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In this paper we construct a decomposition for oriented orb-
ifold cobordism and apply it to establish that every oriented
three dimensional orbifold bounds an oriented four orbifold.

Introduction.

In a previous paper [2], using orbifold Pontrjagin numbers, we had estab-
lished that rationally every odd dimensional oriented orbifold bounds and,
also, if an orbifold bounds, then some multiple of it bounds with no increase
in the set of local groups. The proof involves systematically making the
orbifold rationally cobordant to one with a smaller set of local groups. Thus
to study torsion in orbifold cobordism one must gain control of the way
one introduces new local groups when one tries to make the singularities
associated with the original orbifold bound. In Section one we collect some
definitions associated with orbifolds and their cobordism. In Section two
we consider various orbifold cobordism groups with restrictions on the set
of local groups and fit these into a commutative diagram with cobordism
groups of certain orbibundles over manifolds. This is much in the spirit of
[1]. In Section three we apply this to show that every two dimensional and
every three dimensional orbifold bounds.

1. Orbifold Cobordism.

In this section we briefly review some material associated with orbifolds and
cobordism.

An orbifold chart on a topological space X is defined by a triple (U,G, π)
where U is an open subset of Rn, G is a a finite group acting effectively and
differentiably on U , and π : U → X factors as hpU where pU is the natural
orbit map and h is open and injective. Two charts (Ui, Gi, πi), i = 1, 2, are
compatible if for x ∈ π1(U1)∩ π2(U2) and x̄ a lift of x in U1 there is an open
set U ⊂ U1 about x̄ and a diffeomorphism f : U → U ′ onto an open subset
U ′ ⊂ U2 such that π2f = π1. Such a map is called an overlap map. An n
dimensional orbifold Q is defined by a Hausdorff underlying space, denoted
|Q|, together with a maximal atlas of compatible orbifold charts on |Q|.

45

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2000.193-1


46 K.S. DRUSCHEL

An n dimensional orbifold with boundary is defined as above except that
U is an open subset of Hn = {(x1, x2, . . . , xn) ∈ Rn : xn ≥ 0}. If W
is an orbifold with boundary, the orbifold boundary of W , denoted δoW ,
has underlying space {w ∈ |W | : w = πα(x), x ∈ δHn} where πα is the
map for some chart for W . An orbifold Q is orientable if it has an atlas
{(Uα, Gα, πα), α ∈ Λ} such that the Uα’s can all be oriented consistently
with the G′

αs and the overlap maps orientation preserving. It is oriented
once one chooses a consistent orientation of the charts.

Two compact, oriented n dimensional orbifolds Q1, Q2, are orbifold cobor-
dant if there is an oriented orbifold with boundary W , such that δoW =
Q1

∐
−Q2 with the appropriate orientations. As with manifold cobordism

(Ωn) one has the group of cobordism classes of oriented n dimensional orb-
ifolds, which we denote by Ωn,orb.

For x ∈ |Q| the local group at x is the isotropy group Gx̂ for a chart
(U,G, π) with x̂ ∈ U a lift of x. Using the differential, Gx may be considered
as a subgroup of Gl(n,R) and is then well defined up to conjugacy. We
denote this conjugacy class by (Gx) and the set of conjugacy classes of local
groups for Q by GQ. If Q has a Riemannian metric, which is possible if |Q|
is compact, then we can view Gx as a subgroup of O(n), and then, if Q is
oriented, as a subgroup of SO(n). For a subgroup K of Gl(n,R) let j be
the dimension of the subspace of Rn on which K acts trivially. The degree
of K (deg K) is n− j. For (H) ∈ GQ the H singular set of Q , denoted QH ,
is defined to be the set {x ∈ Q|(H) < (Gx)}.

We will be particularly interested in two examples of (F,G) orbibundles
[2, 1.8]. For an orbifold Q with atlas {(Uα, Gα, πα), α ∈ Λ} an l dimensional
orbivector bundle Ψ over Q has total space (Tot Ψ) an orbifold E which
locally looks like Uα ×Gα Rl where the action of Gα and the overlap maps
for E are linear on the second factor. If these are also orthogonal, then we
can associate with Ψ the sphere and disc bundles SΨ and DΨ. If they are
orientation preserving then we say Ψ is oriented.

