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Let f , g be transcendental entire functions and p, q be
nonlinear polynomials with deg p 6= 3, 6. Suppose that f
and p are prime and f(p(z)) = g(q(z)), then f = g ◦ L and
p = L−1 ◦ q, where L is a linear polynomial. Similar results
for p(f(z)) = q(g(z)) are also obtained.

1. Introduction and Main Results.

A meromorphic function F (z) is said to has a factorization with left factor
f and right factor g provided

F (z) = f(g(z)),(1)

where f is meromorphic and g is entire (g may be meromorphic when f is
rational). A nonlinear meromorphic function F (z) is called prime (pseudo -
prime) if every factorization of form (1) implies that either f is bilinear or g
is linear (either f is rational or g is a polynomial). Clearly, a prime function
is an analogy of a prime number. Over the past thirty years, many classes
of prime or pseudo-prime functions have been obtained (see [2]).

As an analogue of the unique factorizability of natural numbers, one can
also define that concept for entire functions. Suppose an entire function
F has two factorizations f1 ◦ f2 ◦ · · · ◦ fm(z) and g1 ◦ g2 ◦ · · · ◦ gn(z) into
nonlinear entire factors. If m = n and if there exist linear polynomials Lj

(j = 1, 2, 3, . . . , n− 1) such that the relations

f1(z) = g1 ◦ L−1
1 , f2(z) = L1 ◦ g2 ◦ L−1

2 , ...... , fn(z) = Ln−1 ◦ gn(z)
(2)

hold simultaneously, then the two factorizations are called equivalent. If any
two factorizations of F (z) into nonlinear, prime entire factors are equivalent
to each other, then F is called uniquely factorizable in entire sense.

As far as just polynomial factors are concerned, it is easy to exhibit
functions which are not uniquely factorizable in entire sense, for instance,
z3 ◦ z2 = z2 ◦ z3.

Therefore, the following question is not without interest.
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Problem (A). Suppose f and g are prime entire functions and one of
them is transcendental, will F (z) = f ◦g(z) be uniquely factorizable in entire
sense?

Counter-example. Take f(z) = z2, g(z) = zez2
, f1(z) = ze2z and g1(z) =

z2. All of them are prime functions (see [2]) and f ◦ g = f1 ◦ g1 are two
nonequivalent factorizations of z2e2z2

.

In this paper, we shall consider the following problems. Let f and p be
two prime entire functions where f is transcendental and p is a polynomial.
Suppose that f ◦ p = g ◦ q or p ◦ f = q ◦ g. Under what conditions on the
entire functions g, q will these factorizations be equivalent?

From the above counterexample, it is clear that two factorizations of a
function F = h ◦ k = h1 ◦ k1 may not be equivalent. Therefore, we need to
have some further assumptions on these factors h, h1, k and k1.

With this in mind, we have come up with the following results. The
functions f, g, p and q considered below are all entire and nonlinear.

Theorem 1. Let f , p be two non-periodic prime entire functions and p be
a polynomial. Suppose that p ◦ f = q ◦ g and both f, g are transcendental.
Then p = q ◦ L−1 and f = L ◦ g, where L is a linear polynomial.

Theorem 2. Let f , p be two prime entire functions and f be transcendental.
Suppose that p ◦ f = q ◦ g and both p, q are polynomials. Then p = q ◦ L−1

and f = L ◦ g, where L is a linear polynomial.

Theorem 3. Let f , p be two prime entire functions and f be transcendental.
Suppose that f ◦ p = g ◦ q and both p, q are polynomials with deg p 6= 3, 6.
Then f = g ◦ L and p = L−1 ◦ q, where L is a linear polynomial.

Theorem 1, 2 and 3 deal with the relationships between polynomials p
and q, transcendental functions f and g when we have factorizations of the
form p ◦ f = q ◦ g or f ◦ p = g ◦ q. It is natural to investigate the case
f ◦ p = q ◦ g.

