Lx 6= 0 if and only if x ∈ Ad \ {z}. Fix {u1, u2, · · · , un} ⊂ A such
that di(uj) = δi,j . Let A(d) = Zu1 ⊕ Zu2 ⊕ · · · ⊕ Zun, and A′(d) = {x ∈
A|di(x) = 0 ∀ i ∈ I}. Then it follows from (b) that A = A(d)⊕A′(d).

Case 1. Suppose that dim T = 2 and |I| = 1, say I = {1}. Choose d2 ∈ T
such that T = Fd1 ⊕ Fd2. Denote ex = tx(d1(x − z)d2 − d2(x − z)d1) for
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x ∈ Ad. It follows that {ex|x ∈ Ad \ {z}} is a basis of L = Sd(A, T, ϕ, z).
For any x, y ∈ Ad we have

[ex, ey] = [tx(d1(x− z)d2 − d2(x− z)d1), ty(d1(y − z)d2 − d2(y − z)d1)]

= tx+y
(
(d1(x− z)d2(y)− d2(x− z)d1(y))

· tx(d1(x− z)d2 − d2(x− z)d1)

− (d1(y − z)d2(x)− d2(y − z)d1(x))

· ty(d1(y − z)d2 − d2(y − z)d1)
)

= tx+y
(
d1(x− z)d2(y − z)− d2(x− z)d1(y − z)

)
· (d1(x + y − z)d2 − d2(x + y − z)d1)

=
∣∣∣∣ d1(x− z) d1(y − z)

d2(x− z) d2(y − z)

∣∣∣∣ ex+y.

Denote α(x) = −d2(x) − d2(z)d1(x), β(x) = d1(x) for x, y ∈ A. It is clear
that β(A) = Z. By Section 2.4 we know that L ' Lβ(A,α, β). Consequently
L is simple.

Case 2. Suppose that dim T = 2 and |I| = 2, say I = {1, 2}. Since
ϕ is nondegenerate, we get that A = A(d) = d1(A) ⊗ d2(A) ' Z ⊗ Z.
We may assume that di(x) = xi for x = (x1, x2) ∈ Z ⊗ Z. Thus Ad =(
(Z+− 1)⊗ (Z+− 1)

)
\ {(−1,−1)}. Same as Case 1, we define ex, x ∈ Ad.

Then we also have

[ex, ey] =
∣∣∣∣ d1(x− z) d1(y − z)

d2(x− z) d2(y − z)

∣∣∣∣ ex+y,

i.e.,

[ex, ey] =
∣∣∣∣ x1 + 1 y1 + 1

x2 + 1 y2 + 1

∣∣∣∣ ex+y, ∀ x, y ∈ Ad.

It is well known that the Lie algebra S+
2 ⊂ W+

2 has basis {tx1
1 tx2

2 (t2 ∂
∂t1

−
t1

∂
∂t2

)|(x1, x2) ∈ Ad}. It is easy to verify that the following linear map is an
isomorphism of Lie algebras:

Sd → S+
2 , ex 7→ tx1

1 tx2
2

(
t2

∂

∂t1
− t1

∂

∂t2

)
.

Thus Sd is also simple in this case.

Case 3. Suppose that dim T > 2.

If |I| = dim T = n, as we did in Case 2 we can deduce that L ' S+
n , the

special algebra of rank n. Thus in this case Sd is simple. Next we assume
that dim T > |I| = n > 0.
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Let J be a nonzero ideal of L. It is suffices to show that J = L. Choose
a nonzero element u ∈ J , say

(3.1) u =
m∑

i=1

txi∂i, xi ∈ Ad \ {z}, ∂i ∈ Txi−z

with m is minimal. Then x1, · · · , xm are distinct and ∂i 6= 0.

Claim 1. We have that m = 1.

Otherwise we suppose m > 1. Since Tz ⊂ L, from the minimality of m it
follows that

(x̂1)|Tz = (x̂2)|Tz = · · · = (x̂m)|Tz .

Thus

(3.2) x̂i − x̂j ∈ F ẑ, ∀ i, j ∈ {1, 2, · · · ,m}.

Subclaim. We can choose such an element u in (3.1) such that d1(x1) =
−1.

Suppose d1(x1) ≥ 0. If ∂1 ∈ Fd1, let y1 ∈ A#
1 , then

u′ = [ty1d1, u] =
m∑

i=1

ty1+xi(d1(xi)∂i − ∂i(y1)d1) ∈ J \ {0}

and d1(y1 + x1) < d1(x1). If ∂1 /∈ Fd1, then Ad,1 6⊂ ker(∂1), Otherwise we
can show that ∂1(Ad) = 0, it is impossible. We choose y1 ∈ Ad,1 \ ker(∂1).
We deduce that

u′ = [ty1d1, u] =
m∑

i=1

ty1+xi(d1(xi)∂i − ∂i(y1)d1) ∈ J \ {0},

and also d1(y1 +x1) < d1(x1). After finitely many steps of this kind process,
we get a nonzero element u in (3.1) such that d1(x1) = −1. Our subclaim
follows.

Without loss of generality we may assume that ∂1 = d1. From (3.2) it
follows that there exists λi ∈ F ∗ such that

x̂i = λiẑ + x̂1, ∀ i ∈ {2, · · · ,m}.

Since xi ∈ Ad, we have d1(xi) ≥ −1, then −λi ∈ N, the set of natural
numbers. Thus d1(x2) ≥ 0. If ∂2 ∈ Fd1, then

[tx1d1, t
x2∂2] = tx1+x2(d1(xi)∂i − ∂i(y1)d1) 6= 0.

It follows that

u′ = [tx1d1, u] =
m∑

i=2

tx1+xi(d1(xi)∂i − ∂i(y1)d1) ∈ J \ {0}.
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This contradicts the minimality of m. Consequently ∂2 /∈ Fd1. Choose z1 ∈
Ad,1 \ ker(∂2), then [tx1d1, t

z1d1] = 0 and [tz1d1, t
x2∂2] = tz1+x2(d1(x2)∂2 −

∂2(z1)d1) 6= 0. Thus

u′ = [tz1d1, u] =
m∑

i=2

tz1+xi(d1(xi)∂i − ∂i(z1)d1) ∈ J \ {0}.

It again contradicts the minimality of m. Therefore m = 1. Claim 1 follows.

Claim 2. We have Tz ⊂ J .

From Claim 1 we know that there exists a nonzero element tx∂0 ∈ J ,
where x ∈ Ad, ∂0 ∈ Tx−z.

