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In this paper we study n-dimensional compact minimal
submanifolds in Sn+p with scalar curvature S satisfying the
pinching condition S > n(n − 2). We show that for p ≤ 2
these submanifolds are totally geodesic (cf. Theorem 3.2 and
Corollary 3.1). However, for codimension p ≥ 2, we prove the
result under an additional restrictions on the curvature ten-
sor corresponding to the normal connection (cf. Theorem 3.1
and Corollary 4.1). We also show that the scalar curvature S
of a non-totally geodesic n-dimensional non-negatively curved
minimal submanifold in Sn+p with flat normal connection sat-
isfies n(n − p − 1) ≤ S ≤ n(n − 2) (cf. Theorem 4.1). Since
for a compact hypersurface M of Sn+1 the normal connection
is flat, we use the above estimate for a scalar curvature S of
a non-negatively curved minimal hypersurface M in Sn+1 to
infer that either M is totally geodesic or else it is isometric

to the hypersurface Sm
(√

m
n

)
×Sn−m

(√
n−m

n

)
. As a conse-

quence this result, we conclude that the only non-negatively
curved compact minimal hypersurfaces in Sn+1 which are dif-
feomorphic to Sn is totally geodesic sphere.

1. Introduction.

Let M be an n-dimensional compact minimal submanifold in a unit sphere
Sn+p. One of the interesting questions in the geometry of the minimal
submanifolds of Sn+p is to obtain conditions under which they are totally
geodesic. These conditions generally involve the pinching of the sectional
curvatures, Ricci curvatures, or the scalar curvature (or equivalently the
square of the length of the second fundamental form). In [3] for n ≥ 4, it
is proved that if the Ricci curvatures of a minimal submanifold in Sn+p are
greater than n−2, then M is totally geodesic, where n = dim M . For n = 3
also the above result holds and is proved in [6]. As a natural generalization of
this result one may expect that if the scalar curvature S of an n-dimensional
compact minimal submanifold of Sn+p satisfies S > n(n − 2), then M is
totally geodesic. This will improve all the existing results involving pinching
of the scalar curvature for the minimal submanifolds of Sn+p, and specially
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that in [2]. However, it is not known whether this result holds even in
dimension 3. Recently in [6] a slightly courser (than expected above) result
is proved in dimension 3, namely there it is shown that for a 3-dimensional
compact minimal submanifold M of S3+p, the condition S > 4 implies that
M is totally geodesic.

In this paper we study n-dimensional compact minimal submanifolds in
Sn+p with scalar curvature satisfying the pinching condition S > n(n− 2).
We show that for p ≤ 2 these submanifolds are totally geodesic (cf. Theorem
3.2 and Corollary 3.1). However, for codimension p ≥ 2, we have to put addi-
tional restrictions on the curvature tensor corresponding to the normal con-
nection to get the result (cf. Theorem 3.1 and Corollary 4.1). We also show
that the scalar curvature S of a non-totally geodesic n-dimensional non-
negatively curved minimal submanifold in Sn+p with flat normal connection
satisfies n(n−p−1) ≤ S ≤ n(n−2) (cf. Theorem 4.1). Since for a compact
hypersurface M of Sn+1 the normal connection is flat, we use the above
estimate for the scalar curvature S of a non-negatively curved minimal hy-
persurface M in Sn+1 to infer (cf. Corollary 4.2), that either M is totally ge-

odesic or else it is isometric to the hypersurface Sm
(√

m
n

)
×Sn−m

(√
n−m

n

)
considered in [2].

As a consequence of Corollary 4.2, we conclude that the only non-negativ-
ely curved compact minimal hypersurface in Sn+1 which is diffeomorphic to
Sn is totally geodesic sphere, giving a result in the direction of a question
asked by Yau in [7] (cf. p. 692, Problem 99).