Theorem 4. Let f and g be two transcendental entire functions, p and q be
two nonlinear polynomials with degree n and m respectively. If f ◦ p = q ◦ g
and p is not a right factor of g, then deg p ≤ deg q. In particular, the
conclusion is true when g is prime.

Remark 1. Let f(z) = ez, g(z) = e
z3

2 , p(z) = z3 and q(z) = z2. Then
f ◦ p = q ◦ g and deg p > deg q. Therefore, the condition that p is not a
right factor of g is essential.

Definition 1. Let F (z) be an nonconstant entire function. An entire func-
tion g(z) is a generalized right factor of F (denoted by g ≤ F ) if there exists
a function f ,which is analytic on the image of g, such that F = f ◦ g. If
such f is entire, g will be a right factor of F (denoted by g|F ).
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Definition 2. If h ≤ f and h ≤ g, we say that h is a generalized common
right factor of f and g. If g ≤ F and f ≤ F , we say that F is a generalized
common left multiple of f and g.

The existence and uniqueness problems of the greatest generalized com-
mon right factor and the least generalized common left multiple for a given
pair of entire functions were solved by A. Eremenko and L.A. Rubel as
follows.

Lemma 1 ([4]). Any pair of non-constant entire functions has (up to a
linear factor) a unique greatest generalized common right factor h, greatest in
the sense that any generalized common right factor of f and g is a generalized
right factor of h.

Lemma 2 ([4]). Suppose that f and g have a generalized common left mul-
tiple. Then f and g have (up to a linear factor) a unique least generalized
common left multiple F , least in the sense that F is a generalized right factor
of any generalized common left multiple of f and g.

The proof of Theorem 1 is mainly based on the following lemma.

Lemma 3 ([10]). Let f and g be two entire functions. Suppose that there
exist two nonconstant complex functions k and R such that F = R◦f = k◦g
is meromorphic. If g is transcendental and R is rational, then there exists
a transcendental entire function h satisfying h ≤ f and h ≤ g.

Proof of Theorem 1. By Lemma 3, there exists a transcendental entire func-
tion h satisfying h ≤ f and h ≤ g. Hence, f = h1 ◦ h and g = h2 ◦ h, where
h1, h2 are analytic on the image of h. If the image of h is C − {a}, then
h = a + ek for some entire function k. Without loss of generality, we may
assume a = 0 so that f(z) = h1(ew)◦k(z). The primeness of f will force k to
be linear. This contradicts the assumption that f is not a periodic function.
So the image of h must be the whole plane. This implies that both h1, h2

are entire and p ◦ h1 = q ◦ h2 on C. Since f = h1 ◦ h is prime, h1 must be
linear. From p ◦ h1 = q ◦ h2, h2 must also be linear as p is prime. Take
L = h1 ◦ h−1

2 and we are done. �

The proof of Theorem 2 is similar, we simply apply Lemma 4 below
instead of Lemma 3.

Lemma 4 ([6]). Let f and g be two entire functions. Suppose that there
exist two nonconstant polynomials p and q such that p ◦ f(z) = q ◦ g(z).
Then there exist an entire function h and rational functions U(z) and V (z)
such that

f(z) = U ◦ h(z), g(z) = V ◦ h(z).

To prove Theorem 4, we need the following lemma which can be used to
prove Lemma 3.
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Lemma 5 ([10]). Let f and g be two entire functions. Suppose that there
exist two nonconstant functions h1 and h2 so that F = h1(f(z)) = h2(g(z))
and F is meromorphic. Suppose further that there exist k ≥ 2 distinct points
z1, ....., zk such that F ′(zi) 6= 0,∞ for all i and{

f(z1) = f(z2) = ......f(zk)
g(z1) = g(z2) = ......g(zk).

Then, there exists an entire function h(z) (independent of k and z′is) with
h ≤ f , h ≤ g and h(z1) = h(zi) for all 2 ≤ i ≤ k.