Subcase 1. Suppose x ∈ A#
d,i for some i ∈ I, say x ∈ A#

d,1. Then ∂0 ∈ Fd1.
Thus txd1 ∈ J . For any ∂ ∈ T−x−z, from

[txd1, t
−x∂] = ∂ − ∂(x)d1 ∈ J,

and d1 /∈ T−x−z, we know that 〈d1, ∂ − ∂(x)d1|∂ ∈ T−x−z〉 = T . Hence
〈∂ − ∂(x)d1|∂ ∈ T−x−z〉 = T−z = Tz. therefore Tz ⊂ J .

Subcase 2. Suppose x ∈ A+
d . Define d(x) :=

∑n
i=1 di(x). If d1(x) > 0,

choose y1 ∈ A#
d,1. Since d1(x − z) 6= 0 and ∂0(x − z) = 0, we know that d1

and ∂0 are linearly independent. From the computation

[ty1d1, t
x∂0] = tx+y1(d1(x)∂0 − ∂0(y1)d1) 6= 0,

we get a nonzero element tx+y1(d1(x)∂0 − ∂0(y1)d1) ∈ J with d(x + y1) =
d(x) − 1. By repeatedly using this method, after finitely many steps we
deduce that there exists a nonzero element ty∂ ∈ J with y ∈ A0

d. If A#
d,i ⊂

ker(∂) for all i ∈ I, we infer that ∂(Ad) = 0. It contradicts Theorem 2.1(i).
Thus there exists an i ∈ I such that A#

d,i 6⊂ ker(∂), say A#
d,1 6⊂ ker(∂).

Choose z1 ∈ A#
d,1 \ ker(∂), then

[tz1d1, t
y∂] = −tz1+y∂(z1)d1 ∈ J \ {0}.

By Subcase 1 we obtain again that Tz ⊂ J . Similarly Tz ⊆ J for x ∈ Ad,i.
Thus Claim 2 is proved.

If x ∈ Ad and x̂ /∈ F ẑ, then Tz 6⊂ ker x̂. Choose ∂ ∈ Tz \ ker x̂. From
[∂, tx∂′] = ∂(x)tx∂′ ∈ J we know that txTx−z ⊂ J .

If y ∈ Ad \ {0} and ŷ ∈ F ẑ, it follows that y = −kz for some positive
integer k. Since {x̂|x ∈ A#

d,1} 6⊂ F ẑ, we choose x1 ∈ A#
d,1 with x̂1 /∈ F ẑ.

Since y 6= z, then di(y) > 0 for all i ∈ I. Note that ty−x1Ty−x1−z ⊂ J . Then,
for tx1d1, t

y−x1∂1 ∈ L, we have

[ty−x1∂1, tx1d1] = −ty(d1(y − x1)∂1 − ∂1(x)d1) ∈ J.
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Because 〈d1, d1(y−x1)∂1−∂1(x)d1|∂1 ∈ Ty−x1−z〉 = T . Then 〈d1(y−x1)∂1−
∂1(x)d1|∂1 ∈ Ty−x1−z〉 = Ty−z = Tz, hence Ly ∈ J . Therefore J = L. This
completes the proof of this theorem. �

Note that z /∈ Ad if |I| > 1, and z ∈ Ad if |I| = 1. The following corollary
follows directly from the above theorem.

Corollary 3.2. Suppose that Sd = Sd(A, T, ϕ, z) is simple. Then (Sd)x 6= 0
if and only if x ∈ Ad \ {z}.

4. Derivations of Sd(A, T, ϕ, z).

In this section we assume that the Lie algebra Sd(A, T, ϕ, z) is simple, and
we shall determine all the derivations of Sd(A, T, ϕ, z). From the proof of
Theorem 3.1 we know that:

(a) If I = ∅, Sd(A, T, ϕ, z) = S(A, T, ϕ, z), which was thoroughly studied
in [7];

(b) If |I| = dim T = n, Sd(A, T, ϕ, z) ' S+
n , which was studied in many

references, for example [12];
(c) If dim T = 2 and |I| = 1, Sd(A, T, ϕ, z) ' Lβ(A,α, β) for some suitable

α, β ∈ hom(A,F ), which was thoroughly studied in [8].
So from now on we always assume that 0 < |I| < dim T and dim T ≥ 3.

Write L = Sd(A, T, ϕ, z), I = {1, 2, · · · , n} and S+
d =

∑
x∈A+

d
(Sd)x. Recall

that L has an A-gradation with the following components of degree x ∈ A:

Lx =

{
0, for x = z

(txTx−z) ∩Wd, for x ∈ A \ {z}.

A derivation D of L is called homogeneous of degree x ∈ A if D(Ly) ⊂
Lx+y for all y ∈ A.

From direct computation we can easily obtain the following lemma.

Lemma 4.1. Every D ∈ Der(L) has the form

(4.1) D =
∑
y∈A

Dy,

where Dy is a derivation of L of degree y, such that for each u ∈ L there
are only finitely many y ∈ A with Dy(u) 6= 0.

First we construct some derivations of Sd. For any additive function
µ : A → F the linear map

Dµ(X) = µ(x)X, ∀ X ∈ (Sd)x

is a derivation of Sd of degree 0.

The following Lemmas 4.2-4.5 will be useful in the sequel.
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Lemma 4.2. Let x, y ∈ A \ {0}. Then Tx = Ty if and only if x̂ ∈ F ŷ.

This lemma is obvious.

Lemma 4.3. Let x1, x2 ∈ Ad \{z}. If one of the following conditions holds:
(a) x2 ∈ A+

d and x1 ∈ Ad,i for certain i ∈ I,
(b) x1, x2 ∈ A+

d and Tx1−z 6= Tx2−z,
then

(4.2) [Lx1 , Lx2 ] = Lx1+x2 .

Proof. Suppose (a) is satisfied. If di(x2) > 0, then di ∈ Tx1−z \(Tx2∪Tx2−z),
hence Fdi + 〈di(x2)∂ − ∂(x1)di|∂ ∈ Tx2−z〉 = T . We deduce that 〈di(x2)∂ −
∂(x1)di|∂ ∈ Tx2−z〉 = Tx1+x2−z. From

[tx1di, t
x2∂] = tx1+x2(di(x2)∂ − ∂(x1)di), ∀ ∂ ∈ Tx2−z,

we see that (4.2) follows.
If di(x2) = 0, then x1 + x2 ∈ Ad,i. If x1 + x2 = z further, it follows from

(Sd)z = 0 that (4.2) follows. Suppose x1 + x2 6= z, by Lemma 4.2 then
Tx2−z 6= Tx1 . Choose ∂ ∈ Tx2−z \ Tx1 , so [tx1di, t

x2∂] = −∂(x1)tx1+x2di.
Since (Sd)x1+x2 = Ftx1+x2di, hence (4.2) follows again.

