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A Paley–Wiener theorem for the inverse spherical trans-
form is proved for noncompact semisimple Lie groups G which
are either of rank one or with a complex structure. Let K
be a fixed maximal compact subgroup of G. For each K-bi-
invariant function f in the Schwartz space on G, consider the
function f̃ defined on a fixed Weyl chamber a+ by f̃(H) :=
∆(H) f(exp H). Here ∆(H) :=

∏
α∈Σ+ (sinh α(H))mα/2,

where Σ+ is the set of positive restricted roots and mα is
the multiplicity of the root α. The K-bi-invariant functions
f whose spherical transform has compact support are identi-
fied as those for which f̃ extends holomorphically and with a
specific growth to a certain subset of the complexification ac

of a. The proof of the theorem in the rank-one case relies on
the explicit inversion formula for the Abel transform.

Introduction.

The classical Fourier transform is an isomorphism F of the Schwartz space
S(Rn) onto itself. The space D(Rn) of compactly supported C∞ functions on
Rn is dense in S(Rn), and the classical Paley–Wiener theorem characterizes
its image under F : a function f ∈ S(Rn) is the image under F of a C∞

function with support in the Euclidean ball {x ∈ Rn : |x| ≤ r} if and only
if it extends to Cn as an entire function of exponential type r and rapidly
decreasing. This is to say that given any integer N ≥ 0 there exists a
constant σN > 0 so that for all z ∈ Cn

|f(z)| ≤ σN(1 + |z|)−Ner|=z|.

Since Rn is self-dual, the same theorem also applies to the inverse Fourier
transform. So the functions in S(Rn) whose image under F is supported in
{x ∈ Rn : |x| ≤ r} are exactly those extending as entire functions on Cn of
exponential type r and rapidly decreasing.

Let G be a noncompact semisimple Lie group with a maximal compact
subgroup K. We refer to Section 1 for the notation and the basic definitions.
The spherical transform S is the analogue of the Fourier transform for K-
bi-invariant functions on G. Generalizing the notion of rapid decrease used
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to define S(Rn), Harish-Chandra defined the Schwartz space S(K\G/K)
for the K-bi-invariant functions on G. It contains the set D(K\G/K) of
the K-bi-invariant compactly supported C∞ functions on G as a dense sub-
space. The spherical transform is an isomorphism of S(K\G/K) onto the
subspace SW (a∗) of the Weyl group invariants in the Schwartz space over a∗.
In this setting, a Paley–Wiener theorem for the spherical transform has been
proved by Helgason [Hel66] for G of rank one or with a complex structure.
The proof for G arbitrary has been completed by Gangolli [Gan71]. As in
the classical case, the Helgason–Gangolli Paley–Wiener theorem character-
izes the image under S of the elements of D(K\G/K) as those functions in
SW (a∗) having an entire extension of exponential type and rapidly decreas-
ing, and the rate of growth is determined by the size of the support. But,
unlike the classical case, a Paley–Wiener theorem for the inverse spherical
transform cannot be deduced from that of the spherical transform. The
following question is therefore quite natural: What are the functions in
S(K\G/K) whose spherical transform has compact support?

This paper provides the answer when G is either of rank one or with a
complex structure. The characterization is given in terms of holomorphic
extendibility and growth conditions, and the rate of growth is determined
by the size of the support of the image. The precise statement is given
in Section 2. In the rank-one case the proof of the theorem relies on the
explicit formulas for the Abel transform and its inverse as given by Rouvière
[Rou83]. In the complex case, the theorem is an easy consequence of the
explicit expression of the (elementary) spherical functions.

After the fundamental works of Helgason and Gangolli, a number of au-
thors have proved Paley–Wiener type theorems for the spherical or related
transforms, e.g. [Koo75] and [Bra96] in the rank-one case. Not only
a Paley–Wiener theorem for the inverse spherical transform has not been
considered so far, but also the various estimates required in its proof for
the rank-one case are different from those considered in other Paley–Wiener
type theorems. The main difficulties are in the proof of the sufficiency of the
stated condition, where we also need a detailed analysis of the holomorphic
extendibility across given vertical segments of the complex space.
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author’s doctoral dissertation at the University of Washington, Seattle. The
author would like to thank her thesis advisor Prof. R. Gangolli for his
continuous guide and encouragement. The paper has been written while the
author was financially supported by the Dutch Organization for Scientific
Research (NWO).
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1. Notation and preliminaries.

In the following, G denotes a connected noncompact real semisimple Lie
group with finite center, and K denotes a fixed maximal compact subgroup
of G. g and k (⊂ g) are the Lie algebras of G and K, respectively. p is the
orthogonal complement of k in g with respect to the Cartan-Killing form B
of g. The dimension of any maximal abelian subspace of p is a constant,
called the (real) rank of G. We fix a maximal abelian subspace a of p. a∗

denotes the (real) dual space of a. gc is the complexification of g and ac is
the complexification of a in gc.

The set of the restricted roots of the pair (g, a) is indicated by Σ. It
consists of all α ∈ a∗ for which the vector space gα := {X ∈ g : [H,X] =
α(H)X for every H ∈ a } contains nonzero elements. mα := dimR gα is the
multiplicity of the restricted root α. Σ+ denotes the set of the positive
restricted roots corresponding to a choice of a Weyl chamber a+ of a.

The restriction of the exponential map of G to a is an analytic diffeomor-
phism onto the abelian subgroup A := exp a. The inverse diffeomorphism
is denoted by log. The action on a of the Weyl group W of the pair (g, k)
induces actions of W on a∗ by duality, on A via the exponential map, and
on ac by complex linearity.

Set n :=
∑

α∈Σ+ gα. N := exp n is a simply connected nilpotent subgroup
ofG. The map (k, a, n) 7−→ kan is an analytic diffeomorphism of the product
manifold K ×A×N onto G, and the resulting decompostion G = KAN is
called the Iwasawa decomposition of G.

Every element x of G can be written as x = k1ak2 for some k1, k2 ∈ K
and a ∈ A. a is uniquely determined up to conjugation by elements of W .
This property will be referred to as the Cartan decomposition of G, written
G = KAK.

The Cartan-Killing form B is positive definite on p × p, so 〈X,Y 〉 :=
B(X,Y ) defines Euclidean structures in p and in a ⊂ p. We extend this
inner product to a∗ by duality, that is we set 〈λ, µ〉 := 〈Hλ,Hµ〉 if Hγ is
the unique element in a such that 〈Hγ ,H〉 = γ(H) for all H ∈ a. Set
|H| = 〈H,H〉1/2. For x ∈ G define |x| := |H| if x = k1 expHk2 with
k1, k2 ∈ K and H ∈ a.

If (V, 〈·, ·〉) is a Euclidean space, the Schwartz space on V is the set S(V )
of all rapidly decreasing C∞ functions on V : a C∞ function f on V be-
longs to S(V ) provided for every differential operator D on V with constant
coefficients and for every integer N ≥ 0

τD,N(f) := sup
v∈V

(1 + |v|)N |Df(v)| <∞,

where |v| := 〈v, v〉1/2. S(V ) is a Fréchet space in the topology defined by
the seminorms τD,N . SW (a) and SW (a∗) respectively denote the sets of all
rapidly decreasing C∞ functions on the Eucidean spaces a and a∗ that are
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W -invariant. Using the exponential map, the space SW (A) of W -invariant
rapidly decreasing C∞ functions on A = exp a can be similarly defined.

A function f on G is said to be K-bi-invariant if f(k1xk2) = f(x) for all
x ∈ G and k1, k2 ∈ K. Because of the Cartan decomposition G = KAK, a
K-bi-invariant function is uniquely determined by itsW -invariant restriction
to A. Let D(G) denote the set of the left-invariant differential operators on
G. The Schwartz space S(K\G/K) of K-bi-invariant functions over G is the
set of allK-bi-invariant C∞ functions on G satisfying the following property:
For every D ∈ D(G) and every integer N ≥ 0

τD,N(f) := sup
x∈G

(1 + |x|)N d(x)|Df(x)| <∞.

Here d denotes the K-bi-invariant analytic function on G defined by

d(x) :=
∏

α∈Σ+

[
sinhα(H)
α(H)

]mα
2

if x = k1 expHk2 with k1, k2 ∈ K,H ∈ a.

(1.1)

The seminorms τD,N define a Fréchet topology on S(K\G/K).
Let DK(G) be the set of all left-invariant differential operators on G

which are right-invariant under K. The (elementary) spherical functions
on G are the K-bi-invariant eigenfunctions ϕ of every differential operator
D ∈ DK(G), normalized by the condition ϕ(e) = 1 (e is the identity element
in G).

Let dk be the Haar measure on K normalized so that
∫

K
dk = 1. Harish-

Chandra proved that for λ ∈ a∗c the functions

ϕλ(x) =
∫

K
e (iλ−ρ)(H(xk)) dk x ∈ G,(1.2)

exhaust the set of spherical functions on G. Here

ρ :=
1
2

∑
α∈Σ+

mα α(1.3)

and, for g ∈ G, H(g) is the unique element of a such that expH(g) is the
A-component of g in the Iwasawa decomposition G = KAN . Moreover,
ϕλ = ϕλ′ if and only if λ = w.λ′ for some w in the Weyl group W . ϕλ(x)
is a real analytic function of x ∈ G and a W -invariant entire function of
λ ∈ a∗c .