2. Preliminaries.

Let M be an n-dimensional compact minimal submanifold of the unit sphere
Sn+p. We denote by g the Riemannian metric on Sn+p as well as that
induced on M , and by ∇̄ and ∇ the Riemannian connections Sn+p on M
and respectively. Then we have

∇̄XY = ∇XY + h(X, Y ), ∇̄XN = −ANX +∇⊥XY,(2.1)

X, Y ∈ χ(M), N ∈ Γ(ν), where h is the second fundamental form, χ(M) is
the Lie algebra of smooth vector fields on M , Γ(ν) is the space of smooth
sections of the normal bundle ν of M , ∇⊥ is the normal connection and
AN is the Weingarten map corresponding to the normal N ∈ Γ(ν) which
satisfies

g(ANX, Y ) = g(h(X, Y ), N), X, Y ∈ χ(M), N ∈ Γ(ν).(2.2)
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For the submanifold M the equations of Gauss, Codazzi and Ricci are re-
spectively

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + Ah(Y,Z)X −Ah(X,Z)Y(2.3)

(∇h) (X, Y, Z) = (∇h)(Y, Z, X)(2.4)

R⊥(X, Y,N1, N2) = g ([ANI
, AN2 ](X), Y )(2.5)

for X, Y, Z ∈ χ(M), N1, N2 ∈ Γ(ν), where R,R⊥ are the curvature tensors
corresponding to the connections ∇ and ∇⊥ respectively and the covariant
derivative (∇h)(X, Y, Z) is given by

(∇h)(X, Y, Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

The second covariant derivative (∇2h)(X, Y, Z,W ) is defined as

(∇2h)(X, Y, Z,W ) = ∇⊥X(∇h)(Y, Z, W )− (∇h)(∇XY, Z, W )

− (∇h)(Y,∇XZ,W )− (∇h)(Y, Z,∇XW )

and we have the Ricci identity

(∇2h)(X, Y, Z,W )− (∇2h)(Y, X,Z,W )(2.6)

= R⊥(X, Y )h(Z,W )− h(R(X, Y )Z,W )− h(Z,R(X, Y )W ).

For a local orthonormal frame {e1, . . . , en} on M , as M is a minimal
submanifold we have∑

i

h(ei, ei) = 0,
∑

i

(∇h)(X, ei, ei) = 0,
∑

i

(∇2h)(X, Y, ei, ei) = 0.(2.7)

Let Ric be the Ricci tensor of M . Then the Ricci operator Q is a sym-
metric operator defined by

Ric (X, Y ) = g(Q(X), Y ), X, Y ∈ χ(M).

The Gauss Equation (2.3) gives the following expression for the Ricci oper-
ator Q of the minimal submanifold M

Q(X) = (n− 1)X −
∑

i

Ah(ei,X)ei,(2.8)

where {e1, . . . , en} is a local orthonormal frame on M . The scalar curvature
S =

∑
i Ric (ei, ei) of the minimal submanifold is given by

S = n(n− 1)− ‖h‖2 ,(2.9)

where ‖h‖2 =
∑

ij ‖h(ei, ej)‖2 is the square of the length of the second
fundamental form.
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Lemma 2.1. Let M be an n-dimensional compact minimal submanifold of
the unit sphere Sn+p. Then

(2.10)
∫

M

{
‖∇h‖2 +

∑
ijk

[
R⊥(ek, ei;h(ej , ek), h(ei, ej))

−R(ek, ei; ej , Ah(ei,ej)ek)
]

+
∑
ij

Ric
(
ei, Ah(ei,ej)ej

)}
dv = 0.

Proof. Define f : M → R by f = 1
2 ‖h‖

2. Then the Laplacian of f given by

∆f =
∑

k

[ekek(f)−∇ek
ek(f)] ,

can be shown to satisfy

∆f =
∑
ijk

g
(
(∇2h)(ek, ek, ei, ej), h(ei, ej)

)
+
∑
ijk

‖(∇h)(ei, ej , ek)‖2 .

Now, using the Ricci identity (2.6) and Equations (2.4), (2.7) in the above
equation and integrating the resulting equation we get the integral formula
(2.10).