Suppose (b) is satisfied. We have

(4.3) [tx1∂1, t
x2∂2] = tx1+x2(∂1(x2)∂2 − ∂2(x1)∂1)

for all ∂1 ∈ Tx1−z, ∂2 ∈ Tx2−z.
If x1 = 0, it follows from Tx1−z 6= Tx2−z that x̂2 /∈ F ẑ. Then Tx2 6= Tz.

Choose ∂1 ∈ Tx2 \ Tz. Then (4.2) follows from (4.3). Now we assume that
x1, x2 ∈ A+

d \ {0}.
We claim that Tx1−z 6= Tx2 or Tx1 6= Tx2−z. Otherwise from Tx1−z = Tx2

and Tx1 = Tx2−z, by Lemma 4.2 we obtain

d1(x2)(x1 − z) = (d1(x1) + 1)x2, d1(x1)(x2 − z) = (d1(x2) + 1)x1.

Then x1 = −d1(x1)z and x2 = −d1(x2)z, it contradicts Tx1−z 6= Tx2−z.
Hence our claim holds.

We assume that Tx1−z 6= Tx2 . If Tx1−z \ Tx2 ⊂ Tx2−z, then we deduce
that Tx1−z = Tx2 , it is impossible. So Tx1−z \ (Tx2 ∪ Tx2−z) 6= ∅. Choose
∂1 ∈ Tx1−z \(Tx2 ∪Tx2−z), then F∂1 +〈∂1(x2)∂2−∂2(x1)∂1|∂2 ∈ Tx2−z〉 = T .
Hence 〈∂1(x2)∂2 − ∂2(x1)∂1|∂2 ∈ Tx2−z〉 = Tx1+x2−z. From (4.3) it follows
that (4.2) holds. �

Lemma 4.4. For a fixed i ∈ I and a fixed x0 ∈ Ad \ {z} with di(x0) = 1,
the subspace

(Sd)x0 +
∑

x∈Ad, di(x)≤0

(Sd)x

generates Sd as a Lie algebra.
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Proof. Denote by M the subalgebra generated by the above subspace. We
shall show that (Sd)x ⊂ M for x ∈ Ad by induction on k = di(x). By
definition of M this is true for x ∈ Ad with di(x) < 1.

Claim 1. We can assume that x0 ∈ A0
d.

If dj(x0) = −1 for one j ∈ I \ {i}, choose uj ∈ A#
d,j , by Lemma 4.3 we

deduce that [(Sd)x0 , (Sd)−uj ] = (Sd)x0−uj ⊂ M . Note that dj(x0 − uj) = 0.
Then we may assume that x0 ∈ A+

d .
If dj(x0) > 0 for some j ∈ I \ {i}, also using uj ∈ A#

d,j , by Lemma 4.3
we obtain that [(Sd)x0 , (Sd)uj ] = (Sd)x0+uj ⊂ M . Note that dj(x0 + uj) =
dj(x0)−1. Thus after finitely many such steps we may assume that x0 ∈ A0

d.
This is our Claim 1.

Claim 2. There exists y0 ∈ A0
d \ {0} such that (Sd)x0 , (Sd)x0+y0 ⊂ M .

Since 1 < |I| < dim T we know that A0
d 6= 0. Choose y′ ∈ A0

d \ {0}. If
Tx0−z = Ty′−z, then x0− z = 2y′− 2z, i.e., x0− 2y′ + z = 0, we set y0 = 2y′.
If Tx0−z 6= Ty′−z we set y0 = y′. Thus y0 ∈ A0

d \ {0} and Tx0−z 6= Ty′−z.
Since (Sd)x0 , (Sd)y0 ⊂ M and [(Sd)x0 , (Sd)y0 ] = (Sd)x0+y0 (Lemma 4.3), then
(Sd)x0 , (Sd)x0+y0 ⊂ M . Claim 2 follows.

Suppose that x ∈ Ad with di(x) = 1. Note that Tx0−z = Tx−x0−z implies
x−x0−z = 2(x0−z), i.e., x−3x0−z = 0, and that Tx0+y0−z = Tx−x0−y0−z

implies x − 3x0 − 3y0 + z = 0. Then Tx0−z 6= Tx−x0−z or Tx0+y0−z 6=
Tx−x0−y0−z. Without loss of generality we assume that Tx0−z 6= Tx−x0−z.
By Lemma 4.3 we know that [(Sd)x−x0 , (Sd)x0 ] = (Sd)x. By noting that
(Sd)x−x0 , (Sd)x0 ⊂ M , we get that (Sd)x ⊂ M . So (Sd)x ⊂ M for x ∈ Ad

with di(x) ≤ 1.

Suppose that (Sd)x0 ⊂ M for all x0 ∈ Ad with di(x0) = k for a fixed k ≥ 1.
Consider x ∈ Ad with di(x) = k+1. Similar to the above argument we know
that Tx0−z 6= Tx−x0−z or Tx0+y0−z 6= Tx−x0−y0−z, say Tx0−z 6= Tx−x0−z,
By Lemma 4.3 we obtain that [(Sd)x−x0 , (Sd)x0 ] = (Sd)x. By noting that
(Sd)x−x0 , (Sd)x0 ⊂ M , we get that (Sd)x ⊂ M .

By induction we obtain that (Sd)x ⊂ M for all x ∈ Ad. This completes
the proof of Lemma 4.4. �

Lemma 4.5. (a) Suppose that D1, D2 are derivations of a Lie algebra g,
and that M ⊂ g generates g. If D1|M = D2|M , then D1 = D2.

(b) Suppose that D1, D2 ∈ Der(Sd) are homogeneous of degree y ∈ Ad. If
D1(u) = D2(u) for all u ∈ (Sd)x with x ∈ A+

d , i.e., D1|S+
d

= D2|S+
d
,

then D1 = D2.

Proof. (a) is obvious.
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(b) It suffices to show that D1(txd1) = D2(txd1) for x ∈ Ad,1. If x + y /∈
Ad\{z}, we see that D1(txd1) = D2(txd1) = 0. Suppose that x+y ∈ Ad\{z},
and that D1(txd1) = tx+y∂ 6= 0 and D2(txd1) = tx+y∂′. If ∂ 6= ∂′ we choose
x′ ∈ A+

d with x′ + x ∈ A+
d such that ∂(x′)− ∂′(x′) 6= 0. For any ∂1 ∈ Tx′−z,

we have
[tx

′
∂1, t

xd1] = tx
′+x(∂1(x)d1 − d1(x′)∂1).

Then [tx
′
∂1, t

x+y∂] = [tx
′
∂1, t

x+y∂′], i.e.,

∂1(x + y)∂ − ∂(x′)∂1 = ∂1(x + y)∂′ − ∂′(x′)∂1,

so, we deduce that

∂1(x + y)(∂ − ∂′) = (∂(x′)− ∂′(x′))∂1, ∀ ∂1 ∈ Tx′−z.