The spherical transform, the Abel transform and the Euclidean Fourier
transform are respectively the isomorphisms

S : S(K\G/K) ∼−→ SW (a∗)

A : S(K\G/K) ∼−→ SW (A)

F : SW (A) ∼−→ SW (a∗)



A PALEY–WIENER THEOREM 147

defined (up to a constant multiple) by

Sf(λ) :=
∫

G
f(x)ϕ−λ(x) dx, f ∈ S(K\G/K), λ ∈ a∗,

Af(a) := eρ (log a)

∫
N
f(an) dn, f ∈ S(K\G/K), a ∈ A,

Fg(λ) :=
∫

A
g(a) e−iλ(log a) da, g ∈ SW (A), λ ∈ a∗.

The Haar measures dx, dn and da respectively on G, N and A can be
normalized so that

S = F ◦ A.(1.4)

Via the Cartan decomposition of G, the spherical transform can be given
by integration over the Weyl chamber a+: For f ∈ S(K\G/K) and λ ∈ a∗

Sf(λ) = C

∫
a+

f(expH)ϕ−λ(expH)[∆(H)]2 dH(1.5)

where ∆ is the function on a+ defined by

∆(H) :=
∏

α∈Σ+

[sinhα(H)]
mα
2(1.6)

and C is a constant depending on the normalization of the measures.
An explicit analytic formula for the inverse Abel transform is not available

for arbitrary groups G. The inversion formula for the case G = SO0(n, 1)
was given first by Takahashi [Tak63]. In 1968, Gangolli solved the complex
case [Gan68]. For the general rank-one case the explicit formula was deter-
mined with different approaches by Eaton [Eat73], Koornwinder [Koo75],
Lohoué and Rychener [LR82], and Rouvière [Rou83]. These formulas will
be described in Sections 3 and 4. For more information on the inversion
formulas of the Abel transform we refer to [Bee88].

2. Statement of the results.

As already observed, a K-bi-invariant function is uniquely determined by its
W -invariant restriction to A. Via the exponential map, the Schwartz space
S(K\G/K) is therefore identified with a subset of SW (a). In the Paley–
Wiener theorems we are going to state, the elements of f ∈ S(K\G/K)
whose spherical transform has compact support suppSf will be character-
ized in terms of the holomorphic extendibility and growth of the function
H 7→ ∆(H)f(expH) over suitable subsets of the complexification ac of a.

2.1. The rank-one case. In the rank-one case a further simplification can
be made, as we can intrinsically identify a with R. Indeed, if G is of rank one,
the set Σ+ of the positive restricted roots consists of at most two elements:
α and, possibly, 2α. Let H be the element of a satisfying α(H) = 1. The
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choice of H and α and the exponential map allow us to identify a, a∗ and A
with R. The Weyl group reduces to {−1, 1} acting on R by multiplication,
so SW (a), SW (a∗) and SW (A) become S+(R), the set of even functions in the
Schwartz space of R.

Formulas (1.1) and (1.3) respectively become

d(t) =
(

sinh t
t

)mα
2
(

sinh(2t)
2t

)m2α
2

, t ∈ R,(2.1)

ρ =
1
2
mα +m2α.(2.2)

One can show that, under the above identifications, S(K\G/K) corresponds
to the set Sρ

+(R) of all even C∞ functions on R such that for every differential
operator D on R with constant coefficients and for every integer N ≥ 0

sup
t∈R

(1 + |t|)Nd(t)|Df(t)| <∞ .

We fix the following constants related to the multiplicities mα and m2α:

j :=

{
1 if m2α = 0
2 if m2α 6= 0

and J :=

{
2 if mα is even and m2α = 0
1 otherwise.

(2.3)

We shall frequently use the property that if 2α is a restricted root, then mα

is even and m2α is odd. The case mα even and m2α = 0 corresponds to
the particular situation in which all Cartan subalgebras of G are conjugate
(G ∼= SO0(2n+ 1, 1)).

We shall use the following notation:

<+ := {z ∈ C : <z > 0}
=j := i

(
R \ π

j Z
)

(j = 1, 2)

<+
j := <+ ∪ =j (j = 1, 2)

∃j := C \
{
z : <z ≤ 0,=z ∈ π

j Z
}

(j = 1, 2)

Sj := C \
{
z : =z ∈ π

j Z
}

(j = 1, 2)

Sj :=
{
z ∈ C : =z ∈

(
−π

j ,
π
j

)}
(j = 1, 2),

<z and =z being respectively the real and the imaginary part of z ∈ C.
For z ∈ Sj \ (−∞, 0], set (cf. Formula (1.6))

∆(z) = (sinh z)
mα
2 (sinh(2z))

m2α
2 .(2.4)

If mjα is odd, (sinh(jz))mjα/2 stands for (sinh(jz))(mjα−1)/2[sinh(jz)]1/2
+ ,

where [ · ]1/2
+ denotes the single-valued holomorphic branch of the square

root function determined on C \ (−∞, 0] by
√

1 = 1. If mα is even and
m2α = 0, then ∆(z) = (sinh z)mα/2 is an entire function on C.
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The Paley–Wiener theorem for the inverse spherical transform on rank-
one groups is given by the following theorem.

Theorem 2.1. Let f ∈ Sρ
+(R), and let f̃(t) := ∆(t)f(t) for t ∈ (0,∞).

Then Sf is compactly supported, with suppSf ⊂ [−r, r], if and only if f̃(t),
t ∈ (0,∞), extends to a holomorphic function F̃ on ∃j such that:

(1) For every integer N ≥ 0 there is a constant τN > 0 so that for all
z ∈ <+

j

|F̃ (z)| ≤ τN(1 + |coth z|)(j−1)mα
2 (1 + |coth(jz)|)

mjα−J

2 (1 + |z|)−Ner|=z|.

(2) The function F defined by

F (z) :=
F̃ (z)
∆(z)

for z ∈ Sj \ (−∞, 0]

extends to be an even holomorphic function on the horizontal strip Sj,
and F (t) = f(t) for all t ∈ R.

Observe that the growth estimate of F̃ is given on <+
j , not on the en-

tire complex plane. Moreover, a single-valued holomorphic extension of the
function f is generally only obtained in the strip Sj . But, when mα is even
and m2α = 0, the function f has actually a meromorphic extension to all
of C, with poles at most on iπZ \ {0}, with estimated growth on the whole
complex plane. Indeed, in this case, mα/2 is a positive integer. The func-
tion F (z) := F̃ (z)(sinh z)−mα/2 is therefore holomorphic on ∃j . Because of
2, F (z) is an even extension of f(t), t ∈ R, to Sj . Hence it holomorphically
extends to C \ {iπk : k = ±1,±2, . . . } by setting F (z) := F (−z) if <z < 0.
The growth condition for F̃ stated in 1 becomes: For every integer N ≥ 0
there is a constant τN > 0 such that for all z ∈ <+

j

|F̃ (z)| ≤ τN (1 + |coth z|)
mα
2
−1(1 + |z|)−Ner|=z|.

It follows, in particular, that the function (sinh z)mα−1F (z) is bounded near
the points iπk (k = ±1,±2, . . . ). Thus (sinh z)mα−1F (z) is entire, and
F (z) is a meromorphic extension of f to C.

In the case mα even and m2α = 0, Theorem 2.1 can be therefore equiva-
lently stated as follows.

Theorem 2.2. Suppose mα is even and m2α = 0. Let f ∈ Sρ
+(R). Then

supp Sf ⊂ [−r, r] if and only if f(t), t ∈ R, extends to an even meromorphic
function F on C satisfying: For every integer N ≥ 0 there is a constant
τN > 0 such that for all z ∈ C

|∆(z)F (z)| ≤ τN (1 + |coth z|)
mα
2
−1 (1 + |z|)−Ner|=z|.
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Theorem 2.1 is proved in Section 3. The proof is based on the relation
S = F ◦ A, applying the classical Paley–Wiener theorem to F and then
using the explicit inversion formulas for the Abel transform A and for the
inverse Abel transform A−1.

Observe that when mα = 2 (i.e. G ∼= SL(2,C) ∼= SO0(3, 1)), Theorem
2.2 says that z 7−→ ∆(z)F (z) is an even entire function of exponential type
r and rapidly decreasing. As we shall see shortly, this property generalizes
to arbitrary complex groups.

2.2. The complex case. When G admits a complex structure, all the
restricted roots α have multiplicitymα = 2. The function ∆ in (1.6) becomes

∆(H) =
∏

α∈Σ+

sinhα(H), H ∈ a.(2.5)

Its entire extension to ac will be also denoted by ∆:

∆(H̃) :=
∏

α∈Σ+

sinh α̃(H̃), H̃ ∈ ac,

α̃ being the complex linear extension of α ∈ Σ+ to ac.
We define a norm on the complexification ac = a⊕ ia of a by setting

|H̃| :=
(
|<H̃|2 + |=H̃|2

)1/2
.