Next we define ‖R‖2 the square of the length of the curvature tensor field
of M by

‖R‖2 =
∑
ijk

‖R(ei, ej)ek‖2 ,

where {e1, . . . , en} is a local orthonormal frame on M . Then using Equa-
tions (2.3) and (2.7) we immediately get:

Lemma 2.2. Let M be an n-dimensional compact minimal submanifold of
the unit sphere Sn+p. Then

‖R‖2 = 2n(n− 1)− 4 ‖h‖2 + 2 ‖Ah‖2(2.11)

− 2
∑
ijk

g
(
Ah(ej ,ek)ei, Ah(ei,ek)ej

)
where ‖Ah‖2 =

∑
ijk

∥∥∥Ah(ei,ej)ek

∥∥∥2
and {e1, . . . , en} is a local orthonormal

frame on M .

Lemma 2.3. Let M be an n-dimensional compact minimal submanifold of
the unit sphere Sn+p. Then∑

ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)
=

1
2
‖R‖2 − S,(2.12)

where S is the scalar curvature of M and {e1, . . . , en} is a local orthonormal
frame on M .
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Proof. Equation (2.3) implies

Ah(ei,ej)ek = R(ek, ei)ej + Ah(ek,ej)ei − δijek + δkjei.

Taking inner product with Ah(ei,ej)ek in the above equation and noticing
that ∑

ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)
= −

∑
ijk

R
(
ek, ei; ej , Ah(ek,ej)ei

)
we get (2.12).

3. Minimal submanifolds with pinched scalar curvature.

Let M be an n-dimensional compact minimal submanifold of the unit sphere
Sn+p. We choose a local orthonormal frames {e1, . . . , en} on M and {N1, ...,
Np} that of normals and define the function K⊥ : M → R by

K⊥ =
∑
ijαβ

[
R⊥(ei, ej , Nα, Nβ

]2
and call it the normal curvature of the minimal submanifold. We also define
a function ϕ : M → R by

ϕ = 2
∑
α<β

‖Aα‖2 ‖Aβ‖2 ,

where Aα = ANα is the Weingarten map in the direction of the normal
vector Nα.

Theorem 3.1. Let M be an n-dimensional compact minimal submanifold
of the unit sphere Sn+p. If the scalar curvature S and the normal curvature
K⊥ of M satisfy S > n(n− 2) and K⊥ ≤ ϕ respectively, then M is totally
geodesic.

Proof. Let {e1, . . . , en} be a local orthonormal frame on M . Then Equations
(2.3) and (2.8) imply

Ah(ej ,ek)ei = R(ei, ek)ej − δkjei + δijek + Ah(ei,ej)ek.(3.1) ∑
k

Ah(ej ,ek)ek = (n− 1)ej −Q(ej).(3.2)

Taking inner product in (3.1) with Ah(ei,ej)ek, we arrive at∑
ijk

g
(
Ah(ei,ej)ek, Ah(ej ,ek)ei

)
(3.3)

= ‖Ah‖2 +
∑
ijk

R
(
ei, ek; ej , Ah(ei,ej)ek

)
− ‖h‖2 .
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Similarly Equation (3.2) gives

(3.4)
∑
ijk

g
(
Ah(ej ,ek)ek, Ah(ei,ej)ei

)
= (n− 1) ‖h‖2

−
∑
ij

Ric
(
ej , Ah(ei,ej)ei

)
.

Now, using Equations (3.3) and (3.4) in (2.5) we arrive at

R⊥ (ek, ei, h(ei, ej), h(ej , ek)) =
∑
ijk

R
(
ei, ek; ej , Ah(ei,ej)ek

)
(3.5)

+
∑
ij

Ric
(
ej , Ah(ei,ej)ei

)
+ ‖Ah‖2 − n ‖h‖2 .

For a local orthonormal frame {N1, . . . , Np} of normals we have∑
ij

Ric
(
ej , Ah(ei,ej)ei

)
=
∑
αij

g(Aαei, ej)Ric(ej , Aαei)

=
∑
αi

g(Aαei, ej)Ric

∑
j

g(Aαei, ej)ej , Aαei

(3.6)

=
∑
αi

Ric(Aαei, Aαei).