This is impossible since dim Tx′−z > 1. Thus we get a contradiction. Con-
sequently ∂ = ∂′, i.e., D1(txd1) = D2(txd1). �

Now we are ready to describe the homogeneous derivations Dy in (4.1).

Proposition 4.6. If y /∈ Ad, then every homogeneous derivation D of Sd

of degree y is 0.

Proof. We shall divide the proof into three cases.

Case 1. Suppose di(y) ≤ −3 for some i ∈ I.
From Corollary 3.2 we see that D((Sd)x) = 0 for all x ∈ Ad with di(x) ≤ 1.

By Lemmas 4.4 and 4.5 it follow that D = 0.

Case 2. Suppose d1(y) = −2 and di(y) ≥ −2 for all i ∈ I.
Then D((Sd)x) = 0 for x ∈ Ad with d1(x) ≤ 0. If |I| = 1, since (Sd)z = 0

then D((Sd)z−y) ⊂ (Sd)z = 0 and d1(z − y) = 1. By Lemma 4.4 it follows
that D = 0.

Suppose |I| > 1. Assume that {u1, u2, · · · , un} ⊂ A such that di(uj) =
−δi,j . If di(y) ≤ 0 for some i ∈ I \ {1}, it follows from d1(ui − u1 + y) =
−1, di(ui − u1 + y) < 0 that D((Sd)ui−u1) ⊂ (Sd)ui−u1+y = 0. By Lemmas
4.4 and 4.5, we also have D = 0.

Suppose |I| > 1 and di(y) > 0 for all i ∈ I \ {1}. Choose v1 ∈ A#
1 , v2 ∈

A#
2 . Let D(tv2−v1d2) = λtv2−v1+yd1 for some λ ∈ F . From [tv2−v1d2, d1 −

d2] = −2tv2−v1d2 and D(d1 − d2) = 0 we get that λ[tv2−v1+yd1, d1 − d2] =
−2λtv2−v1+yd1. Then λ(d1(y) − d2(y)) = 0. Since d1(y) − d2(y) < −3 we
obtain that λ = 0, i.e., D((Sd)vi−v1) = 0. By Lemmas 4.4 and 4.5, it follows
that D = 0.

Case 3. Suppose that |I| ≥ 2, that di(y) ≥ −1 for all i ∈ I and that
d1(y) = d2(y) = −1. We first show that D((Sd)x) = 0 for all x ∈ Ad with
d1(x) ≤ 0. If x + y /∈ Ad then D((Sd)x) ⊂ (Sd)x+y = 0. In particular,
D(Tz) = 0. Suppose x ∈ Ad with d1(x) = 0 and x+y ∈ Ad. then x+y ∈ A1

and d2(x) ≥ 1, di(x) ≥ 0, ∀ i > 1. If y 6= z then ŷ /∈ F ẑ. Choose ∂1 ∈ Tz \Ty.
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Let D(tx∂) = λtx+yd1 where λ ∈ F . Applying D to [∂1, t
x∂] = ∂1(x)tx∂,

we obtain that λ∂1(y) = 0. thus λ = 0. Consequently D((Sd)x) = 0 in this
case.

Suppose that y = z. Recall that x, x + y(= x + z) ∈ Ad, d1(x) = 0 and
di(x) > 0 for all i ∈ I \{1}. Choose uj ∈ A#

j , ∀ j ∈ I. For any x0 ∈ A0
d \{0}

we have

(4.4) [tx0∂, t−u1∂1] = −tx0−u1(∂(u1)∂1 + ∂1(x0)∂),

where ∂ ∈ Tx0−z, ∂1 ∈ Tu1+z. Let D(t−u1∂1) = λ∂1t
z−u1d2, where λ∂1 ∈ F .

Since x̂0, ẑ, û1 are linearly independent, we can choose ∂ ∈ Tx0−z∩Tz−u1 \Tz.
Then 〈∂(u1)∂1 + ∂1(x0)∂|∂1 ∈ Tu1+z〉 = Tx0−u1−z since ∂ /∈ Tu1+z and
〈∂, ∂(u1)∂1 + ∂1(x0)∂|∂1 ∈ Tu1+z〉 = T . Applying D to (4.4) we obtain that

−D(tx0−u1(∂(u1)∂1 + ∂1(x0)∂)) = [tx0∂, λ∂1t
z−u1d2]

= λ∂1∂(z − u1)tz−u1d2 = 0,

for all ∂1 ∈ Tu1+z. Then D((Sd)x0−u1) = 0. Similarly we can get
D((Sd)x0−u2) = 0. By [(Sd)−x0 , (Sd)x0−u2 ] = (Sd)−u2 we have D((Sd)−u2) =
0. By induction on k = d2(x) ≥ 2, and using [(Sd)−u2 , (Sd)x+u2 ] = (Sd)x,
we can obtain that D((Sd)x) = 0 for x ∈ Ad with d1(x) = 0.

Next we claim that D((Sd)−u1) = 0 for u1 ∈ A.

If y − u1 /∈ Ad we have D((Sd)−u1) ⊂ (Sd)y−u1 = 0.
Suppose that y − u1 ∈ Ad. Then di(y) ≥ 0 for all i ≥ 3. If y = z,

from the above argument we know that D((Sd)−u1) = 0. Suppose also
that y 6= z. Choose ∂1 ∈ Tz \ Ty. Let D(t−u1∂) = λ∂ty−u1d2 for ∂ ∈
Tz+u1 , where λ∂ ∈ F . Then by [∂1, t

−u1∂] = −∂1(u1)t−u1∂ we obtain that
[∂1, λ∂ty−u1d2] = −λ∂∂1(u1)t−u1d2. Thus λ∂∂1(y) = 0. Since ∂1(y) 6= 0 we
infer that λ∂ = 0. Consequently D((Sd)−u1) = 0 also. Therefore our claim
is true. By Lemmas 4.4 and 4.5 we conclude that D = 0 in this case. Hence
we have proved that D = 0 when y /∈ Ad. �

Proposition 4.7. Suppose that y ∈ Ad \ {0}, and that D ∈ Der(Sd) is
homogeneous of degree y.

(a) If y 6= z, there exists ty∂0 ∈ (Sd)y such that D = ad (ty∂0).
(b) If y = z, we have |I| = 1 and D ∈ F · ad (tyd1).