An entire function g on ac is said to be of exponential type r > 0 and rapidly
decreasing provided for every integer N ≥ 0 there is a constant σN > 0 such
that

|g(H̃)| ≤ σN(1 + |H̃|)−Ner|=H̃|, H̃ ∈ ac.

For r > 0, Br := {λ ∈ a∗ : |λ| ≤ r} denotes the closed ball around 0 with
radius r in a∗.

Theorem 2.3. Suppose G has a complex structure. Let f ∈ S(K\G/K).
Then Sf is compactly supported, with suppSf ⊂ Br, if and only if f(expH),
H ∈ a, extends to a W -invariant meromorphic function F on ac such that
H̃ 7→ ∆(H̃)F (H̃) is an entire function on ac of exponential type r and
rapidly decreasing.

Theorem 2.3 is proved in Section 4.

3. Proof of Theorem 2.1.

Because of the classical Paley–Wiener theorem, the Fourier transform of a
function g ∈ S+(R) has support in the interval [−r, r] if and only if it extends
as an even entire function on C which is of exponential type r and rapidly
decreasing. We indicate the set of such functions by Hr

+(R).



A PALEY–WIENER THEOREM 151

Under the identifications of A and a∗ with R described in Section 2.1, the
Euclidean Fourier transform F : SW (A) −→ SW (a∗) reduces to the classical
Fourier transform on S+(R). Because of the relation S = F ◦A, our problem
is therefore to describe, for every r > 0, the subset of Sρ

+(R) which is the
image of Hr

+(R) under the inverse Abel transform A−1.
For every l ≥ 0, let S l

+(R) be the set of the even C∞ functions f on R
such that for every differential operator D on R with constant coefficients
and for every integer N ≥ 0

sup
t∈R

(1 + |t|)N coshl t|Df(t)| <∞.

Since (1 + |t|)−1 cosh t ≤ sinh t/t ≤ cosh t, t ∈ R, this definition is consis-
tent with our previous definition of Sρ

+(R) when l = ρ (cf. Formula (2.2)).
Moreover, S0

+(R) = S+(R).
As shown by Rouvière [Rou83], the Abel transform A : Sρ

+(R) −→ S+(R)
can be expressed as a composition of elementary transformations A1 and A2.

Definition 3.1. 1 Let l ≥ 0. For j = 1, 2, Aj is the integral operator from

S
l+

j
2

+ (R) to S l
+(R) defined by

Ajf(t) :=
∫ +∞

−∞
Φf
(
[coshj t+ x2]1/j

)
dx, t ∈ R,

where Φf(cosh t) := f(t).

A1 (resp. A2) can be interpreted as partial Abel transform associated with
one-parameter subgroups of N generated by elements of gα (resp. g2α).

Theorem 3.2. 2 Up to a constant multiple,

A = Amα
1 ◦ Am2α

2 .

For j = 1, 2 define Dj :=
1

sinh(jt)
d

dt
. Then Dj maps S l

+(R) into S l+j
+ (R)

for every l ≥ 0. Rouvière proved the following theorem.

Theorem 3.3. 3 For j = 1, 2

Dj ◦ Aj = Aj ◦Dj on S
l+

j
2

+ (R)(3.1)

A2
j ◦D

2
j = −πDj on S l

+(R).(3.2)

1[Rou83], p. 274. See also pp. 283, 286. Rouvière denotes the operator on Sρ
+(R)

corresponding to A by F . The relation between our operators A1 and A2 and Rouvière’s
operators F0 and F ′

0 is A1 =
√

πF0, A2 =
√

πF ′
0.

2[Rou83], Théorème 1, p. 275. See also Théorème 5, p. 283.
3[Rou83], Théorème 1, p. 275, and the computations before it. See also Lemme 6,

p. 283, and Lemme 7, p. 286. Observe that Rouvière uses the differential operator
−1

sinh(jt)

d

dt
.
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Up to a constant multiple, A−1 = Am2α
2 ◦Dm2α

2 ◦ Amα
1 ◦Dmα

1 .

A−1 is therefore an integro-differential operator, which reduces to a dif-
ferential operator when mα is even and m2α = 0. According to the various
possibilities for mα and m2α, there are three cases:

A−1 = D
mα/2
1 (mα even,m2α = 0),

A−1 = A1 ◦D(mα+1)/2
1 (mα odd,m2α = 0),

A−1 = A2 ◦D(m2α+1)/2
2 ◦Dmα/2

1 (mα even,m2α odd).

(All the equalities are given up to constant multiples.)

3.1. Necessity. To prove the necessity of the condition stated in Theo-
rem 2.1, we consider the “complexifications” of the operators Aj and Dj ,
and we apply them to the holomorphic extension of the functions in Hr

+(R)
as prescribed by the formulas for A−1.

Let j > 0, and letDj be the differential operator on functions on C defined

by Dj :=
1

sinh(jz)
d

dz
. Observe that Dj maps even (resp. odd) functions

into even (resp. odd) functions. The next Proposition 3.7 describes how
the (n,m)-th iterate Dn

2D
m
1 of D2, D1 acts on entire functions which are of

exponential type and rapidly decreasing.

Lemma 3.4. Let r, s ≥ 0, and let N be a nonnegative integer. Let g be an
entire function satisfying for all z ∈ C

|g(z)| ≤ σ(1 + |z|)−Nes|<z|+r|=z|

for some constant σ > 0. Then there is a constant σ̃ > 0 such that for all
z ∈ C

|g′(z)| ≤ σ̃(1 + |z|)−Nes|<z|+r|=z|.

Consequently, for every positive j, Djg is a meromorphic function, with at
most simple poles on iπj Z, satisfying

|Djg(z)| ≤ σ̃|sinh(jz)|−1(1 + |z|)−Nes|<z|+r|=z|.

Proof. Fix z ∈ C. Let γ denote the rectangular contour γ of vertices(
<z± 1

2
√

2
,=z± 1

2
√

2

)
. For ζ ∈ γ, we have |ζ − z| ≥ 1

2
√

2
and 2(1 + |ζ|) ≥

1 + |z|. Cauchy’s Formula therefore gives

|g′(z)| ≤ 1
2π

∫
γ

|g(ζ)|
|ζ − z|2

|dζ|

≤ 4
π

∫
γ
|g(ζ)| |dζ|
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≤ 4σ
π

∫
γ
(1 + |ζ|)−Nes|<ζ|+r|=| |dζ|

≤ 2N+2σ

π

∫
γ
(1 + |z|)−Ne

s(|<z|+ 1
2
√

2
)+r(|=z|+ 1

2
√

2
) |dζ|

= σ̃(1 + |z|)−Nes|<z|+r|=z|,

where σ̃ := 2N+4
√

2 π
e(r+s)/2

√
2σ. �

Lemma 3.5. Let r ≥ 0, and let n > 0 and N ≥ 0 be integers. Let l(z) be a
meromorphic function on C satisfying the following properties.

i. (sinh z)2n−1l(z) is an entire function.
ii. There is a constant ν > 0 such that for all z ∈ C \ iπZ

|l(z)| ≤ ν
(1 + |coth z|)n−1

|sinh z|n
(1 + |z|)−Ner|=z|.

Then

1. (sinh z)2n+1D1l(z) is an entire function.
2. There is a constant ν̂ > 0 (depending on r, n, N) such that for all
z ∈ C \ iπZ

|D1l(z)| ≤ ν̂
(1 + |coth z|)n

|sinh z|n+1
(1 + |z|)−Ner|=z|.

3. sinh(2z)(sinh z)2nD2l(z) is an entire function.
4. There is a constant ν̂ > 0 (depending on r, n, N) such that for all
z ∈ C \ iπ2 Z

|D2l(z)| ≤ ν̂|sinh(2z)|−1

(
1 + |coth z|
|sinh z|

)n

(1 + |z|)−Ner|=z|.

Proof. Apply Lemma 3.4 to the entire function g(z) := (sinh z)2n−1l(z),
using the following inequalities:

1√
2
(1 + |coth ζ|) ≤ e|<ζ||sinh ζ|−1 ≤ 1 + |coth ζ|, ζ ∈ C \ iπZ.(3.3)

For 3 and 4, observe that D2 =
1

2 cosh z
D1, which gives

sinh(2z)(sinh z)2nD2l(z) = (sinh z)2n+1D1l(z).

�

Lemma 3.6. Let r ≥ 0, and let m,n > 0 and N ≥ 0 be integers. Let l(z)
be a meromorphic function on C satisfying the following properties.

i. (sinh(2z))2n−1(sinh z)2ml(z) is an entire function.



154 ANGELA PASQUALE

ii. There is a constant ν > 0 such that for all z ∈ C \ iπ2 Z

|l(z)| ≤ ν
(1 + |coth(2z)|)n−1

|sinh(2z)|n

(
1 + |coth z|
|sinh z|

)m

(1 + |z|)−Ner|=z|.

Then
1. (sinh(2z))2n+1(sinh z)2mD2l(z) is an entire function.
2. There is a constant ν̂ > 0 (depending on r, n, m, N) such that for all
z ∈ C \ iπ2 Z

|D2l(z)| ≤ ν̂
(1 + |coth(2z)|)n

|sinh(2z)|n+1

(
1 + |coth z|
|sinh z|

)m

(1 + |z|)−Ner|=z|.