Proof of Theorem 4. By Lemma 1, there exists a generalized greatest
common right factor k of p and g. Since, p is a polynomial, k is actually the
greatest common right factor of p and g. Let p1 and g1 be entire functions
such that p = p1 ◦ k and g = g1 ◦ k. Hence, f ◦ p1 = q ◦ g1 on C and p1, g1

do not have any nonlinear common right factor. p1 is nonlinear as p is not
a right factor of g. If we can show that deg p1 ≤ deg q1, then deg p ≤ deg q.
Therefore, we may assume that p and g do not have any nonlinear common
right factor. Suppose that n > m. Define E = {p(z)|F ′(z) = 0},where
F = f ◦ p. Then E is a countable set. Therefore, we can choose A ∈ C−E
so that the equation p(z) = A has n ≥ 2 distinct roots z1, . . . , zn. Since
f(A) = f(p(zi)) = q(g(zi)), g(zi) are roots of the equation q(z) = f(A)
which has at most m roots. n > m implies that there exist two distinct
roots zi, zj such that g(zi) = g(zj). Note that p(zi) = p(zj) = A and
F ′(zi), F ′(zj) 6= 0. By Lemma 5, there exists an entire function h with
h ≤ p, h ≤ g and h(zi) = h(zj). Clearly h is a polynomial. Hence, there
exists a nonlinear h such that h|p and h|g. This is impossible and we must
have n ≤ m.

In Theorem 3, we only assume that p and q are polynomials. If we further
restrict p and q to have deg p = deg q ≥ 3, then the conclusion of Theorem
3 can be drawn directly from the following lemma.

Lemma 6 ([5]). Let p and q be two polynomials with the same degree. Sup-
pose there exist entire functions f and g such that f ◦ p = g ◦ q. Then one
of the following two cases holds:

(a) p(z) = L ◦ q(z) where L is a linear polynomial.
(b) p(z) = (r(z))2 +a and q = b(r(z)+ c)2 + d, where a, b, c, d are complex

numbers.

The above type of results were first investigated by I.N. Baker and F.
Gross in [1] and then L. Flatto in [5]. Finally, S.A. Lysenko in [8] gives an
algebraic necessary and sufficient condition for the existence of meromorphic
f and g satisfy f ◦ p = g ◦ q.

The proof of Theorem 3 is based on a method developed by S.A. Lysenko
in [8] which depends on a fundamental result of local holomorphic dynamics.



ON THE COMPOSITION ... 135

2. Local holomorphic dynamics.

Let X be a Riemann surface and let f : (X, a) → (X, a) denote a mapping
defined in some neighbourhood of a point a on X with f(a) = a. A germ
of a mapping f : (X, a) → (X, a) is defined to be the equivalent class of
all mappings which coincide with f in some neighbourhood of a and it is
denoted by [f ]. We say that f is conformal at a if f is analytic in some
neighbourhood of a and f ′(a) 6= 0. In this case f will have an inverse f−1

in a neighbourhood of a. Let Γ(X, a) be the set of all germs of conformal
mapping (X, a) → (X, a). We define [f ]◦[g] by [f ◦g]. Note that if [f ] = [f1],
then f ≡ f1 on any region for which both f and f1 are analytic. Hence, the
binary operation ◦ is well-defined. Clearly, the inverse of [f ] under ◦ is [f−1].
Therefore, (Γ(X, a), ◦) is a group. Note that two germs in (Γ(X, a), ◦) are
the same if they have the same Talyor series expansions about a. Therefore,
from time to time, we shall simply denote the germ [f ] by its Talyor series.

For example, elements of Γ(CP1,∞) are of the form a1z + a0 +
a−1

z
+

a−2

z2
+ · · · with a1 6= 0. While elements of Γ(C, 0) are of the form a1z +

a2z
2 + a3z

3 + · · · with a1 6= 0.
We simply denote Γ(CP1,∞) by Γ.

Definition 3. Let p be a nonconstant polynomial. Since p−1({∞}) = {∞},
we can define a group Tp = {g ∈ Γ | p ◦ g = p}. Then, it can be shown that
Tp is a cyclic subgroup of Γ and its order equals to deg p.

Example 1. Tzn = {λz |λn = 1} and T(z+1)m = {δz + δ − 1 | δm = 1}.