Proof. For any x ∈ Ad \ {z}, we define the linear map Dx : Tx−z → Tx+y−z

(or Dx : Fdi → Tx+y−z if x ∈ Ai) by D(tx∂) = tx+y(Dx∂). By applying D
to

[tx1∂1, t
x2∂2] = tx1+x2(∂1(x2)∂2 − ∂2(x1)∂1)

where x1, x2 ∈ Ad\{z} and ∂1 ∈ Tx1−z , ∂2 ∈ Tx2−z, we obtain that

〈Dx1∂1, x2〉∂2 − 〈Dx2∂2, x1〉∂1 + ∂1(x2 + y)Dx2∂2 − ∂2(x1 + y)Dx1∂1(4.5)

= Dx1+x2(∂1(x2)∂2 − ∂2(x1)∂1)
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holds for ∂1 ∈ Tx1−z, ∂2 ∈ Tx2−z, and x1, x2 ∈ Ad\{z}.
Case 1. Suppose that ŷ and ẑ are linearly independent. By setting x2 = 0
in (4.5) we obtain

(4.6) ∂1(y)D0(∂2) = ∂2(y)Dx1(∂1) + 〈D0(∂2), x1〉∂1.

By setting here x2 = 0 in (4.6) we obtain that

∂1(y)D0(∂2) = ∂2(y)D0(∂1).

Choose ∂2 ∈ Tz \ Ty, and denote ∂0 = ∂2(y)−1D0(∂2). Then we have ∂0 ∈
Ty−z and

(4.7) D0(∂1) = −∂1(y)∂0, ∀∂1 ∈ Tz.

Hence we can rewrite (4.6) as

∂2(y)(Dx1(∂1)− ∂1(y)∂0 + ∂0(x1)∂1) = 0.

Thus we deduce that

Dx1(∂1) = ∂1(y)∂0 − ∂0(x1)∂1.

It follows that D = −ad (ty∂0). Note that by now we have not known that
ty∂0 ∈ Sd yet. If ∂0 = 0 or y ∈ A+

d , from ∂0 ∈ Ty−z then ty∂0 ∈ Sd. If ∂0 6= 0
and y ∈ Ai for some i ∈ I, since Ai 6⊂ ker(∂0), choose x0 ∈ Ai \ ker(∂0).
Since D((Sd)x0) = 0 and D = ad (ty∂0), we deduce that

[ty∂0, t
x0di] = tx0+y(∂0(x0)di + ∂0) = 0.

Thus ∂0 = −∂0(x0)di. Hence ty∂0 ∈ Sd.

Case 2. Suppose that y = z. Then |I| = 1 and z ∈ A#
1 . Since D0((Sd)0) ⊂

(Sd)z = 0, we know that D0 = 0.

Claim 1. For x1 ∈ Ad \ {z} with x̂1 6∈ F ẑ, there exists a constant ax1 ∈ F
such that

(4.8) Dx1∂ = ax1∂, ∀ ∂ ∈ Tx1 ∩ Tz.

If x1 ∈ Ad \A+
d , clearly (4.8) is true. Next we suppose that x1 ∈ A+

d . By
setting ∂1 = ∂2 = ∂ ∈ Tx1 ∩ Tz and x2 = −z in (4.5), we obtain that

−〈Dx1∂, z〉∂ − 〈D−z∂, x1〉∂ = 0,

and so

(4.9) 〈D−z∂, x1〉 = −〈Dx1∂, z〉

holds. On the other hand, for x2 = −z, ∂2 = ∂ ∈ Tx1 ∩ Tz, and arbitrary
∂1 ∈ Tx1−z, (note that we allow x1 ∈ A1 here), (4.5) gives that

(4.10) 〈Dx1∂1, z〉∂ + 〈D−z∂, x1〉∂1 = ∂1(z)Dx1−z∂.
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By evaluating both sides at x1 and using ∂1(x1) = ∂1(z), we obtain that

∂1(z)[〈Dx1−z∂, x1〉 − 〈D−z∂, x1〉] = 0.

As x̂1 6∈ F ẑ, we can choose ∂1 ∈ Tx1−z \ Tz, and so

(4.11) 〈Dx1−z∂, x1〉 = 〈D−z∂, x1〉, ∀ ∂ ∈ Tx1 ∩ Tz.

By substituting x1 +z for x1 in (4.9), and using 〈D−z∂, z〉 = 0, we infer that

−〈Dx1−z∂, x1〉 = 〈D−z∂, x1〉

holds for ∂ ∈ Tx1 ∩Tz. By comparing this equation with (4.11), we conclude
that

(4.12) 〈D−z∂, x1〉 = 0, ∀ x1 ∈ Ad, ∂ ∈ Tx1 ∩ Tz.

Now (4.10) gives that

∂1(z)Dx1−z∂ = 〈Dx1∂1, z〉∂

for ∂1 ∈ Tx1−z, ∂ ∈ Tx1 ∩ Tz, x1 ∈ Ad, with x̂1 /∈ F ẑ. By choosing ∂1 ∈
Tx1−z \ Tz and setting ax1−z = 〈Dx1∂1,z〉

∂1(z) , then we have Dx1−z∂ = ax1−z∂,
thus

Dx1∂ = ax1∂, ∀ x1 ∈ Ad, ∂ ∈ Tx1 ∩ Tz.

Hence our first claim is proved.

Claim 2. If x1, x2 ∈ A+
d with x̂1, x̂2, x̂1 + x̂2 /∈ F ẑ, then

(4.13) ax1+x2 = ax1 + ax2 .

In order to prove this claim we shall consider first the case where x̂1, x̂2,
and ẑ are linearly independent. Then we can choose ∂1 ∈ (Tx1 ∩ Tz)\Tx2

and ∂2 ∈ (Tx2 ∩ Tz)\Tx1 . It follows that ∂1(x2)∂2 − ∂2(x1)∂1 is a nonzero
vector in Tx1+x2 ∩ Tz. By using the first claim, (4.5) gives that

(4.13′) (ax1+x2 − ax1 − ax2)[∂1(x2)∂2 − ∂2(x1)∂1] = 0,

and so (4.13) holds in this case.

Now assume that x̂1, x̂2 and ẑ are linearly dependent. Since dim T ≥ 3
we can choose w ∈ A such that x̂1, ŵ and ẑ are linearly independent. By
using the case already established, we have

ax1 = ax1+w + a−w = ax1 + aw + a−w,

and
ax1+x2 = ax1+w + ax2−w = ax1 + aw + ax2 + a−w,

and conclude again that (4.13) holds. Hence our second claim is proved.

Now let x ∈ A+
d with x̂ ∈ F ẑ and set ax = ax+v − av where v ∈ A+

d with
v̂ 6∈ F ẑ. By our second claim, ax+v − av is independent of the choice of v.
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With ax now defined for all x ∈ A+
d , it is easy to see that (4.13) is valid for

all x1, x2 ∈ A+
d .