Proof. Apply Lemma 3.4 to g(z) := (sinh(2z))2n−1(sinh z)2m l(z), using In-
equality (3.3) together with |coth z| ≤ 2|coth(2z)|+ 1. �

Proposition 3.7. Let g be an entire function on C which is of exponential
type r > 0 and rapidly decreasing. Let j = 1, 2. Then for every positive
integers n and m:

1. (sinh(jz))2n−1(sinh z)2(j−1)mDn
j D

(j−1)m
1 g(z) is an entire function.

2. For every integer N ≥ 0 there is a constant νN > 0 (depending also on
j, n,m) such that for all z ∈ C \ iπj Z

|Dn
j D

(j−1)m
1 g(z)| ≤ νN

(1 + |coth(jz)|)n−1

|sinh(jz)|n

(
1 + |coth z|
|sinh z|

)(j−1)m er|=z|

(1 + |z|)N
.

3. If g is even, then Dn
j D

(j−1)m
1 g is even and extends to be holomorphic

at 0.

Proof. Suppose first j = 1, and prove 1 and 2 inductively on n. The case
n = 1 follows from Lemma 3.4 (with j = 1 and s = 0), and the inductive
step is provided by Lemma 3.5, Parts 1 and 2 (with l(z) = Dn

1 g(z)). Suppose
then j = 2, and prove 1 and 2 inductively on n for m arbitrarily fixed. The
case n = 1 is obtained from Lemma 3.5, Parts 3 and 4 (with l(z) = Dm

1 g(z)).
The inductive step is given by Lemma 3.6 (with l(z) = Dn

2D
m
1 g(z)).

If g is even and holomorphic near 0, then g′(0) = 0. Hence Djg is even
and extends to be holomorphic at 0 by setting Djg(0) = 1

j g
′′(0). �

We now want to determine the image under the operators Aj (j = 1, 2) of
the functions h(t) := Dn

j D
(j−1)m
1 g(t), t ∈ R, described by Proposition 3.7.

If h ∈ S
l+

j
2

+ (R), then Ajh is a function in S l
+(R) that can be written as

Ajh(t) = 2
∫ ∞

0
Φh
(
[coshj t+ x2]1/j

)
dx, t > 0.
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Substitute the variable x ∈ (0,∞) with the variable w ∈ (0,∞) defined by
the relation coshj t+ x2 = coshj(t+ w). Then

x2 = coshj(t+ w)− coshj t = 2
j sinh

(
t+ w

2

)
sinh

(
w
2

)
,

and

Ajh(t) =
√

j
2

∞∫
0

h(t+ w)
sinh (j(t+ w))[

sinh
(
j
(
t+ w

2

))
sinh

(
jw

2

)]1/2
dw, t > 0.

Since the map z 7→ [sinh(jz)]1/2
+ is well defined and holomorphic on Sj \

(−∞, 0], we are led to the following definition.

Definition 3.8. For j = 1, 2, let Ac
j denote the integral transform given,

for all functions h for which it is well defined, by

Ac
jh(z) :=

√
j
2

∞∫
0

h(z + w)
sinh(j(z + w))[

sinh
(
j
(
z + w

2

))
sinh

(
jw

2

)]1/2

+

dw,

z ∈ Sj \ (−∞, 0].

To study the operator Ac
j we need the following theorem.

Theorem 3.9. 4 Let U be an open subset of C, and let Ψ(z, w) be a con-
tinuous function on U × (0,∞). Assume:

i. For every w ∈ (0,∞), Ψ(z, w) is holomorphic in U .
ii. For every compact subset K of U there exists a function MK(w) which

is integrable in (0,∞) and such that for all z ∈ K and w ∈ (0,∞)

|Ψ(z, w)| ≤MK(w).

Then ψ(z) :=
∫∞
0 Ψ(z, w) dw is holomorphic on U .

Lemma 3.10. Let h be an even holomorphic function on Sj with the fol-
lowing property: For every δ ∈ (0, π

j ) there exists a constant Cδ such that
for all z with |=z| ≤ δ

|h(z)| ≤ Cδ|sinh(jz)|−1/2(1 + |z|)−2.

Then Ac
jh(z), z ∈ Sj\(−∞, 0], is well-defined and it extends to an even holo-

morphic function on Sj, which we also denote by Ac
jh. Moreover, Ac

jh(t) =
Ajh(t) for all t ∈ R.

4[Lan93], Lemma 1.1, Chapter XV, p. 392, and [LR70], p. 368, for the M -test.
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Proof. Set

Ψ(z, w) := h(z + w)
sinh(j(z + w))[

sinh
(
j
(
z + w

2

))
sinh

(
jw

2

)]1/2

+

.

By assumption, Ψ(z, w) is holomorphic in z ∈ Sj \ (−∞, 0] for every fixed
w ∈ (0,∞). For every integer m ≥ 2, let S̃m := {z ∈ C : |=z| ≤ π

j −
1
m ,<z ≥

−m} \ {z ∈ C : <z < 0, |=z| < 1/m}. Let χA(w) denote the characteristic
function of A ⊂ (0,∞). Since∣∣∣∣ sinh(j(z + w))

sinh
(
j
(
z + w

2

))
sinh

(
jw

2

) ∣∣∣∣ ≤ ∣∣ coth
(
j
(
z + w

2

)) ∣∣+ coth
(
jw

2

)
,

there is a constant C > 0 so that for (z, w) ∈ S̃m × (0,∞)

|Ψ(z, w)| ≤ C
[
χ(0,m](w)

(
coth

(
jw

2

))1/2 + χ(m,∞)(w)
(
1 + (w −m)

)−2
]
.

(3.4)

Theorem 3.9 thus guarantees that Ac
jh(z) is holomorphic on Sj \ (−∞, 0].

We now prove that Ac
jh is even by showing that Ac

jh(iy) = Ac
jh(−iy)

for all y ∈
(
0, π

j

)
. Let Ly denote the horizontal half-line in <+

j from iy to
infinity. The change of variables u = iy + w gives

Ac
jh(iy) =

√
j
2

∫
Ly

h(u)
sinh(ju)

[dj(iy, u)]
1/2
+

du

where

dj(iy, u) := sinh
(
j
(u+iy

2

))
sinh

(
j
(u−iy

2

))
= 1

2 [cosh(ju)− cos(jy)].

By assumption h is holomorphic in the horizontal strip Sj . [dj(iy, ·)]1/2
+ is

holomorphic in the domain Dy obtained from Sj by removing the vertical
segments

(
−iπj ,−iy

]
and

[
iy, iπj

)
. Therefore the function

f(y, u) := h(u)
sinh(ju)

[dj(iy, u)]
1/2
+

is a holomorphic function of u ∈ Dy.
Let R > 1, and let γR =

⋃5
k=1 γ

R
k be the closed curve in Dy pictured in

Figure 1 (γR
5 is the quarter of circle centered at iy with radius y/R).
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R

iy

0

i

i /j-

γR

R
5

γ

/j

R+iy

π

π

γ

γ
γ

R

R

R

1

2

3

4

Dy

Figure 1. The contour of integration γ.

By Cauchy’s Theorem ∫
γR

f(y, u) du = 0.

Because of the growth condition of h, when u = R+ it, t ∈ (0, y),

|f(y, u)| ≤ Cy|sinh(ju)|−1/2(1 + |u|)−2|sinh(ju)||dj(iy, u)|−1/2

≤ C ′y(1 +R)−2.

Hence lim
R→∞

∫
γR
3

f(y, u) du = 0. If u ∈ Dy is close to iy, then there is a

constant C0 = C0(y) > 0 such that |f(y, u)| ≤ C0

∣∣u−iy
2

∣∣−1/2. Hence f(y, ·)
is integrable along the segment (0, iy) on the imaginary axis with

lim
R→∞

∫
γR
1

f(y, u) du = −i
y∫

0

f(y, it) dt.

Also, if u = iy + y
Re

iθ, θ ∈ (−π/2, 0), then

∫
γR
5

|f(y, u)| |du| ≤ C0

0∫
−π/2

∣∣∣∣yeiθ2R

∣∣∣∣−1/2
y

R
dθ = C0π

√
y

2R
−→ 0 as R→∞,

so lim
R→∞

∫
γR
5

f(y, u) du = 0. Since lim
R→∞

∫
γR
4

f(y, u) du = −
√

2
j A

c
jh(iy), then

Ac
jh(iy) =

√
j
2 [I1(y) + I2(y)]
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where

I1(y) = −i
y∫

0

f(y, it) dt = −i
y∫

0

h(it)
sinh(ijt)

[dj(iy, it)]
1/2
+

dt,

I2(y) =

∞∫
0

f(y, t) dt =

∞∫
0

h(t)
sinh(jt)

[dj(iy, t)]
1/2
+

dt.

Consider now −y and the closed curve ΓR =
⋃5

k=1 ΓR
k in Dy which is

symmetric to γR with respect to the real axis (cf. Figure 2).

i

i /j-

/jπ

π

R

R+iy

R

iy

-

-
Γ

Γ
Γ

Γ
4

3
R

2Γ
R

5
R

R

=γR

Dy

1

20

Figure 2. The contour of integration Γ.