Tp is so-called a discrete invariant subgroup of Γ. In fact, we have the
following definition.

Definition 4. A subgroup G of Γ is discrete invariant if there exists a non-
constant function F , meromorphic in a punctured neighbourhood of infinity
in C, such that F (g(z)) = F (z) for all g ∈ G.

In [11], A.A. Shcherbakov proved that if G ⊂ Γ is discrete invariant, then
G is a solvable group.

We also need another important necessary condition for G ⊂ Γ to be
discrete. Define Γ1 =

{
g ∈ Γ | g = z + a0 +

a−1

z
+

a−2

z2
+ · · ·

}
and Γ0 ={

g ∈ Γ | g = z +
a−1

z
+

a−2

z2
+ · · ·

}
. Clearly, Γ1/Γ0 is isomorphic to (C,+).

Lemma 7 ([8]). Let G ⊂ Γ, G1 = G∩Γ1 and G0 = G∩Γ0. If G is discrete
invariant, then G1/G0 is isomorphic to a discrete subgroup of (C,+).

Example 2. Let f ,g be nonconstant meromorphic functions and p, q be
nonconstant polynomials. Suppose that F (z) = f(p(z)) = g(q(z)), then the
group generated by Tp and Tq, denoted by [Tp, Tq], is a discrete invariant
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subgroup of Γ. Hence, [Tp, Tq] is solvable. If we take p(z) = zn, q(z) =
(z + 1)m and G = [Tzn , T(z+1)m ], then G1 ⊂ {Tb(z) = z + b | b ∈ C} and
G0 = {z}. Now G1

∼= G1/G0 which is isomorphic to a discrete subgroup of
(C,+).

Tp and [Tp, Tq] are the main objects we shall study. The following two
lemmas which were proved by using Galois Theory will be needed in the
proof of Theorem 3.

Lemma 8 ([8]). Let p and q be two nonconstant polynomials. Define Hp,q

= { σ ∈ Tp | ρσ = σρ for all ρ ∈ Tq}. Then Hp,q = Tp1, where p1 is a right
factor of p.

Lemma 9 ([8]). If [Tp, Tq] is finite, then there exist two nonconstant ratio-
nal functions R1, R2 such that R1 ◦ p(z) = R2 ◦ q(z).

If [Tp, Tq] is infinite, then [Tp, Tq] must be non-Abelian as both Tp and
Tq are cyclic. Moreover, if [Tp, Tq] is also solvable, then we can construct
some groups that are isomorphic to [Tp, Tq]. These groups come from local
holomorphic dynamics and are easier to deal with.

Definition 5. Let w be a holomorphic vector field on V ⊂ C. Associated
with w, it is well known that there exists a unique local phase flow gw :
U × V → C which is a solution of the Cauchy problem

d

dt
gw(t, z) = w(gw(t, z)), gw(0, z) = z ,(3)

where U ⊂ < is a sufficiently small neighbourhood of 0. For brevity, we
denote gw(t, z) by gt

w(z) the time-t transformation for the flow of the holo-
morphic vector field w. Moreover, we have the following important property:

gt+s
w (z) = gt

w(gs
w(z)),(4)

in the sense that if one side of (4) is defined, so is the other, and they are
equal. If we extend the definition of gt

w(z) for all t ∈ C, then gt
w(z) (possibly

divergent) will be a formal solution of Equation (3), which will be denoted
as ĝt

w(z).

Definition 6. If f : V → W is a bijective conformal mapping, then the
forward image f∗w of the vector field w on V is defined as

(f∗w)(z) = f ′(f−1(z))× w(f−1(z)),

for all z ∈ W .