We shall now remove the restriction x̂1 6∈ F ẑ in (4.8). Thus assume
that x̂1 ∈ F ẑ and x1 ∈ A+

d . We choose x2 ∈ A+
d so that x̂2 6∈ F ẑ, and

let ∂1 ∈ Tz and ∂2 ∈ Tx2 ∩ Tz. By using the first claim and ∂2(x1) =
∂1(y) = 0, the equation (4.5) gives 〈Dx1∂1, x2〉∂2 = ax1∂1(x2)∂2. Hence
〈(Dx1 − ax1)∂1, x2〉 = 0 for all x2 ∈ A+

d with x̂2 6∈ F ẑ, and so (4.8) holds
also for x̂1 ∈ F ẑ.

For x ∈ A+
d , we define linear maps D′

x : Tx−z → T by D′
x∂ = Dx∂ − ax∂.

By Claim 1, Tx∩Tz is contained in the kernel of D′
x. In particular, if x̂ ∈ F ẑ

and x 6= z, then D′
x = 0. If x̂ 6∈ F ẑ, then Tx ∩ Tz is a hyperplane in Tx−z,

and so the vector

(4.14) ∂x :=
D′

x∂

∂(y)

is independent of the choice of ∂ ∈ Tx−z\Tz (note that y = z). Thus we
have

(4.15) D′
x∂ = ∂(y)∂x, ∀ x ∈ A+

d , ∂ ∈ Tx−z.

If x̂ ∈ F ẑ, then ∂x is not defined but (4.15) is also valid because D′
x = 0 and

∂(y) = 0 for ∂ ∈ Tx−z = Tz.

By substituting D′
x1

+ ax1 for Dx1 and making similar substitutions for
Dx2 and Dx1+x2 in (4.5), we obtain that

〈D′
x1

∂1, x2〉∂2 − 〈D′
x2

∂2, x1〉∂1 + ∂1(x2 + y)D′
x2

∂2

− ∂2(x1 + y)D′
x1

∂1 + ax2∂1(x)∂2 − ax1∂2(x)∂1

= D′
x1+x2

(∂1(x2)∂2 − ∂2(x1)∂1)

holds for x1, x2 ∈ A+
d , ∂1 ∈ Tx1−z and ∂2 ∈ Tx2−z.

By using (4.15) and similar expressions for D′
x2

and D′
x1+x2

, the last
equation can be rewritten as follows

∂1(y)[ax2 + ∂x1(x2)]∂2 − ∂2(y)[ax1 + ∂x2(x1)]∂1(4.16)

= [∂1(x2)∂2(y)− ∂2(x1)∂1(y)]∂x1+x2

+ ∂1(y)∂2(x1 + y)∂x1 − ∂2(y)∂1(x2 + y)∂x2 .

Claim 3. The vector ∂x for x ∈ A+
d with x̂ /∈ F ẑ are independent of x.

Suppose x1, x2 ∈ A+
d with x̂1, x̂2, x̂1 + x̂2 /∈ F ẑ. For ∂1 ∈ Tx1 ∩ Tz \ {0}

and ∂2 ∈ Tx2−z\Tz, (4.16) gives

(4.17) ∂1(x2)(∂x2 − ∂x1+x2) = [ax1 + ∂x2(x1)]∂1.
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If x̂1, x̂2, ẑ are linearly dependent, we see that ∂1(x2) = 0. Thus we obtain
from (4.17) that ax1 = −∂x2(x1).

Assume that x̂1, x̂2, ẑ are linearly independent. Then ∂1 ∈ Tx1 ∩ Tz can
be chosen so that ∂1(x2) 6= 0. By evaluating both sides of (4.17) at x1, we
obtain that ∂1(x2)(∂x2(x1) − ∂x1+x2(x1)) = 0. Since ∂1(x2) 6= 0 we deduce
that

(4.18) ∂x2(x1) = ∂x1+x2(x1), ∀ x1, x2 ∈ A+
d , with x̂1, x̂2, x̂1 + x̂2 /∈ F ẑ.

Symmetrically we have

∂x1(x2) = ∂x1+x2(x2), ∀ x1, x2 ∈ A+
d , with x̂1, x̂2, x̂1 + x̂2 /∈ F ẑ.

By evaluating (4.17) at x2 we get

ax1 = ∂x2(x2 − x1)− ∂x1+x2(x2),

i.e.,

ax1 = ∂x2(x2 − x1)− ∂x1(x2).(4.19)

By evaluating (4.17) at z, we find

∂x1+x2(z) = ∂x2(z) = ∂x1(z).

By evaluating (4.16) at z, we find that

∂1(z)∂2(z)[∂x1(x2)− ∂x2(x1) + ax2 − ax1 ] = 0.

Since we can choose ∂1 ∈ Tx1−z and ∂2 ∈ Tx2−z such that ∂1(z)∂2(z) 6= 0,
we infer that

ax1 − ax2 = ∂x1(x2)− ∂x2(x1).

By replacing x1 with x1 + x2 and using Claim 2, we obtain the equation

ax1 = ∂x1+x2(x2)− ∂x2(x1 + x2) = ∂x1(x2)− ∂x2(x1 + x2).

Combining this with (4.19), we deduce that ∂x1(x2) = ∂x2(x2). Consider-
ing (4.19) also we have ax1 = −∂x2(x1). So ∂x1(x2) is independent of x1,
consequently ∂x1 is independent of x1. Then Claim 3 is proved.

Denote −∂x (x ∈ A+
d with x̂ /∈ F ẑ) by ∂0. So we have

ax = ∂0(x), ∀ x ∈ A+
d , with x̂ /∈ F ẑ.

By the definition of ax1 for x ∈ A+
d with x̂ /∈ F ẑ, we also have

(4.20) ax = ∂0(x), ∀ x ∈ A+
d .

Combining this with (4.15), we deduce that

(4.21) Dx∂ = −∂(y)∂0 + ∂0(x)∂, ∀ x ∈ A+
d , ∂ ∈ Tx−z.

So D|S+
d

= ad (ty∂0)|S+
d
. By Lemma 4.5 we see that D = ad (ty∂0).
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Choose x ∈ A0
d\{0}, and ∂ ∈ Tx−z\Tz. We see that D((Sd)x) ⊂ (Sd)x+z =

Ftx+zd1, i.e., Dx∂ = λ∂d1 for some λ∂ ∈ F . Combining this with (4.21), we
infer that

λ∂d1 = −∂(y)∂0 + ∂0(x)∂.

Since d1 /∈ Tx−z and dim Tx−z ≥ 2 we conclude from the above equation that
∂0(x) = 0. Furthermore we deduce that ∂0 = λ∂∂(y)−1d1, i.e., ∂0 ∈ Fd1.

Case 3. Suppose that y = −λz, where λ ∈ N = {1, 2, 3, . . . }.
By setting x2 = 0 in (4.5) we obtain

∂1(y)D0(∂2) = 〈D0(∂2), x1〉∂1,

for ∂1 ∈ Tx1−z, ∂2 ∈ Tz. Since dim Tx1−z ≥ 2 we deduce that 〈D0(∂2), x1〉 =
0 for all x ∈ Ad. It follows that D0(∂2) = 0 for ∂2 ∈ Tz, i.e., D0 = 0.