Computations analogous to those made above show

Ac
jh(−iy) = −

√
j
2 lim

R→∞

∫
ΓR

4

f(−y, u) du =
√

j
2 [I1(−y) + I2(−y)]

where

I1(−y) = lim
R→∞

∫
ΓR

1

f(−y, u) du = i

0∫
−y

f(−y, it) dt

= i

0∫
−y

h(it)
sinh(ijt)

[dj(−iy, it)]1/2
+

dt,

I2(−y) = lim
R→∞

∫
ΓR

2

f(−y, u) du =

∞∫
0

f(−y, t) dt =

∞∫
0

h(t)
sinh(jt)

[dj(−iy, t)]1/2
+

dt.
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Since dj(−iy, t) = dj(iy, t), then I2(−y) = I2(y). Since h is even and
dj(iy, it) = dj(−iy,−it), then

I1(y) = −i
y∫

0

h(it)
sinh(ijt)

[dj(iy, it)]
1/2
+

dt = i

0∫
−y

h(it)
sinh(ijt)

[dj(−iy, it)]1/2
+

dt = I1(−y).

Thus Ac
jh(−iy) = Ac

jh(iy). Ac
jh is even, so we can extend it to Sj \ {0}

by setting Ac
jh(z) := Ac

jh(−z) if <z < 0. Moreover, (3.4) shows that Ac
jh

remains bounded on S̃1 ∩ <+
j and hence that it holomorphically extends to

Sj . Finally, Ac
jh and Ajh are continuous even functions of t ∈ R: Since they

agree on (0,∞), they must agree on all R. �

To extend Ajh outside Sj , we need to make its integrand single-valued.
The key observation is that the map

z 7−→
[

sinh(jz)
sinh

(
j
(
z + w

2

))
sinh

(
jw

2

)]1/2

+

is well-defined and holomorphic on ∃j for every fixed w ∈ (0,∞).
Definition 3.11. For j = 1, 2, let A+

j denote the integral operator given,
for all functions h for which it is well defined, by

A+
j h(z)

:=
√

j
2

∞∫
0

h(z + w)

[
sinh(jz)

sinh
(
j
(
z + w

2

))
sinh

(
jw

2

)]1/2

+

sinh(j(z + w)) dw,

z ∈ ∃j .

The next proposition determines the holomorphic extension of Ajh when
h = Dn

j D
(j−1)m
1 g is given by Proposition 3.7.

Proposition 3.12. Let j = 1, 2 and let n,m be positive integers. Suppose
h ∈ Sjn+(j−1)m

+ (R) extends to an even meromorphic function on C with the
following properties.

i. (sinh(jz))2n−1(sinh z)2(j−1)m h(z) is an entire function.
ii. For every integer N ≥ 0 there is a constant νN > 0 such that for all
z ∈ C \ iπj Z

|h(z)| ≤ νN

(1 + |coth(jz)|)n−1

|sinh(jz)|n

(
1 + |coth z|
|sinh z|

)(j−1)m

(1 + |z|)−Ner|=z|.

iii. h is holomorphic at z = 0.
Then
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1. A+
j h is holomorphic in ∃j, and A+

j h(t) = (sinh(jt))1/2Ajh(t) for all
t ∈ (0,∞).

2. For every integer N ≥ 0 there is σN > 0 (depending also on n,m, j)
such that for all z ∈ <+

j

|A+
j h(z)| ≤ σN

(
1 + |coth(jz)|
|sinh(jz)|

)n−1(1 + |coth z|
|sinh z|

)(j−1)m

(1 + |z|)−Ner|=z|.

3. Ac
jh is an even holomorphic extension of Ajh(t), t ∈ R, to Sj.

4. Ac
jh(z) =

A+
j h(z)

[sinh(jz)]1/2
+

on Sj \ (−∞, 0].

Proof. Let

Ψ(z, w) = h(z + w)

[
sinh(jz)

sinh
(
j
(
z + w

2

))
sinh

(
jw

2

)]1/2

+

sinh(j(z + w)).

Because of Condition i on h, Ψ is continuous on ∃j×(0,∞) and holomorphic
in ∃j for every fixed w ∈ (0,∞). If z = t + iy ∈ <+ and w ∈ (0,∞), then
|sinh(j(z + w))| ≥ sinh(jt), and |coth(j(z + w))| ≤ coth(jt). Condition ii
(for N = 0) therefore gives the following estimate:

|Ψ(z, w)|

≤ ν0

(
1 + |coth(j(z + w))|
|sinh(j(z + w))|

)n−1(1 + |coth(z + w)|
|sinh(z + w)|

)(j−1)m er|=z|[
sinh

(
jw

2

)]1/2

≤ ν0

(
1 + coth(jt)

sinh(jt)

)n−1(1 + coth t
sinh t

)(j−1)m ery[
sinh

(
jw

2

)]1/2

=
(
function bounded on compact subsets of <+

)
·
[
sinh

(
jw

2

)]−1/2
.

If z = t+ iy ∈ Sj , then sin(jy) 6= 0 6= sin y. Condition ii on h (with N = 0)
gives, for some constant ν ′0 > 0,

|Ψ(z, w)|

≤ ν ′0|sin(jy)|2(1−n)|sin y|2(1−j)m

(
1 +

∣∣∣∣sinh(jt)
sin(jy)

∣∣∣∣)1/2 ery[
sinh

(
jw

2

)]1/2

= ( function bounded on compact subsets of Sj) ·
[
sinh

(
jw

2

)]−1/2
.

Since w 7→
[
sinh

(
jw

2

)]−1/2 is integrable on (0,∞), Theorem 3.9 implies
that A+

j h is holomorphic on ∃j = <+ ∪Sj .
If (z, w) ∈ <+

j ×(0,∞), we have |z+w| ≥ |z|, |sinh(j(z+w))| ≥ |sinh(jz)|,
and |coth(j(z + w))| ≤

√
2 + |coth(jz)|. The growth condition for h then
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implies: For every integer N ≥ 0 and z ∈ <+
j

|A+
j h(z)|

≤
√

j
2 νN

(
1 +

√
2 + |coth(jz)|
|sinh(jz)|

)n−1(
1 +

√
2 + |coth z|
|sinh z|

)(j−1)m

· (1 + |z|)−Ner|=z|
∞∫
0

[
sinh

(
jw

2

)]−1/2
dw

≤ σN

(
1 + |coth(jz)|
|sinh(jz)|

)n−1(1 + |coth z|
|sinh z|

)(j−1)m

(1 + |z|)−Ner|=z|,

with

σN := 3[n−1+(j−1)m]/2
√

j
2 νN

∞∫
0

[
sinh

(
jw

2

)]−1/2
dw.

Property 3 is a consequence of Lemma 3.10. In fact, h is holomorphic and
even on Sj , and if |<z| ≥ 1 and |=z| < π/j, then

|h(z)| ≤ ν2
(1 + |coth(jz)|)n−1

|sinh(jz)|n

(
1 + |coth z|
|sinh z|

)(j−1)m

(1 + |z|)−2er|=z|

≤ ν ′2 |sinh(jz)|−1/2(1 + |z|)−2.

Finally, Property 4 follows immediately because Ac
jh and

A+
j h

[sinh(jz)]1/2
+

are both holomorphic on Sj \ (−∞, 0] and agree with Ajh on (0,∞). �

Proof of Theorem 2.1 (Necessity). Let g ∈ Hr
+(R) and let f := A−1g. Sup-

pose first that mα is even and m2α = 0 (that is j = 1 and J = 2). Then (up
to a constant multiple) f = D

mα/2
1 g, and Proposition 3.7 (with j = 1 and

n = mα/2) proves that f extends to an even meromorphic function F on C
satisfying the condition stated in Theorem 2.2.

Suppose now that J = 1, i.e. that either mα is odd (so j = 1) or mα is
even and m2α is odd (j = 2). Then (up to a constant multiple)

f = A−1g = AjD
n
j D

(j−1)m
1 g

with n = (mjα + 1)/2 and m = mα/2. Because of Proposition 3.7, we can
apply Proposition 3.12 to the function h = Dn

j D
(j−1)m
1 g.

For z ∈ ∃j , set

F̃ (z) := (sinh z)(j−1)mα/2(sinh(jz))(mjα−1)/2A+
j h(z).
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Observe that the exponents (j − 1)mα/2 and (mjα − 1)/2 are nonnegative
integers, so F̃ (z) is holomorphic on ∃j . Moreover, for t ∈ (0,∞),

F̃ (t) = (sinh t)(j−1)mα/2(sinh(jt))(mjα−1)/2A+
j h(t)

= (sinh t)(j−1)mα/2(sinh(jt))(mjα−1)/2(sinh(jt))1/2Ajh(t)

= (sinh t)mα/2(sinh(2t))m2α/2f(t).

The growth condition of A+
j h on <+

j given by Proposition 3.12 determines
the growth estimate 2 for F̃ .

Let (sinh(jz))mjα/2 := (sinh(jz))(mjα−1)/2[sinh(jz)]1/2
+ if mjα is odd. For

z ∈ Sj \ (−∞, 0],

F (z) : =
F̃ (z)

(sinh z)mα/2(sinh(2z))m2α/2

=
(sinh z)(j−1)mα/2(sinh(jz))(mjα−1)/2A+

j h(z)

(sinh z)mα/2(sinh(2z))m2α/2

=
A+

j h(z)

[sinh(jz)]1/2
+

= Ac
jh(z).