To study the H singular set in an orbifold Q we look at the normal bundle
νH [2, p. 310], an (Rl/H,NGl(l,R)(H)/H) bundle over an orbifold QH . Here
NK(G) denotes the normalizer of the group G in K, l is the degree of H, and
QH is the best orbifold approximation to QH [2, 2.9]. When H is maximal
in GQ QH = QH and Tot νH is diffeomorphic to a neighborhood of QH in Q.
When |Q| is compact we can replace Gl(l,R) with O(l) and have associated
sphere and disc bundles, SνH and DνH .

2. A Decomposition for Oriented Orbifold Cobordism.

Throughout this we assume that every orbifold is compact, smooth, and
oriented unless stated otherwise.

From [2, 2.14] and [2, 1.15] we conclude the following.
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Lemma 2.1. If an orbifold Q bounds then some multiple s of Q bounds an
orbifold W such that GQ = GW , i.e. sQ bounds with no increase in local
groups.

Now suppose (H) is maximal in GQ. Then QH is a manifold and the
normal bundle to QH in Q is an ordinary (Rn/H,NO(n)(H)/H) bundle. [2,
p. 305]. (Here n is the degree of H.) Also when sQ = δorbW with GQ = GW ,
we have the normal bundle to WH in W is an ordinary (Rn/H,NO(n)(H)/H)
bundle over the manifold WH and an extension of the normal bundle to sQ.
Hence one wants to first consider the following.

Definition 2.2. Suppose H < SO(n) has degree n. We let Bk(H) be the
set of cobordism classes of (Rn/H,NO(n)(H)/H) bundles over k-dimensional
manifolds where we require that the total space of the bundle is oriented.

By using the classifying maps for such bundles we have that Bk(H) is iso-
morphic to Ωk,t(BNO(n)(H)/H) [2, 2.3] (or Ωk(BNO(n)(H)/H) if NO(n)(H)
< SO(n)). Here Ωk(X) denotes the group of bordism classes of maps from
oriented k dimensional manifolds into the space X. If there is some canon-
ical orbibundle Γ over X then Ωk,t(X) consists of bordism classes of maps
f : Mk → X such that f∗Γ ⊕ TM is oriented. Ωk,t(BNO(n)(H)/H) is ra-
tionally isomorphic to the twisted homology H∗,t(BNO(n)(H)/H,Ω∗). [2,
2.4].

Once we are asking whether an orbifold Q bounds exactly and not just
rationally, we find that we can no longer restrict the local groups of the
bounded orbifold W to be those of Q. In other words if Q = δorbW it
may be necessary that GW is strictly larger than GQ. This is born out by
the following illustration. This illustration is due to Quach Ngoc Du, as
communicated to me by Mike Davis, as is a generalization to prove that an
oriented two dimensional orbifold bounds.

Figure 2.1.
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W is topologically a three disc. As an orbifold it has singular set a half
open line segment labelled Cn, the cyclic group of order n, a point labelled by
the dihedral group Dn, and an open line segment labelled C2. The orbifold
boundary of W is a teardrop orbifold with singular set a point labelled Cn.
For H = Cn, WH is a folded closed line segment with its fold point labelled
C2.

Thus we see that WH need not be a manifold and that Bk(H) is too re-
strictive. However, in general, if QH bounds an orbifold T and the (Rn/H,
NO(n)(H)/H) bundle over QH extends to an (Rn/H,NO(n)(H)/H) orbi-
bundle Ψ over T , then Q is orbifold cobordant to Q− (int (DνH))∪SνH

SΨ.
(See the proof of 2.8.) For the resulting orbifold one has local groups those
of Q with H thrown out, and then those of SΨ added in. One wants to gain
some control of which local groups are added in by SΨ so we consider the
following.

Let F denote a set of conjugacy classes of finite subgroups of SO(m). F
is closed if whenever (K) ∈ F then (L) ∈ F for every (L) ∈ GRm/K . Let H

be a finite linear group of degree l and F̂ ⊃ F indicate any two closed sets
of classes of finite subgroups of SO(l + k + 1) and SO(l + k), respectively,
with (H) ∈ F .