Let k be a natural number. We denote by gt
zk+1 the time-t transforma-

tion for the flow of the holomorphic vector field zk+1 ∂
∂z . Express gt

zk+1 as
a0(t)+a1(t)z+a2(t)z2 + · · · and substitute it into Equation (3). Comparing
the coefficient of the constant term, we have a′0(t) = ak+1

0 (t), a0(0) = 0.
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Hence, a0(t) ≡ 0 on some neighbourhood of zero. By repeating this pro-
cess, it is easy to check that gt

zk+1(z) = z + tzk+1 + · · · . Therefore, for
each sufficiently small real t, gt

zk+1(z) is conformal in some neighbourhood
of zero with gt

zk+1(0) = 0. Note that for complex number |t| < 1, we have
gt
z2(z) = z + tz2 + t2z3 + t3z4 + · · · is conformal in some neighbourhood of

zero.
Now, we consider the set of germs

G(k) = {λgt
zk+1 : (C, 0) → (C, 0) | λ ∈ C∗ = C− {0}, t ∈ C}.

We shall show that G(k) under composition is a group. For brevity, denote
λgt

zk+1 by (λ, t). For any µ ∈ C∗, let µ(z) = µz, it is easy to check that
µ−1 ◦ gt

µ∗w ◦ µ satisfies condition (3) and hence gt
µ∗w ◦ µ = µ ◦ gt

w. Similarly,

we have gt
zk+1 = gµ−kt

µ∗zk+1 . Now,

gt
zk+1 ◦ µ = gµ−kt

µ∗zk+1 ◦ µ = µ ◦ gµ−kt
zk+1 .(5)

(4) and (5) imply that G(k) is a group under composition. From (4) and
(5), the multiplication table for G(k) has the following form:

(λ, t)× (µ, s) = (λµ, tµ−k + s).

With the above formula, it is easy to prove that the subgroup C(k) = {λz =
λg0

zk+1 ∈ G(k)|λk = 1} is the center of G(k) (i.e., set of element commutes
with all elements of G(k)).

Definition 7. Let G and G1 be two groups of germs of conformal mappings
(C, 0) → (C, 0). G and G1 is said to be formally equivalent if there exists
an isomorphism K : G → G1 and a formal series ĥ whose constant term is
zero and the linear term is nonzero, such that for any f ∈ G,

ĥ−1 ◦ f ◦ ĥ = K̂f.

The hat over a symbol stands for the corresponding formal series.

Now, we can state the main lemma as follows.

Lemma 10 ([3]). A finitely generated non-Abelian solvable group of all
germs of conformal mapping (C, 0) → (C, 0) is formally equivalent to a
finitely generated subgroup of G(k) for some k.

Remark 2. Let J(z) = 1/z and G be a subgroup of Γ(CP1,∞). Then
J−1GJ = {J−1 ◦ g ◦ J |g ∈ G} is a subgroup of Γ(C, 0). Clearly G and
J−1GJ are isomorphic and from now on, we shall identify G with J−1GJ
frequently. For example, Tzn is identified with J−1TznJ = {λz |λn = 1} =
{λg0

z2 |λn = 1} and T(z+1)m is identified with J−1T(z+1)mJ = {δz + δ(δ −
1)z2 + δ(δ − 1)2z3 + δ(δ − 1)3z4 + · · · | δm = 1} = {δgδ−1

z2 | δm = 1}.
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3. Proof of Theorem 3.

Let F (z) = f(p(z)) = g(q(z)). From Example 2, we know that [Tp, Tq] is
solvable. We shall consider two cases: i) [Tp, Tq] is finite and ii) [Tp, Tq] is
infinite.

Suppose that [Tp, Tq] is finite, then by Lemma 9, there exist two noncon-
stant rational functions R1, R2 such that R1 ◦ p(z) = R2 ◦ q(z). Express Ri

as Pi
Qi

, where Pi and Qi are polynomials and do not have any common zero.
Without loss of generality, we may assume that P1 is nonconstant. Since Pi

and Qi do not have any common zero, we have F1 = P1(p(z)) = AP2(q(z))
for some nonzero constant A. By Lemma 2, there exists a nonconstant entire
function F2, which is the least generalized common left multiple of p and
q, such that F2 ≤ F1 and F2 ≤ F . From F2 ≤ F1, it follows that F2 is a
polynomial and hence F2|F1 and F2|F . Now, we can let F2 = h◦p = k◦q for
some polynomials h, k. Note that F2|F which implies h|f . Since f is prime
and transcendental, h must be linear. Therefore, p = h−1 ◦ k ◦ q, where
h−1 ◦ k is linear because p is prime and q is nonlinear. So, we are done for
case i).