Now we show that Claim 1 is also true in this case.
First suppose that x1 ∈ A+

d with −x1 ∈ Ad and x̂ /∈ F ẑ. Since x̂ /∈ F ẑ

and −x1 − z ∈ A+
d , we can choose ∂2 ∈ T−x1−z\Tz. By setting x2 = −x1

and ∂1 = ∂ ∈ Tx1 ∩ Tz in (4.5) and using D0 = 0 we obtain that

∂2(x1 + y)Dx1(∂) + 〈Dx1(∂), x1〉∂2 + 〈D−x1(∂2), x1〉∂ = 0.

By evaluating the above equation at x1 + y − z and by using 〈Dx1(∂), x1 +
y − z〉 = 0, ∂(x1) = ∂(y) = ∂(z) = 0, we conclude that 〈Dx1(∂), x1〉 = 0,
and consequently

∂2(x1 + y)Dx1(∂) = −〈D−x1(∂2), x1〉∂,

holds for all ∂ ∈ Tx1∩Tz and ∂2 ∈ T−x1−z. Since ∂2(x1+y) = −(λ+1)∂2(z) 6=
0, then (4.8) holds for x1 ∈ A+

d with −x1 ∈ Ad and x̂ /∈ F ẑ.

We shall show (4.8) for x1 ∈ A+
d by induction on d(x1) :=

∑
i∈I di(x1).

This has been proved for all x1 with d(x1) ≤ 1. Now suppose (4.8)
holds for all x1 with d(x1) ≤ k (≥ 1). Consider x2 ∈ A+

d with d(x2) =
k + 1. Choose x0 ∈ A+

d with d(x0) = 1 and with x̂0, x̂2, ẑ being linearly
independent. By inductive hypothesis we have

Dx0∂
′ = ax0∂

′, ∀ ∂′ ∈ Tx0 ∩ Tz,

Dx2−x0∂ = ax2−x0∂, ∀ ∂ ∈ Tx2−x0 ∩ Tz.

By replacing x1 with x0, x2 with x2− x0, ∂1 with ∂′0, ∂2 with ∂ respectively
in (4.5), we obtain that

(4.22) Dx2(∂
′
0(x2)∂ − ∂(x0)∂′0) = (ax0 + ax2−x0)(∂

′
0(x2)∂ − ∂(x0)∂′0)

for all ∂′0 ∈ Tx0 ∩ Tz, ∂ ∈ Tx2−x0 ∩ Tz. It suffices to show that

〈∂′0(x2)∂ − ∂(x0)∂′0|∂′0 ∈ Tx0 ∩ Tz, ∂ ∈ Tx2−x0 ∩ Tz〉 = Tx2 ∩ Tz.

Choose ∂′0 ∈ (Tx0 ∩ Tz)\Tx2 , then

F∂′0 + 〈∂′0(x2)∂ − ∂(x0)∂′0|∂ ∈ Tx2−x0 ∩ Tz〉 = F∂′0 + Tx2−x0 ∩ Tz
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is codimension 1 in T . Hence the subspace

〈∂′0(x2)∂ − ∂(x0)∂′0|∂ ∈ Tx2−x0 ∩ Tz〉⊂Tx2 ∩ Tz

is codimension 2 in T . Therefore (4.22) holds. Thus there exists ax2 ∈ F
such that Dx2∂ = ax2∂ for all ∂ ∈ Tx2 ∩ Tz. Consequently Claim 1 is true.

Exactly the same as that in Case 2, Claim 2 is true in this case also.

Now same as in Case 2, we define ax for x ∈ A+
d with x̂ ∈ F ẑ and we can

remove the restriction x̂ /∈ F ẑ in (4.8), then we can also define the linear
map D′

x, the vector ∂x in (4.14) for x ∈ A+
d with x̂ /∈ F ẑ, and same as before

we also get equations (4.15), (4.16).

Now we claim that Claim 3 is true in this case also. The proof is exactly
the same as it was in Case 2.

We also denote −∂x (x ∈ A+
d with x̂ /∈ F ẑ) by ∂0. So we have

ax = ∂0(x), ∀ x ∈ A+
d , with x̂ /∈ F ẑ.

The same as in Case 2, Equations (4.20) and (4.21) are true. So D|S+
d

=
ad (ty∂0)|S+

d
. By Lemma 4.5 we see that D = ad (ty∂0). By definition of ∂0

we know that ty∂0 ∈ (Sd)y.

By now we have completed the proof of Proposition 4.7. �

Proposition 4.8. Suppose that D ∈ Der(Sd) is homogeneous of degree 0.
Then there exists a ν ∈ hom(A,F ) such that D = Dν .

Proof. For any x ∈ A+
d , we define the linear map Dx : Tx−z → Tx−z (or

Dx : Fdi → Fdi if x ∈ Ai) by D(tx∂) = tx+y(Dx∂). If ∂ ∈ Tx1−z, then
∂(x1) = ∂(z) and 〈Dx1∂, x1〉 = 〈Dx1∂, z〉. As x = 0, the equation (4.5)
takes the form

〈Dx1∂1, x2〉∂2 − 〈Dx2∂2, x1〉∂1 + ∂1(x2)Dx2∂2 − ∂2(x1)Dx1∂1(4.23)

= Dx1+x2(∂1(x2)∂2 − ∂2(x1)∂1)

where ∂1 ∈ Tx1−z, ∂2 ∈ Tx2−z, and x1, x2 ∈ A+
d . By setting v = 0 in (4.23),

we obtain that 〈D0∂2, x1〉∂1 = 0. Hence D0 = 0.

We claim that (4.8) holds for x1 ∈ Ad\{z} and ∂ ∈ Tx1 ∩ Tz.
If x1 ∈ Ad\A+

d , (4.8) holds clearly. Next suppose that x ∈ A+
d .

First suppose that x1 ∈ A+
d with −x1 ∈ Ad and x̂ /∈ F ẑ. Since x̂ /∈ F ẑ

and −x1 − z ∈ A+
d , we can choose ∂2 ∈ T−x1−z\Tz. By setting x2 = −x1

and ∂1 = ∂ ∈ Tx1 ∩ Tz in (4.23) and using D0 = 0, we obtain that

∂2(x1)Dx1(∂) + 〈Dx1(∂), x1〉∂2 + 〈D−x1(∂2), x1〉∂ = 0.
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By evaluating the above equation at x1−z and by using 〈Dx1(∂), x1−z〉 = 0,
∂(x1) = ∂(z) = 0, we conclude that 〈Dx1(∂), x1〉 = 0, and consequently

∂2(x1)Dx1(∂) = −〈D−x1(∂2), x1〉∂,

holds for all ∂ ∈ Tx1 ∩Tz and ∂2 ∈ T−x1−z. Since ∂2(x1) = −∂2(z) 6= 0, then
(4.8) holds for x1 ∈ A+

d with −x1 ∈ Ad and x̂ /∈ F ẑ.