Definition 2.3. Suppose (H) is maximal in F . Define Bk(H,F , F̂) to be
the equivalence classes of pairs (M,ν) where ν is an (Rl/H,NO(l)(H)/H)
bundle over a k dimensional manifold M with the total space of ν oriented.
The equivalence relation is defined by (M1, ν1) ∼ (M2, ν2) if there is an
(Rl/H,NO(l)(H)/H) orbibundle Ψ over an orbifold W so that

i) Tot Ψ is oriented
ii) GTot Ψ ⊂ F̂ , GSΨ ⊂ F − (H)
iii) M1

∐
M2 = δorbW (not necessarily orientably)

iv) Ψ|Mi
= νi and Tot νi has the inherited orientation.

Note that if G ∈ GTot Γ for Γ an (Rl/H,NO(l)(H)/H) orbibundle over an
orbifold Qn with TotΓ oriented then G < NSO(n+l)(H) and hence
G < NO(l)(H) ⊕ O(n). Also, tracing through the definition of an (Rl/H,
NO(l)(H)/H) orbibundle one sees that ker ρ2|G = H. Here ρi : O(l) ⊕
O(n) → O(s), i = 1, 2 is projection onto the first, respectively second factor
with s = l, respectively n.

For Ψ as in the above definition, the second part of ii) implies that if
G ∈ GTot Ψ and (K) ∈ GRl+k+1/G with deg ρ1(K) < l (so K shows up as
a local group for SΨ) then (K) ∈ F − (H). Thus we have the following
definition.

Definition 2.4. Let F be as above and H < G < NO(l)(H)⊕O(k+1) with
ker ρ2|G = H . Then G satisfies condition SF ,H if for every (K) ∈ GRl+k+1/G

with deg ρ1(K) < l, (K) ∈ F − (H).
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Now let F ⊂ F̂ be a pair of closed sets of conjugacy classes of finite
subgroups of SO(n), respectively SO(n + 1).

Definition 2.5. Let Ωn,orb(F , F̂) = {Qn : GQ ⊂ F}/ ∼, where Q1 ∼ Q2 if
there is an orbifold W with GW ⊂ F̂ and Q1

∐
−Q2 the oriented orbifold

boundary of W .

Let Fall,m be the set of all conjugacy classes of finite subgroups of SO(m)
and Ωn,orb(F) = Ωn,orb(F ,Fall,n+1).

Proposition 2.6.

i) Ωn,orb = Ωn,orb(Fall,n).
ii) Since GQ is finite for a compact orbifold Q, Ωn,orb(F , F̂)= ∪Ωn,orb(Fα,

F̂) where the union is over all closed finite subsets Fα of F .
iii) If F1 ⊂ F2 ⊂ F̂ then Ωn,orb(F1, F̂) ⊂ Ωn,orb(F2, F̂).
iv) If F⊂ F̂1⊂ F̂2 then the natural map τ : Ωn,orb(F , F̂1) → Ωn,orb(F , F̂2)

is onto.

From Lemma 2.1 we conclude:

Proposition 2.7. ker τ ⊂ torsion (Ωn,orb(F , F̂1)).

The various cobordism groups, Bk(H,F , F̂), of Rn/H bundles, and the
orbifold cobordism groups with various restrictions on the local groups fit
together according to the following commutative diagram.

Here g1, g2, g3 are inclusion maps, hi[Q] = [(QH , νH)] and ki[(M,ν)] =
[Sν], and [(M,ν)] or [Q] denotes the appropriate cobordism class.

Also we must assume that H is maximal in F and if L ∈ F̂ with H < L
then NL(H) has condition SF ,H as in Definition 2.4. The latter ensures
that h2 is well defined. Indeed, suppose [Qi] ∈ Ωn,orb(F , F̂), i = 1, 2, with
[Q1] = [Q2] via the orbifold with boundary W . If the normal bundle of
WH in W is denoted by Ψ, then the local groups of Tot Ψ are of the form
NGx(H), x ∈ WH , and condition SF ,H guarantees that [(QH

1 , νH(QH
1 ))] =

[(QH
2 , νH(QH

2 ))] in Bn−deg H(H,F , F̂) via (WH ,Ψ).
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Ωn,orb(F − (H),F) �Ωn,orb(F − (H), F̂) �Ωn,orb(F − (H))

g1

?

g2

?

g3

?
Ωn,orb(F ,F) �Ωn,orb(F , F̂) �Ωn,orb(F)

h1

?

h2

?
Bn−deg H(H) �Bn−deg H(H,F , F̂)

k1

?