If [Tp, Tq] is infinite, then it is non-Abelian as both Tp, Tq are finite order
cyclic groups. Since [Tp, Tq] is also solvable, it follows from Lemma 10 that
[Tp, Tq] is formally equivalent to a subgroup of G(k) for some natural number
k. Let d = lcm(n,m) where n = deg p and m = deg q. Let λgt

zk+1 and
µgs

zk+1 be the generators of Tp and Tq respectively. From the multiplication
table of G(k), λn = 1 and µm = 1. Hence, all elements of [Tp, Tq] are in
Gd(k) = {λgt

zk+1 ∈ G(k)|λd = 1}. Therefore, [Tp, Tq] is actually formally
equivalent to a subgroup of Gd(k).

By Lemma 8 and the fact that p is prime, Hp,q = Tp or Tid. If Hp,q = Tp,
then [Tp, Tq] must be abelian which is impossible. So, we have Hp,q = Tid =
{z}. It is easy to check that if h ∈ Gk(k) is an element of finite order, then
h ∈ C(k). Hence, Tp ∩Gk(k) ⊂ C(k). Note that C(k) is the center of G(k)
and so Tp ∩Gk(k) ⊂ Hp,q = {z}. Now, we claim that g = gcd(n, k) = 1. Let
(λ, t) be a generator of Tp. Then, it is very easy to check that (λ, t)

n
g is an

element of Tp ∩Gk(k). Therefore, (λ, t)
n
g = (1, 0) and hence n

g = n. We get
g = gcd(n, k) = 1.

We first consider the case that q is prime. Then, we also have gcd(m, k) =
1. So, if d = lcm(n,m), then gcd(d, k) = 1. We define a map f : Gd(k) →
Gd(1) by f(λgt

zk+1) = λkgt
z2 . Clearly, f is a group homorphism and sur-

jective. The condition that gcd(d, k) = 1 implies that f is also injective.
Therefore [Tp, Tq] is isomorphic to a subgroup of Gd(1).
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Let λgt
z2 and δgs

z2 be the elements of Gd(1) corresponding to generators
of Tp and Tq respectively. Note that

(1, 0) = id = λgt
z2 ◦λgt

z2 · · ·◦λgt
z2(n times) = (λn, t(λ−(n−1)+ · · ·+λ−1+1)).

So, λ (respectively δ) is a primitive nth root of unity (respectively a primitive
mth root of unity).

By choosing a suitable number r, we have (1, r)× (λ, t)× (1,−r) = (λ, 0).
Therefore, with this conjugation, we may assume t = 0 and this implies
that s 6= 0, for otherwise [Tp, Tq] will be abelian. By using the automor-
phism λgt

z2 → λgct
z2(c 6= 0) of Gd(1), we may also assume that s = δ − 1.

Hence the generators are of the form λg0
z2 and δgδ−1

z2 . From Remark 2, we
know that they generate Tzn and T(z+1)m respectively. Therefore [Tp, Tq]
is isomorphic to G = [Tzn , T(z+1)m ]. From Example 2, G1

∼= (G1/G0) ∼=
([Tp, Tq] ∩ Γ1)/([Tp, Tq] ∩ Γ0) which is isomorphic to a discrete subgroup of
(C,+) by Lemma 7.

Suppose Tb ∈ G1, then Tδb is also in G1. It is because z + δb = (δz +
δ − 1) ◦ (z + b) ◦ (δ−1z + δ−1 − 1). Similarly, Tλb ∈ G1 and hence Tεb ∈ G1,
where ε is a d th root of unity with d = lcm (n,m). Since G1 is isomorphic
to a nontrivial discrete subgroup of (C,+), it is easy to show that either
G1 = {Tna | n ∈ Z} or G1 = {Tnb+mc | n, m ∈ Z} for some a, b, c ∈ C and
b/c being irrational (see [9], p. 63). We consider the first case: Ta ∈ G1,
which implies Tε2a+a ∈ G1. Hence, T2a cos 2π

d
= Tε−1×(ε2a+a) ∈ G1. Thus, 2

cos 2π
d is some integer which can only be 0, ±1 or ±2. So, it follows that

d ∈ {2, 3, 4, 6}. With similar argrument, we can have the same conclusion
for the second case.