We shall show (4.8) for x1 ∈ A+
d by induction on d(x1) :=

∑
i∈I di(x1).

This has been proved for all x1 with d(x1) ≤ 1. Now suppose (4.8)
holds for all x1 with d(x1) ≤ k (≥ 1). Consider x2 ∈ A+

d with d(x2) =
k + 1. Choose x0 ∈ A+

d with d(x0) = 1 and with x̂0, x̂2, ẑ being linearly
independent. By inductive hypothesis we have

Dx0∂
′ = ax0∂

′, ∀ ∂′ ∈ Tx0 ∩ Tz,

Dx2−x0∂ = ax2−x0∂, ∀ ∂ ∈ Tx2−x0 ∩ Tz.

By replacing x1 with x0, x2 with x2− x0, ∂1 with ∂′0, ∂2 with ∂ respectively
in (4.23), we obtain that

Dx2(∂
′
0(x2)∂ − ∂(x0)∂′0) = (ax0 + ax2−x0)(∂

′
0(x2)∂ − ∂(x0)∂′0)

for all ∂′0 ∈ Tx0 ∩ Tz, ∂ ∈ Tx2−x0 ∩ Tz. It suffices to show that

〈∂′0(x2)∂ − ∂(x0)∂′0|∂′0 ∈ Tx0 ∩ Tz, ∂ ∈ Tx2−x0 ∩ Tz〉 = Tx2 ∩ Tz.

Choose ∂′0 ∈ (Tx0 ∩ Tz)\Tx2 , then

F∂′0 + 〈∂′0(x2)∂ − ∂(x0)∂′0|∂ ∈ Tx2−x0 ∩ Tz〉 = F∂′0 + Tx2 ∩ Tz

is codimension 1 in T . Hence the subspace

〈∂′0(x2)∂ − ∂(x0)∂′0|∂ ∈ Tx2−x0 ∩ Tz〉⊂Tx2 ∩ Tz

is codimension 2 in T . Therefore (4.23) holds. Thus there exists ax2 ∈ F
such that Dx2∂ = ax2∂ for all ∂ ∈ Tx2 ∩ Tz. Consequently our claim about
(4.8) is true.

Exactly the same as that in Case 2 in the proof of Proposition 4.7, Claim
2 in the proof of Proposition 4.7 is true in this case also.

Now as in Case 2 of the proof of Proposition 4.7, we define ax for x ∈
Ad\{z} with x̂ ∈ F ẑ and we can remove the restriction x̂ /∈ F ẑ in (4.8).
Then we have obtained that:

(a) For any x ∈ Ad \ {z}, there exists a constant ax ∈ F such that

(4.8′) Dx∂ = ax∂, ∀ ∂ ∈ Tx ∩ Tz.

(b) For all x1, x2 ∈ A+
d ,

ax1+x2 = ax1 + ax2 .

Now we claim that, for any x ∈ Ad \ {z},
(4.24) Dx∂ = ax∂, ∀ ∂ ∈ Tx−z.
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If x̂ ∈ F ẑ, this follows from (4.8′) since Tx ∩ Tz = Tx ∩ Tz = Tz. If
x ∈ Ad \ (A+

d ∪ {z}), (4.24) is clear. Next we suppose x ∈ A+
d with x̂ /∈ F ẑ.

We shall show this by induction on d(x) :=
∑

i∈I di(x).
If d(x) = 0, by replacing D with D + Dµ for a suitable µ ∈ hom(A,F ),

we may assume that ax 6= 0. For ∂ ∈ Tx−z\Tz let D(tx∂) = axtx∂′. For any
i ∈ I, ui ∈ Ai, appling D to [tx∂, tuidi] = tx+ui∂(ui)di, we obtain that

[axtx∂′, tuidi] + [tx∂, auit
uidi] = (ax + aui)t

x+ui∂(ui)di.

We deduce that ax(∂ − ∂′)(ui)di = 0. Thus ∂(ui) = ∂′(ui) for all ui ∈ Ai

and any i ∈ I. So we obtain that ∂ = ∂′.
Suppose (4.24) holds for any x ∈ Ad \ {z} with d(x) ≤ k where k ≥ 0.

Consider x1 ∈ A+
d \(Zz) with d(x1) = k + 1. Suppose tx1∂ ∈ (Sd)x1 with

∂ ∈ Tx−z\Tz. For any i ∈ I and any ui ∈ Ai, we know that D|(Sd)x1+ui
=

ax1+ui |(Sd)x1+ui
. By replacing D with D + Dµ for a suitable µ ∈ hom(A,F ),

we may assume that ax1 6= 0. Let D(tx1∂) = ax1t
x1∂′. Appling D to

[tx1∂, tuidi] = tx1+ui(∂(ui)di − di(x1)di), we obtain that

ax1 [t
x1∂′, tuidi] + [tx1∂, auit

uidi] = (ax1 + aui)t
x1+ui(∂(ui)di − di(x1)di).

Then we infer that di(x1)(∂ − ∂′) = (∂ − ∂′)(ui)di. If (∂ − ∂′)(ui) 6= 0, we
deduce that di ∈ Tx1−z. This contradicts the fact that x1 ∈ A+

d . So we
deduce that ∂(ui) = ∂′(ui) for all ui ∈ Ai, any i ∈ I. Thus ∂ = ∂′.

By induction we see that (4.24) is true. Define ν ∈ hom(A,F ) so that
ν(x) = ax for allx ∈ A+

d . Then we see that D|S+
d

= ad (ty∂0)|S+
d
. By Lemma

4.5 we conclude that D = Dν . �

We now summarize the results on derivations of Sd(A, T, ϕ, z) obtained
in this section.

Theorem 4.9. Every D ∈ Der(Sd(A, T, ϕ, z)) has the form D =
∑

y∈A Dy

for degree y derivations Dy, such that for each u ∈ Sd(A, T, ϕ, z) there only
finitely many y ∈ A with Dy(u) 6= 0, where

(a) Dy = ad (ty∂0) for some ty∂0 ∈ (Sd)y if y ∈ Ad \ {0, z};
(b) Dy = aad (tyd1) for some a ∈ F if y = z ∈ Ad;
(c) Dy = Dν for some ν ∈ hom(A,F ) if y = 0.

As in [3, Proposition 3.3], we also have that the sum D =
∑

y∈A Dy in
the above Theorem is finite if dim T < ∞.
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