Condition 1 then follows from the equality Ac
jh(t) = AjD

n
j D

(j−1)m
1 g(t) =

f(t) (t ∈ R) and from Proposition 3.12. �

3.2. Sufficiency. Before completing the proof of Theorem 2.1, we give, fol-
lowing Rouvière, the explicit form of the Abel transform Af of a function
f ∈ Sρ

+(R). Let dX (resp. dX ′) denote the Lebesgue measure on gα (resp.
g2α) corresponding to the Euclidean structure induced by the inner product
(X,Y ) := −B(X, θY ), where B is the Cartan-Killing form and θ is the Car-
tan involution of g. Via SU(2, 1)-reduction, Rouvière proved the following
theorem.

Theorem 3.13. 5 Let f ∈ Sρ
+(R). Then there is a constant C so that

Af(t) = C

∫
gα×g2α

Φf
([

(cosh t+ |X|2)2 + |X ′|2
]1/2

)
dX dX ′, t ∈ R,

where Φf(cosh t) := f(t). When m2α = 0, disregard the variable X ′ and the
integration over g2α.

For a fixed normalization of the Haar measure dn of N , the constant C
can be explicitely determined as a function of the multiplicities mα and m2α.

5[Rou83], p. 272,(8). See also p. 283.



A PALEY–WIENER THEOREM 163

For our purposes it is more appropriate to have a different expression for
Af(t), t ∈ (0,∞). We first pass to spherical coordinates on gα and on g2α,
and then perform a change of variables in the integral that takes Φf back
to f . Finally, we replace f by f̃ . The cases m2α = 0 and m2α 6= 0 are kept
separated.

Case m2α = 0 : For all t ∈ (0,∞)

Af(t) = C

∫
gα

Φf(cosh t+ |X|2) dX

= 2Cπmα/2Γ
(

mα
2

)−1

∞∫
0

Φf(cosh t+ r2) rmα−1 dr

= C ′
∞∫
0

f(t+ w)
[
sinh

(
t+ w

2

)
sinh

(
w
2

)]mα
2
−1 sinh(t+ w) dw

= C ′
∞∫
0

f̃(t+ w)

[
sinh

(
t+ w

2

)
sinh

(
w
2

)
sinh(t+ w)

]mα
2
−1

dw,

where C ′ = 2
(

π
2

)mα/2 Γ
(

mα
2

)−1
C.

Case m2α 6= 0 : For all t ∈ (0,∞)

Af(t)

= C

∫
gα×g2α

Φf
([

(cosh t+ |X|2)2 + |X ′|2
]1/2

)
dX dX ′

=
4C π(mα+m2α)/2

Γ
(

mα
2

)
Γ
(

m2α
2

) ∞∫
0

∞∫
0

Φf
([

(cosh t+ r2)2 + s2
]1/2

)
rmα−1sm2α−1dr ds

= C ′′
∞∫
0

∞∫
0

f(t+ w + v)
[
sinh

(
t+ w

2

)
sinh

(
w
2

)]mα
2
−1 sinh(t+ w)

· [sinh(2(t+ w) + v) sinh v]
m2α

2
−1 sinh(2(t+ w + v)) dw dv

= C ′′
∞∫
0

∞∫
0

f̃(t+ w + v)

[
sinh

(
t+ w

2

)
sinh

(
w
2

)
sinh(t+ w + v)

]mα
2
−1

·
[
sinh(2(t+ w) + v) sinh v

sinh(2(t+ w + v))

]m2α
2
−1 sinh(t+ w)

sinh(t+ w + v)
dw dv,

where C ′′ = 2
(

π
2

)mα/2
πm2α/2

[
Γ
(

mα
2

)
Γ
(

m2α
2

)]−1
C.
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In the above integrals, the variable r ∈ (0,∞) has been replaced by the
variable w ∈ (0,∞) defined by the relation

cosh t+ r2 = cosh(t+ w),

and the variable s ∈ (0,∞) has been replaced by the variable v ∈ (0,∞)
defined by the relation

cosh2(t+ w) + s2 = cosh2(t+ w + v).

The constants C ′ and C ′′ do not affect the result we want to prove. We
therefore disregard them.

The idea to prove the sufficiency of the conditions in Theorem 2.1 is
the following. The hypothesis on f imposed by Theorem 2.1 involve the
holomorphic extension F̃ to ∃j of the function f̃(t) := ∆(t)f(t), t ∈ (0,∞).
The function f̃ also appears in the integrand of Af(t), t ∈ (0,∞). We
formally extend Af to AF on ∃j by replacing f̃(t) by F̃ (z), and the variable
t by the variable z in the remaining hyperbolic sines. A little extra care is
required when dealing with square roots. The growth condition for F̃ on
<+

j is used to prove that AF is holomorphic on (some open neighborhood
of) <+

j . Condition 2 in Theorem 2.1 is employed to show that AF is even,
which allows us to extend it to C \ iπj Z. Finally, the growth condition is
used again, to prove either that AF is bounded near each point in iπj Z (and
hence it is entire) or that AF is rapidly decreasing with exponential growth
r.

Definition 3.14. Let f ∈ Sρ
+(R) satisfy the conditions stated in Theo-

rem 2.1. For z ∈ ∃j , formally define

AF (z) :=

∞∫
0

F̃ (z + w) [s1(z, w)]
mα
2
−1 dw, if m2α = 0,

AF (z) :=

∞∫
0

∞∫
0

F̃ (z + w + v) [s2(z, w, v)]
mα
2
−1 [s3(z, w, v)]

m2α
2
−1

· sinh(z + w)
sinh(z + w + v)

dw dv, if m2α 6= 0,

where

s1(z, w) :=
sinh

(
z + w

2

)
sinh

(
w
2

)
sinh(z + w)

,

s2(z, w, v) :=
sinh

(
z + w

2

)
sinh

(
w
2

)
sinh(z + w + v)

,
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s3(z, w, v) :=
sinh(2(z + w) + v) sinh v

sinh(2(z + w + v))
,

and [∗]
mjα

2
−1 := [∗]

mjα−1

2 [1/∗]1/2
+ if mjα is odd.

Remark 3.15. By definition, the function AF extends, up to a constant
multiple, Af(t), t ∈ (0,∞). Observe that the square roots appearing in
the formula when mjα is odd are well-defined single-valued holomorphic
functions of z ∈ ∃j for all v, w ∈ (0,∞).

Lemma 3.16. Define

s∗(x) :=

{
x−1 if x ∈ (0, 1)
1 if x ∈ [1,∞).

Then there is a constant C > 0 such that for every ζ = a + ib with a ≥ 0
and for every x ∈ (0,∞)

max
{ ∣∣∣∣ sinh(ζ + 2x)

sinh(ζ + x) sinhx

∣∣∣∣ , 1 + |coth(ζ + x)|
}
≤ C s∗(x).

Lemma 3.17. Let Ψ(z, w) and Ψ(z, w, v) denote respectively the integrands
of AF (z) when m2α = 0 and m2α 6= 0. Then, for every integer N ≥ 0 there
are constants ηN , µN > 0 such that for all z ∈ <+

j and v, w ∈ (0,∞)

|Ψ(z, w)| ≤ ηN(s∗(w))(2−J)/2(1 + |z + w|)−Ner|=z|,

|Ψ(z, w, v)| ≤ µN(s∗(w))3/4(s∗(v))3/4(1 + |z + w + v|)−Ner|=z|.

Proof. Observe first that there is a constant C > 0 so that for all (ζ, x) ∈
<+

j × (0,∞) and j = 1, 2∣∣∣∣sinh(jζ + x) sinhx
sinh(jζ + 2x)

∣∣∣∣ (1 + |coth(jζ + 2x)|) ≤ C.(3.5)

When mα > 1 and m2α = 0, the exponent (mα/2) − 1 of the function
s1(z, w) in Definition 3.14 is positive. The growth condition for F̃ gives: For
every integer N ≥ 0 there is a constant τN > 0 such that

|Ψ(z, w)|

≤ τN |s1(z, w)|(mα/2)−1
(
1 + |coth(z + w)|

)(mα−J)/2(1 + |z + w|)−Ner|=z|

≤ τN

[
|s1(z, w)|

(
1 + |coth(z + w)|

)](mα/2)−1 (1 + |coth(z + w)|
)(2−J)/2

· (1 + |z + w|)−Ner|=z|

≤ ηN(s∗(w))(2−J)/2(1 + |z + w|)−Ner|=z|.
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If mα = 1 and m2α = 0, then J = 1 and

|Ψ(z, w)| =
∣∣∣F̃ (z + w)

∣∣∣ ∣∣∣∣∣ sinh(z + w)
sinh

(
z + w

2

)
sinh

(
w
2

)∣∣∣∣∣
1/2

≤ τ ′N(1 + |z + w|)−Ner|=z|(s∗(w/2))1/2

≤ ηN(s∗(w))1/2(1 + |z + w|)−Ner|=z|.