Now, using (2.8) in (3.6) we arrive at∑
ij

Ric
(
ej , Ah(ei,ej)ei

)
= (n− 1)

∑
αi

‖Aαei‖2 −
∑
αij

‖h(ej , Aαei)‖2(3.7)

= (n− 1) ‖h‖2 −
∑
αβ

‖AαAβ‖2 .

Also we observe that∑
ijk

g
(
Ah(ej ,ek)ei, Ah(ei,ek)ej

)
=
∑
ijαβ

g(Aαei, Aβej)g(Aαej , Aβei)(3.8)

and ∑
αβ

‖AαAβ −AβAα‖2 =
∑
ijαβ

g ((AαAβ −AβAα)(ei), ej)
2(3.9)

= −2
∑
ijαβ

g(Aαei, Aβej)g(Aαej , Aβei)

+ 2
∑
αβ

‖AαAβ‖2



MINIMAL SUBMANIFOLDS 37

where we have used ‖AαAβ‖2 = ‖AβAα‖2 which follows from the fact that
Aα and Aβ are symmetric. We use Equations (3.8) and (3.9) in (2.11) to
arrive at

‖R‖2 = 2n(n− 1)− 4 ‖h‖2 + 2 ‖Ah‖2

+
∑
αβ

‖AαAβ −AβAα‖2 − 2
∑
αβ

‖AαAβ‖2

and consequently Lemma 2.3 gives

2
∑
ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)
= 2n(n− 1)− 4 ‖h‖2 + 2 ‖Ah‖2

− 2S +
∑
αβ

‖AαAβ −AβAα‖2−2
∑
αβ

‖AαAβ‖2.(3.10)

The integral formula (2.10) in view of (3.5) takes the form

(3.11)
∫

M

‖∇h‖2 + ‖Ah‖2 − n ‖h‖2 − 2
∑
ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)

+2
∑
ij

Ric
(
ej , Ah(ei,ej)ei

) dv = 0.

Thus using (3.7), (3.10) and (2.9) in (3.11), we conclude

∫
M

‖∇h‖2 + n ‖h‖2 − ‖Ah‖2 −
∑
αβ

‖AαAβ −AβAα‖2
 dv = 0.(3.12)

Note that in view of Equation (2.5) we have

K⊥ =
∑
ijαβ

[
R⊥(ei, ej , Nα, Nβ)

]2
=
∑
ijαβ

g ([Aα, Aβ](ei), ej)
2(3.13)

=
∑
αβ

∑
ij

g ((AαAβ −AβAα)(ei), ej)
2


=
∑
αβ

‖AαAβ −AβAα‖2 .
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Also we have

‖Ah‖2 =
∑
ijk

∥∥∥Ah(ei,ej)ek

∥∥∥2
=
∑
ijkα

g (Aαei, ej)
2 ‖Aαek‖2

=
∑
ijα

‖Aα‖2 g (Aαei, ej)
2 =

∑
α

‖Aα‖4

=

(∑
α

‖Aα‖2
)2

− 2
∑
α<β

‖Aα‖2 ‖Aβ‖2 ,

which gives

‖Ah‖2 = ‖h‖4 − 2
∑
α<β

‖Aα‖2 ‖Aβ‖2 .(3.14)

Using Equations (3.13) and (3.14) in (3.12), we arrive at∫
M

{
‖∇h‖2 +

(
n− ‖h‖2

)
‖h‖2 +

(
ϕ−K⊥

)}
dv = 0.(3.15)

Now using S > n(n − 2) with (2.4), we conclude that ‖h‖2 < n and hence
the integral formula (3.15) implies that M is totally geodesic.

Theorem 3.2. Let M be an n-dimensional compact minimal submanifold
of the unit sphere Sn+2. If the scalar curvature S of M satisfies S > n(n−2),
then M is totally geodesic.