�
��	

k2

Ωn−1,orb(G(Sn−1/H),F − (H))

The following lemma allows us to tell when an orbifold Q with local groups
in F is cobordant to one with local groups in F − (H) by examining the
normal bundle to QH . The commutivity of the diagram allows more control
of the local groups in the cobordism.

Lemma 2.8. The two columns in the above diagram are exact.

Proof. To prove ker hi ⊂ im gi, note that if [(QH , νH)] = 0 in Bn−deg H(H,

F , F̂) via (W,Ψ), then the local groups of SΨ are in F − (H). Thus Q
is cobordant to (Q − DνH) ∪SνH

SΨ, whose local groups are in F − (H),
since those of Q−DνH and SΨ are. This cobordism is via (Q× I)∪(DνH ,1)

DΨ, which has local groups in F̂ , since both Q and TotΨ do. The reverse
inclusion of image and kernal is true vacuously. We have im hi ⊂ ker ki since
SνH bounds Q−DνH . If for [(M,Ψ)] ∈ Bn−deg H(H,F , F̂), ki[(M,Ψ)] = 0,
then SΨ = δorbW with GW ⊂ F − (H). Hence (M,Ψ) ∼ (QH , νH) where
Q = W ∪SΨ DΨ. �

3. Applications.

We illustrate Lemma 2.8 with a proof of the following. Consideration of
Figure 2.1 leads to an alternative proof of this proposition.

Proposition 3.1. Ω2,orb = 0.

Proof. If F is a finite set of conjugacy classes of finite subgroups of SO(2) it
consists of cyclic subgroups, say Cn1 , . . . Cnk

. Suppose C2 ∈ F . If H = Cni ,
ni 6= 2, and F̂ = F ∪ Dni then Dni satisfies condition SF ,H . We note
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that in general B0(H,F , F̂) is generated by the trivial Rl/H bundle over
a point. Here this bundle bounds the bundle Ψ with total space I ×Z2

(R2/Cni) where Z2 folds I and is reflection across the x axis for R2 and
GSΨ = {(C2), (e)}. Thus B0(H,F , F̂) = 0 and gi, i = 2, 3, are isomorphisms
giving that Ω2,orb(F) ∼= Ω2,orb(F − (Cni)). Repeating this argument for
F − (Cni) we get Ω2,orb(F) ∼= Ω2,orb((C2), (e)). From Proposition 2.6 ii)
we have Ω2,orb

∼= Ω2,orb((C2), (e)). Every two dimensional orbifold Q with
points x1, . . . , xk labelled C2 is cobordant to another orbifold Q1 with an
even number of points labelled C2 via (Q×I

∐
k(I×Z2 (R2/Cni)))/ ∼ where

each [(0,R2/Cni)] is glued to a chart neighborhood of an xi in Q× 1. Q1 is
cobordant to a manifold with k more handles than Q via Q1 × I

∐
k(I ×Z2

(R2/Cni))/ ∼ where the ends of the I × (R2/Cni)’s are glued to chart
neighborhoods of the singular points in Q1 × 1. Thus Ω2,orb((C2), (e)) ∼=
Ω2 = 0. �

Theorem 3.2. Every compact, oriented, three dimensional orbifold bounds
an oriented, compact orbifold.

Proof. The set of conjugacy classes in O(3) of all finite subgroups of SO(3)
consists of two infinite families coming from the cyclic and dihedral groups,
and three other classes from the tetrahedral group, T , the octahedral group,
O, and the icosahedral group, I.

Let F be any set of conjugacy classes that contains I and the dihedral
groups Ds, s = 2, 3, 5, and F̂ = F ∪ (I) where I = 〈I,−id4〉. Here −id4

refers to the 4 × 4 diagonal matrix with -1’s down the diagonal. Then
(F , F̂) satisfies the conditions for Lemma 2.8 with H = I. We see that
B0(I,F , F̂) = 0 as the R3/I bundle over a point bounds the R3/I bundle
Ψ over [−1, 1]/Z2 where Tot Ψ = [−1, 1]×〈−id4〉 R3/I and SΨ has maximal
local groups Ds, s = 2, 3, 5, and thus local groups in F−(H). (See Figure 3.1
below for a picture of the singular set of SΨ, where the singular set of S3/I
on the left is folded by −id4 to form that of SΨ.) From Lemma 2.8 we thus
have g2 is an isomorphism and then so is g3 : Ω3,orb(F − (I)) → Ω3,orb(F).
In particular Ω3,orb

∼= Ω3,orb(Fall,3 − (I)).
Replacing I with O in the above paragraph and letting s = 2, 3, 4 and

F = Fall,3 − (I), yields Ω3,orb(Fall,3 − (I)) ∼= Ω3,orb(Fall,3 − (I) − (O)).
Applying this method again with H = T and s = 2, 3, we obtain Ω3,orb

∼=
Ω3,orb(F1) where F1 consists of the classes of dihedral and cyclic groups.