Suppose now m2α > 1. In this case the exponents of both functions
s2(z, w, v) and s3(z, w, v) are positive. The growth condition for F̃ gives:
For every integer N ≥ 0 there is a constant τN > 0 such that

|Ψ(z, w, v)|

≤ τN |s2(z, w, v)|(mα/2)−1|s3(z, w, v)|(m2α/2)−1

∣∣∣∣ sinh(z + w)
sinh(z + w + v)

∣∣∣∣
· (1 + |coth(z + w + v)|)mα/2 (1 + |coth(2(z + w + v))|)(m2α−1)/2

· (1 + |z + w + v|)−Ner|=z|

≤ τ ′N [ |s2(z, w, v)| (1 + |coth(z + w)|) ](mα/2)−1(1 + |coth(z + w + v)|)

· [|s3(z, w, v)| (1 + |coth(2(z + w + v))|)](m2α/2)−1

· (1 + |coth(2(z + w + v))|)1/2 (1 + |z + w + v|)−Ner|=z|

≤ τ ′′N (1 + |coth(z + w + v)|) (1 + |coth(2(z + w + v))|)1/2

· (1 + |z + w + v|)−Ner|=z| by Inequality (3.5)

≤ µN(s∗(w))3/4(s∗(v))1/4(s∗(2v))1/2(1 + |z + w + v|)−Ner|=z|

by Lemma 3.16

≤ µN(s∗(w))3/4(s∗(v))3/4(1 + |z + w + v|)−Ner|=z|.

When m2α = 1, the exponent of s3(z, w, v) is −1/2. Hence

|Ψ(z, w, v)|

= |F̃ (z + w + v)||s2(z, w, v)|(mα/2)−1

·
∣∣∣∣ sinh(2(z + w + v))
sinh(2(z + w) + v) sinh v

∣∣∣∣1/2 ∣∣∣∣ sinh(z + w)
sinh(z + w + v)

∣∣∣∣
≤ τ ′N |s2(z, w, v)|(mα/2)−1 (1 + |coth(z + w + v)|)mα/2 (s∗(v))1/2

· (1 + |z + w + v|)−N er|=z|

≤ τ ′′N [ |s2(z, w, v)| (1 + |coth(z + w + v)|) ](mα/2)−1

· (1 + |coth(z + w + v)|)(s∗(v))1/2 (1 + |z + w + v|)−N er|=z|

≤ µN(s∗(w))3/4(s∗(v))1/4(s∗(v))1/2(1 + |z + w + v|)−Ner|=z|
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by Inequality (3.5) and Lemma 3.16

≤ µN(s∗(w))3/4(s∗(v))3/4(1 + |z + w + v|)−Ner|=z|.

�

Proposition 3.18. Let f and AF be as in Definition 3.14. Then AF is
holomorphic in <+ and continuous on <+

j . Moreover, for every integer
N ≥ 0 there is a constant σN ≥ 0 such that for all z ∈ <+

j

|AF (z)| ≤ σN(1 + |z|)−Ner|=z|.

Proof. Let Ψ(z, w) and Ψ(z, w, v) be as in Lemma 3.17. The assumption on
F̃ and Remark 3.15 ensure that they are holomorphic functions of z ∈ ∃j and
continuous functions on ∃j × (0,∞) and ∃j × (0,∞) × (0,∞), respectively.
The estimates in Lemma 3.17, Theorem 3.9 and the Dominated Convergence
Theorem prove that the function AF is holomorphic in <+ and continuous
in <+

j .
To determine the growth of AF on <+

j , observe that if M is an even
integer ≥ 4, l ∈ (0, 1), and <ζ ≥ 0, then there is a constant C > 0 so that

∞∫
0

(s∗(x))l(1 + |ζ + x|)−Mdx ≤ C (1 + |ζ|)−M+1.(3.6)

Indeed, there exist constants C1 and C2 such that

1∫
0

(s∗(x))l(1 + |ζ + x|)−Mdx ≤ (1 + |ζ|)−M

1∫
0

x−l dx ≤ C1(1 + |ζ|)−M

and6

∞∫
1

(s∗(x))l(1 + |ζ + x|)−Mdx =

∞∫
1

(1 + |ζ + x|)−Mdx

≤
∞∫
0

(1 + |ζ|2 + x2)−M/2dx

=
1 · 3 · 5 · · · (M − 3)
2 · 4 · 6 · · · (M − 2)

π

2
(1 + |ζ|2)−(M−1)/2

≤ C2(1 + |ζ|)−M+1.

6[Dwi61], Formula 856.21. The formula can be applied because of the assumption that
M/2 is an integer ≥ 2.
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For every integer N ≥ 0, choose

M :=

{
N + 4 + 2(j − 1) if N is even
N + 3 + 2(j − 1) if N is odd.

Then M is an even integer ≥ 4.
If m2α = 0 (j = 1), the estimate in Lemma 3.17 yields

|AF (z)| ≤ ηMe
r|=z|

∞∫
0

(s∗(w))(2−J)/2(1 + |z + w|)−M dw

≤ η′M(1 + |z|)−M+1er|=z| by (3.6)

≤ σN(1 + |z|)−Ner|=z|.

If m2α 6= 0 (j = 2), set Ψ1(z, v) =
∞∫
0

Ψ(z, w, v) dw. Then

|Ψ1(z, v)| ≤ µM(s∗(v))3/4er|=z|
∞∫
0

(s∗(w))3/4(1 + |z + w + v|)−M dw

≤ µ′M(s∗(v))3/4(1 + |z + v|)−M+1er|=z| by (3.6)

≤ µ′M(s∗(v))3/4(1 + |z + v|)−M+2er|=z|,

and, since M − 2 is again an even integer ≥ 4,

|AF (z)| ≤
∞∫
0

|Ψ1(z, v)| dv

≤ µ′Me
r|=z|

∞∫
0

(s∗(v))3/4(1 + |z + w|)−M+2 dv

≤ µ′′M(1 + |z|)−M+3er|=z| by (3.6)

≤ σN(1 + |z|)−Ner|=z|.

�

We now prove that, under the above assumptions, AF (iy) is a real an-
alytic function of y on the interval Ik :=

(
k π

j , (k + 1)π
j

)
for every integer

k. Thus AF extends holomorphically across each vertical segment iIk. The
proof is an application of the classical criterion for which a C∞ function g
is real analytic on an open interval I ⊂ R if and only if for every compact
K ⊂ I there is a constant M > 0 such that∣∣∣∣dhg

dyh
(y)
∣∣∣∣ ≤Mh+1h!
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for all y ∈ K and all integers h ≥ 0.

Lemma 3.19. Let j = 1, 2, z ∈ Sj and a, b, c ∈ [0,∞) with b 6= 0. Define

s(j, z, a, b, c) :=
sinh(jz + a+ b) sinh b
sinh(jz + a+ 2b+ c)

.

Then there are functions l(j, z) and m(j, z) which are bounded on compact
subsets of Sj such that

|s(j, z, a, b, c)| ≤ l(j, z)

|s(j, z, a, b, 0)|−1 ≤ m(j, z)s∗(b)

for all j, z, a, b, c (s∗ is the function defined in Lemma 3.16).

Lemma 3.20. Let f and AF be as in Proposition 3.18. Then AF (iy) is a
real analytic function of y ∈ Ik :=

(
k π

j , (k + 1)π
j

)
for every integer k.

Proof. Observe first that if s1(z, w), s2(z, w, v), s3(z, w, v) are as in Defini-
tion 3.14 and if s(j, z, a, b, c) is as in Lemma 3.19, then

s(1, z, 0, w/2, 0) =
sinh

(
z + w

2

)
sinh

(
w
2

)
sinh(z + w)

= s1(z, w)

s(1, z, 0, w/2, v) =
sinh

(
z + w

2

)
sinh

(
w
2

)
sinh(z + w + v)

= s2(z, w, v)

s(2, z, 2w, v, 0) =
sinh(2(z + w) + v) sinh v

sinh(2(z + w + v))
= s3(z, w, v).

Moreover, for z = t+ iy ∈ Sj and w, v ∈ (0,∞) we have∣∣∣∣ sinh(z + w)
sinh(z + w + v)

∣∣∣∣ ≤ cosh t
|sin y|

.

Set

S1(z, w) := [s1(z, w)](mα/2)−1

S2(z, w, v) := [s2(z, w, v)](mα/2)−1[s3(z, w, v)](m2α/2)−1 sinh(z + w)
sinh(z + w + v)

.

Then S1 and S2 are holomorphic functions of z = t+ iy ∈ Sj . Suppose first
mα 6= 1 and m2α 6= 1. If l(j, z) is the function in Lemma 3.19, we have

|S1(z, w)| ≤ [l(1, z)](mα/2)−1(3.7)

|S2(z, w, v)| ≤ [l(1, z)](mα/2)−1[l(2, z)](m2α/2)−1 cosh t
| sin y|

.(3.8)

Observe that the right-hand sides of (3.7) and (3.8) are bounded on the
compact subsets of Sj and do not depend on w, v.
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Let k be an arbitrarily fixed integer. For simplicity, the dependence on the
choice of k will be omitted in the following notation. For every δ ∈ (0, π/4j),
consider the open half-strip

Sj,δ :=
{
z ∈ C : <z > 0,=z ∈

(
k π

j + 2δ, (k + 1)π
j − 2δ

)}
and its left edge

Ij,δ = i
(
k π

j + 2δ, (k + 1)π
j − 2δ

)
.