Proof. In codimension 2 the integral formula (3.12) together with (3.14)
gives∫

M

{
‖∇h‖2+

(
n− ‖h‖2

)
‖h‖2 + 2 ‖A1‖2 ‖A2‖2−‖A1A2 −A2A1‖2

}
dv = 0,

where {N1, N2} is a local orthonormal frame of normals on M and Aα =
ANα , α = 1, 2. Then using Lemma 1 in ([2], p. 64), and the hypothesis
S > n(n− 2), we get from above integral formula that ‖h‖2 = 0, that is M
is totally geodesic.

Remark 3.1. For Veronese surface M in S4, one can show that the normal
curvature K⊥ and the function ϕ appearing in Theorem 3.1 satisfy K⊥ =
ϕ = 8

9 . Indeed we can choose a local orthonormal frame {e1, e2} on M and
a local orthonormal frame {N1, N2} of normals such that the Weingarten
maps AN1 , AN2 take the form (cf. [2])

A1 =
(

0 1
1 0

)
, A2 =

(
1 0
0 −1

)
.
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Remark 3.2. For a compact minimal hypersurface M in Sn+1 we have
K⊥ = 0 and ϕ = 0 and consequently the integral formula (3.15) takes the
form

∫
M

{
‖∇A‖2 +

(
n− ‖A‖2

)
‖A‖2

}
dv = 0,

where A is the Weingarten map of the hypersurface. Thus we have:

Corollary 3.1. Let M be an n-dimensional compact minimal hypersurface
of the unit sphere Sn+1. If the scalar curvature S of M satisfies S ≥ n(n−2),
then M is either totally geodesic or else is isometric to the hypersurface
Sm
(√

m
n

)
× Sn−m

(√
n−m

n

)
.

Proof. If M is not totally geodesic, then the above integral formula gives
that the Weingarten map A is parallel and ‖A‖2 = n, consequently as in [2],

M is isometric to the hypersurface Sm
(√

m
n

)
× Sn−m

(√
n−m

n

)
of Sn+1.

4. Minimal submanifolds with flat normal connection.

In this section we study compact minimal submanifolds of the unit sphere
Sn+p which have flat normal connection, that is R⊥ = 0. First, we prove the
following theorem which estimates the scalar curvature of such submanifolds
which are non-totally geodesic and non-negatively curved.

Theorem 4.1. Let M be an n-dimensional compact non-negatively curved
minimal submanifold of the unit sphere Sn+p with flat normal connection.
Then either M is totally geodesic or else the scalar curvature S of M satisfies
n(n− p− 1) ≤ S ≤ n(n− 2).

Proof. Since the normal connection is flat we have R⊥ = 0 and that all the
Weingarten maps AN , N ∈ Γ(ν), can be diagonalized with respect to the
same local orthonormal frame {e1, . . . , en} (cf. [1], p. 127). Choose a local
orthonormal frame {N1, . . . , Np} of normals such that Aα(ei) = λα

i ei, where
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λα
i are the smooth functions and α = 1, . . . , p. Then we have∑
ij

Ric
(
ej , Ah(ei,ej)ej

)
−
∑
ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)

=
∑
α

∑
ij

g (Aαei, ej) Ric (ei, Aαej)−
∑
ijk

g (Aαei, ej) R (ek, ei; ej , Aαek)


=
∑
α

∑
j

Ric (Aαej , Aαej)−
∑
jk

R (ek, Aαej ; ej , Aαek)


=
∑
α

∑
jk

R (ek, Aαej ;Aαej , ek)−
∑
jk

R (ek, Aαej ; ej , Aαek)


=
∑
αjk

(
(λα

j )2Kkj − λα
j λα

kKkj

)
where Kkj = R(ek, ej ; ej , ek) is the sectional curvature of the plane section
spanned by {ek, ej}. Consequently we have∑

ij

Ric
(
ei, Ah(ei,ej)ej

)
−
∑
ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)
(4.1)

=
1
2

∑
αjk

2(λα
j )2Kkj − 2

∑
αjk

λα
j λα

kKkj


=

1
2

∑
αjk

(λα
j )2Kkj +

∑
αjk

(λα
k )2Kkj − 2

∑
αjk

λα
j λα

kKkj


=

1
2

∑
αjk

(λα
j − λα

k )2Kkj

 ≥ 0.