If n = m = 3, 4, 6, then it follows from Lemma 6 that p = L ◦ q, where L
is linear. Hence, [Tp, Tq] = Tp is finite, which is a contradiction.

If n = m = 2, without loss of generality we may assume that p(z) = z2

and q(z) = (z + c)2. Then we have F1 = cos
√

z ◦ p = cos(
√

z − c) ◦ q. By
Lemma 2, there exists a nonconstant entire function F2, which is the least
generalized common left multiple of p and q, such that F2 ≤ F1 and F2 ≤ F .
Let F2 = h ◦ p = k ◦ q, it follows that h ≤ f and h ≤ cos

√
z. Thus h is

not periodic. By similar argrument used in the proof of Theorem 1, we have
h|f . Since f is prime, h is linear or h = L◦f for some linear function L. h is
linear implies p = h−1 ◦k◦q which is impossible again. Therefore, h = L◦f .
Hence, cos

√
z has a prime transcendental right factor f . Write cos

√
z as

h1 ◦ f. Thus cos z = h1 ◦ f(z2). From Theorem 3.10 in [2], f(z2) = cos z
n

which implies f(z) = cos
√

z
n . This is impossible as cos

√
z

n is not a prime
function.

Now, we can assume that n 6= m and hence d 6= 2, 3. d = 4 implies that
one of n, m equals to 2. We may assume without loss of generality that
n = 2 and p = z2, q(z) = z4 + a3z

3 + a2z
2 + a1z. Since f(p(z)) = f(p(−z)),
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g(q(z)) = g(q(−z)), and because q is prime, Lemma 6 implies that q(z) =
L ◦ q(−z). Note that L is linear, then a3 = a1 = 0 and hence q is not prime
which is impossible. If d = 6, n can only be 2,3 or 6. The case for n = 2
can be treated similiar as above and the case n = 3, 6 are excluded from our
considerations.

For general q, we can express q as q2 ◦ q1 where q1 is prime. From the
above discussion, we have f = g ◦ q2 ◦L−1 and p = L ◦ q1. Thus, f is prime
implies that q2 is linear and we are done.

4. Further discussions.

In Theorem 3, we assume that both the right factors p, q have polynomial
growth. We can also restrict the left factors f, g to have comparable growth
rate and ask the following question.

Problem (B). Let f and p be two prime entire functions and p is a
polynomial. Suppose that F = f ◦p = g◦q and both f, g are transcendental.
Are the two factorizations of F equivalent?

This problem is closely related to Problem C below (proposed by C.C.
Yang, see e.g., [7], p. 124), which remains unsolved for more than a decade.

Problem (C). Let f be a pseudo-prime transcendental meromorphic func-
tion and p be a polynomial of degree ≥ 2. Must f(p(z)) be pseudo-prime?

If the answer to Problem C is positive, then the function q in Problem B
must be a polynomial and this reduces to the case handled in Theorem 3.
One may try to solve Problem C for the special case that p(z) = zn, where
n is a prime number.

Similarly, we can ask:

Problem (D). Let f be a pseudo-prime transcendental meromorphic func-
tion and p a polynomial of degree ≥ 3, which has no quadratic right factor.
Must p(f(z)) be pseudo-prime?

In [12], G.D. Song and J. Huang proposed the above problem and solved
it for the case that p(z) = zn with n being an odd number. We proved in
[10] that it is true if f is not of the form H ◦q, where H is an entire periodic
function and q is a polynomial. One may try to solve Problem D for deg p
is odd first.

Finally, we ask whether the answer of Problem A is yes if both f and g
are assumed to be transcendental?
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