We cannot use the above method to get rid of Dn. Also when H = Dn

and (H) ∈ F ⊂ F1 the map k1 : B0(H) → Ω2,orb(GS2/H ,F−(H)) is nonzero
as S2/Dn cannot bound with local groups in F − (H). (Indeed the point
labelled Cn in S2/Dn can only bound a folded line segment labelled Cn and
such a line segment can only possibly fit into Dn,I,O, or T , none of which
are in F − (H).) Hence, by Lemma 2.8, h1 : Ω3,orb(F ,F) → B0(H) is the
zero map. In other words, for Q with local groups in F the normal bundle
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to QH bounds in B0(H), meaning there are even number of points labelled
(H). Thus gi, i = 1, 2, 3, are isomorphisms. Then using Proposition 2.6 ii)
we have Ω3,orb(F1) ∼= Ω3,orb(F2) where F2 consists of the cyclic groups in
SO(3).

Now B1(Ck) is generated by R2/Ck bundles over S1 whose total space is
oriented. These bundles are trivial (since π1(B(NSO(2)(Ck)/Ck)) = π1(BS1)
= 0) and so bound D2 ×R2/Ck. This gives us that B1(Ck) = 0 and hence
g1 and g3 are isomorphisms. Thus Ω3,orb

∼= Ω3,orb(F2) ∼= Ω3, which is zero
[3].

Singular set for S3/I. Singular set for S3/〈I,−id4〉.

Figure 3.1.

We now illustrate the proof of Theorem 3.2 by showing how a three orb-
ifold Q with singular set as in Figure 3.2 is cobordant to a three dimensional
manifold. Here unlabelled arcs have singular set C2. Figure 3.3 gives the
singular set of a four dimensional orbifold with boundary which makes Q
cobordant to an orbifold Q1 with no local groups I, as in the first para-
graph of the proof. In Figure 3.3 the singular set around the point labelled
〈I,−id4〉 consists of four planes labelled by Ck, k = 3, 5, 2, 2, meeting in
lines labelled by Dk, k = 3, 5, 2, and I. Figure 3.4 shows the singular set
of Q1 and another orbifold Q2 which is cobordant to Q1 and has dihedral
and cyclic local groups. Note that there is an even number of points in Q2

labelled by each dihedral group so, as in the third paragraph of the proof, we
can systematically make Q2 cobordant to an orbifold with fewer dihedral lo-
cal groups. Figure 3.5 shows the singular sets of Q3 and Q4, both cobordant
to Q2. In Q3 the dihedral groups D3 have been removed, and in Q4 the only
local dihedral groups are D2. Q4 is cobordant to an orbifold Q5 with singular
set two circles labelled C2, two labelled C3, and one labelled C5. This is via
(Q4×I)

∐
((D2/D2)×I)/ ∼ where, since DνD2(Q4) ∼= D2/D2

∐
D2/D2, we
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identify DνD2(Q4) with the ends of (D2/D2)×I). One uses similar orbifolds
with boundary for the cobordisms between Q2 and Q3, and then between Q3

and Q4. Finally, one makes Q5 cobordant to a three manifold via the orb-
ifold (Q5× I)∪Y X where X consists of a disjoint union of D2× (D2/Ck)’s,
k = 3, 3, 2, 2, 5, and Y is diffeomorphic to a disjoint union of S1×(D2/Ck)’s,
k = 3, 3, 2, 2, 5.

Figure 3.2. Singular set for Q.

Figure 3.3. Singular set for (Q× I) ∪(DνI ,1) DΨ.
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Singular set for Q1. Singular set for Q2.

Figure 3.4.

Singular set for Q3. Singular set for Q4.

Figure 3.5.
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