Then the integral formula (2.10) with R⊥ = 0 and (4.1) gives

(4.2) ‖∇h‖ = 0,∑
ij

Ric
(
ei, Ah(ei,ej)ej

)
−
∑
ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)
= 0.

Now Equation (3.5) with R⊥ = 0 and the second equation in (4.2) yields

‖Ah‖2 − n ‖h‖2 = 0.(4.3)
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Also, we have

‖Ah‖2 =
∑
α

‖Aα‖4 =

(∑
α

‖Aα‖2
)2

− 2
∑
α<β

‖Aα‖2 ‖Aβ‖2(4.4)

= ‖h‖4 − 2
∑
α<β

‖Aα‖2 ‖Aβ‖2 .

Combining (4.3) and (4.4), we arrive at

‖h‖2
(
‖h‖2 − n

)
≥ 0.(4.5)

Also from (4.3), we have
∑

α

(
‖Aα‖4 − n ‖Aα‖2

)
= 0, or equivalently∑

α

(
‖Aα‖2 −

n

2

)2
=

n2p

4
.(4.6)

Now using Schwarz inequality, we get∑
α

(
‖Aα‖2 −

n

2

)2
≥ 1

p

[∑
α

(
‖Aα‖2 −

n

2

)]2

=
1
p

(
‖h‖2 − np

2

)2
.(4.7)

Combining (4.6) and (4.7), we conclude that

‖h‖2
(
‖h‖2 − np

)
≤ 0.(4.8)

This proves that either M is totally geodesic or ‖h‖2 ≤ np. If M is not
totally geodesic, then from ‖h‖2 ≤ np together with (4.5) we get n ≤ ‖h‖2 ≤
np, which by Equation (2.9) is equivalent to n(n− p− 1) ≤ S ≤ n(n− 2).

Next we prove the following:

Theorem 4.2. Let M be an n-dimensional compact minimal submanifold
of the unit sphere Sn+p with flat normal connection. If the scalar curvature S
of M satisfies S ≥ n(n−2), then M is either totally geodesic or is isometric

to the hypersurface Sm
(√

m
n

)
× Sn−m

(√
n−m

n

)
.

Proof. Since R⊥ = 0, Equation (3.5) gives

(4.9)
∑
ij

Ric
(
ei, Ah(ei,ej)ej

)
−
∑
ijk

R
(
ek, ei; ej , Ah(ei,ej)ek

)
= n ‖h‖2 − ‖Ah‖2 .

Thus the integral formula (2.10) in view of (4.9) and R⊥ = 0, takes the form∫
M

{
‖∇h‖2 + n ‖h‖2 − ‖Ah‖2

}
dv = 0.(4.10)
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For a local orthonormal frame {N1, . . . , Np} of normals, using the expression
for ‖Ah‖2as given in (4.4) into (4.10) we arrive at∫

M

‖∇h‖2 +
(
n− ‖h‖2

)
‖h‖2 + 2

∑
α<β

‖Aα‖2 ‖Aβ‖2
 dv = 0.(4.11)

Since S ≥ n(n − 2), that is ‖h‖2 ≤ n, above integral gives ‖∇h‖ = 0,
‖h‖2

(
n− ‖h‖2

)
= 0,

∑
α<β ‖Aα‖2 ‖Aβ‖2 = 0. The last two equations give

either M is totally geodesic or else ‖h‖2 = n and Aβ = 0, β = 2, . . . , p. In
the second case, we have as in [2] that M is isometric to the hypersurface

Sm
(√

m
n

)
× Sn−m

(√
n−m

n

)
of Sn+1.

Now as applications of these theorems, first we have:

Corollary 4.1. Let M be an n-dimensional compact minimal submanifold
of the unit sphere Sn+p with flat normal connection. If the scalar curvature
S of M satisfies S > n(n− 2), then M is totally geodesic.

Corollary 4.2. Let M be a non-negatively curved compact minimal hyper-
surface of Sn+1. Then M is either totally geodesic or is isometric to the
hypersurface Sm

(√
m
n

)
× Sn−m

(√
n−m

n

)
.

Proof. Since M is hypersurface, the normal connection is flat, by Theo-
rem 4.1, we have either M is totally geodesic or the scalar curvature is
given by S = n(n − 2). If M is non-totally geodesic, we have ‖h‖2 = n
and consequently by the result in [2], M is isometric to the hypersurface

Sm
(√

m
n

)
× Sn−m

(√
n−m

n

)
.

Remark 4.1. In [2], it is asked that the values of ‖h‖2 should determine
the compact hypersurfaces up to rigid motion in the ambient sphere Sn+1

(cf. p. 75). The above Corollary shows that for non-negatively curved
hypersurfaces in Sn+1, ‖h‖2 takes only two values 0 and n and the corre-
sponding hypersurfaces are known. Thus the Corollary 4.2 can be thought
of as a result in the direction of this question.

We also have the following consequence of Corollary 4.2:

Corollary 4.3. Let M be a non-negatively curved compact minimal hyper-
surface of Sn+1. If M is diffeomorphic to Sn, then M is totally geodesic.

Remark 4.2. One of the important questions concerning the hypersurfaces
of Sn+1 is to show that “the only embedded minimal hypersurface in Sn+1

which is diffeomorphic to Sn is the totally geodesic sphere” (cf. [7], p. 692,
Problem-99). Corollary 4.3 can be considered as a result in this direction
for the class of non-negatively curved minimal hypersurfaces in Sn+1.
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Finally, we prove:

Theorem 4.3. Let M be an n-dimensional compact minimal submanifold
of the unit sphere Sn+p with flat normal connection. If M is of constant
sectional curvature c ≥ 0, then either M is flat (c = 0) and p ≥ (n− 1), or
totally geodesic.

Proof. Let {e1, . . . , en} be a local orthonormal frame on M . Then for the
minimal submanifold M of constant sectional curvature c, Equation (2.3)
can be restated as

(c− 1) (δjkei − δikej) = Ah(ej ,ek)ei −Ah(ei,ek)ej .

Taking inner product with Ah(ej ,ek)ei and summing the resulting equation
we arrive at

(1− c) ‖h‖2 = ‖Ah‖2 −
∑
ijk

g
(
Ah(ei,ek)ej , Ah(ej ,ek)ei

)
.(4.12)

Now as the normal connection is flat, R⊥ = 0 and with the help of
Equation (2.5) we compute∑

ijk

g
(
Ah(ei,ek)ej , Ah(ej ,ek)ei

)
=
∑
ijk

g
(
Ah(ej ,ek)ej , Ah(ei,ek)ei

)

=
∑
ik

g

∑
j

Ah(ej ,ek)ej , Ah(ei,ek)ei


=
∑
ik

g
(
(n− 1)ek −Q(ek), Ah(ei,ek)ei

)
= (n− 1) ‖h‖2 −

∑
ik

Ric
(
ek, , Ah(ei,ek)ei

)
.

However for M the Ricci curvature satisfies Ric (X, Y ) = (n − 1)cg(X, Y )
and consequently,∑

ijk

g
(
Ah(ei,ek)ej , Ah(ej ,ek)ei

)
= (n− 1)(1− c) ‖h‖2 .

Using this equation in (4.12), we get

‖Ah‖2 = n(1− c) ‖h‖2 .(4.13)

Note that Equation (4.3) holds for non-negatively curved compact minimal
submanifolds of Sn+p with flat normal connection. Thus combining (4.3)
and (4.13), we conclude that c ‖h‖2 = 0 and this proves that either c = 0
or M is totally geodesic. However if c = 0, then S = 0 and consequently by
Thorem 4.1, n(n− p− 1) ≤ 0 (as M is non-totally geodesic), which implies
p ≥ n− 1.
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Corollary 4.4. There is no compact flat minimal hypersurface in S4.
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