LetQj,δ be the open rectangle {z ∈ Sj,δ : <z < 2}. Then the closed rectangle
Rj,δ of vertices (2+δ)+i

(
π
j k+δ

)
, (2+δ)+i

(
π
j (k+1)−δ

)
, −δ+i

(
π
j (k+1)−δ

)
and −δ + i

(
π
j k + δ

)
contains Qj,δ and is entirely contained in Sj .

Let K be the supremum of the right-hand sides of (3.7) and (3.8) over
z = t+ iy ∈ Rj,δ. By Cauchy’s Inequalities, for every integer h ≥ 0,∣∣∣∣ ∂h

∂yh
S1(iy, w)

∣∣∣∣ ≤ K

δh
h! and

∣∣∣∣ ∂h

∂yh
S2(iy, w, v)

∣∣∣∣ ≤ K

δh
h!(3.9)

for all iy ∈ Ij,δ.
Suppose z ∈ Sj,δ\Qj,δ. Then the circle Γ centered at z with radius δ is en-

tirely contained in the subset D :=
{
ζ ∈ C : <ζ ≥ 1,=ζ ∈

(
π
j k,

π
j (k + 1)

)}
of <+

j . The growth estimate of F̃ on <+
j with N = 2j gives for all ζ ∈ D

|F̃ (ζ)|

≤ τ2j(1 + |coth ζ|)(j−1)mα/2(1 + |coth(jζ)|)(mjα−J)/2(1 + |ζ|)−2jer|=ζ|

≤ τ ′(1 + |ζ|)−2j

for some constant τ ′ (depending on k). For ζ ∈ Γ, |ζ| ≥ |z| − δ ≥ |z| − 1 ≥
|z|/2, so (1 + |ζ|)−2j ≤ 22j(1 + |z|)−2j . Applying Cauchy’s Integral formula,
we obtain, for all h ≥ 0,∣∣F̃ (h)(z)

∣∣ ≤ h!
∫
Γ

|F̃ (ζ)|
|ζ − z|h+1

|dζ|
2π

≤ h! 22j τ
′

δh
(1 + |z|)−2j .

Therefore, for some constant τ ′′,∣∣∣∣ ∂h

∂yh
F̃ (iy + w + (j − 1)v)

∣∣∣∣ ≤ h!
τ ′′

δh
(1 + w2 + (j − 1)v2)−j(3.10)

for all integers h ≥ 0, iy ∈ Ij,δ and w, v ∈ (0,∞) with w + (j − 1)v ≥ 2.
Since F̃ is holomorphic on ∃j , we can conclude that for every integer h ≥ 0
there is a constant M̃ > 0 such that for all iy ∈ Ij,δ and w, v ∈ (0,∞)∣∣∣∣ ∂h

∂yh
F̃ (iy + w + (j − 1)v)

∣∣∣∣ ≤ M̃

δh
h! (1 + w2 + (j − 1)v2)−j .(3.11)
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Let Ψ(z, w) = F̃ (z+w)S1(z, w) and Ψ(z, w, v) = F̃ (z+w+ v)S2(z, w, v).
Then for every integer h ≥ 0 and all iy ∈ Ij,δ, w, v ∈ (0,∞)∣∣∣∣ ∂h

∂yh
Ψ(iy, w)

∣∣∣∣ ≤ h∑
n=0

(
h

n

) ∣∣∣∣ ∂h−n

∂yh−n
F̃ (iy + w)

∣∣∣∣ ∣∣∣∣ ∂n

∂yn
S1(iy, w)

∣∣∣∣
≤

h∑
n=0

h!
n!(h− n)!

(
M̃

δh−n
(h− n)!

)
(1 + w2)−1

(
K

δn
n!
)

≤ (h+ 1)h!
M̃K

δh
(1 + w2)−1

≤ h!
(

2
δ

)h

M̃K(1 + w2)−1

and, similarly,∣∣∣∣ ∂h

∂yh
Ψ(iy, w, v)

∣∣∣∣ ≤ h!
(

2
δ

)h

M̃K(1 + w2 + v2)−2.

If mα = 1 or m2α = 1, then for all z = t+ iy ∈ Sj and w, v ∈ (0,∞)

|S1(z, w)| = |s1(z, w)|−1/2 ≤ m(1, z)1/2(s∗(w/2))1/2,

|S2(z, w, v)| = |s2(z, w, v)|(mα/2)−1|s3(z, w, v)|−1/2

∣∣∣∣ sinh(z + w)
sinh(z + w + v)

∣∣∣∣
≤ (l(1, z))(mα/2)−1(m(2, z))1/2 cosh t

|sin y|
(s∗(v))1/2

where l(j, z) and m(j, z) are as in Lemma 3.19. If K is an upper bound
for (2m(1, z))1/2 and (l(1, z))(mα/2)−1(m(2, z))1/2 cosh t|sin y|−1 over all z =
t+ iy ∈ Rj,δ, then

∣∣∣∣ ∂h

∂yh
S1(iy, w)

∣∣∣∣ ≤ K

δh
h!(s∗(w))1/2 and

∣∣∣∣ ∂h

∂yh
S2(iy, w, v)

∣∣∣∣ ≤ K

δh
h!(s∗(v))1/2

for all iy ∈ Ij,δ and w, v ∈ (0,∞). Computations as above therefore give∣∣∣∣ ∂h

∂yh
Ψ(iy, w)

∣∣∣∣ ≤ h!
(

2
δ

)h

M̃K(s∗(w))1/2(1 + w2)−1

∣∣∣∣ ∂h

∂yh
Ψ(iy, w, v)

∣∣∣∣ ≤ h!
(

2
δ

)h

M̃K(s∗(v))1/2(1 + w2 + v2)−2.

Differentiation under integral sign then proves that, for any multiplicities
mα and m2α, AF (iy) is C∞ on each Ij,δ and that, for some constant M > 0,∣∣∣∣ dh

dyh
AF (iy)

∣∣∣∣ ≤Mh+1h! .
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Since the sets Ij,δ cover iIk, AF (iy) is a real analytic function of y ∈ Ik. �

Our last step is to prove that AF is even. We need the following lemma.

Lemma 3.21. Let j = 1, 2, and let n > 0 and m ≥ 0 be integers. Suppose
h is an even holomorphic function on Sj with the following property. For
every δ ∈ (0, π/j) there is a constant Cδ > 0 such that for all z with |=z| ≤ δ

|h(z)| ≤ Cδ|sinh(jz)|−n/2|sinh z|−(j−1)m/2(1 + |z|)−2[n+1+(j−1)m].

Then h satisfies the hypothesis of Lemma 3.10.
Moreover, for every δ ∈ (0, π/j) there is a constant C ′δ > 0 such that

whenever |=z| ≤ δ

|Ac
jh(z)| ≤ C ′δ|sinh(jz)|−(n−1)/2|sinh z|−(j−1)m/2(1 + |z|)−2[n+(j−1)m].

Proof. Since h is holomorphic on Sj , the estimate on |=z| ≤ δ describes the
growth of h(z) only for large values of |<z|, where

|sinh(jz)|−n/2|sinh z|−(j−1)m/2 ≤ |sinh(jz)|−1/2.

It is therefore clear that h satisfies the hypothesis of Lemma 3.10.
For z ∈ Sj \ (−∞, 0] and w ∈ (0,∞), let

Ψ(z, w) := h(z + w)
sinh(j(z + w))[

sinh
(
j
(
z + w

2

))
sinh

(
jw

2

)]1/2

+

.

Because of Lemma 3.16, if |=z| ≤ δ and <z ≥ 0, then

|Ψ(z, w)| ≤ Cδ

∣∣∣∣∣ sinh(j(z + w))
sinh

(
jw

2

)
sinh

(
jw

2

)∣∣∣∣∣
1/2

|sinh(j(z + w))|−(n−1)/2

· |sinh(z + w)|−(j−1)m/2(1 + |z + w|)−2[n+1+(j−1)m]

≤ Ĉδ(s∗(w))1/2|sinh(jz)|−(n−1)/2|sinh z|−(j−1)m/2

· (1 + |z + w|)−2[n+1+(j−1)m].

Formula (3.6) therefore implies: For |=z| ≤ δ and <z ≥ 0

|Ac
jh(z)| ≤ Ĉδ|sinh(jz)|−(n−1)/2|sinh z|−(j−1)m/2

·
∞∫
0

(s∗(w))1/2(1 + |z + w|)−2[n+1+(j−1)m] dw

≤ C ′δ|sinh(jz)|−(n−1)/2|sinh z|−(j−1)m/2(1 + |z|)−2[n+(j−1)m]

for some constant C ′δ. Since Ac
jh(z) is even, this estimate holds also for

<z ≤ 0. �
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Proposition 3.22. In the assumptions of Proposition 3.18, AF is an even
holomorphic function on a neighborhood of <+

j .

Proof. The growth condition for F̃ and the fact that 1+|coth(jz)| is bounded
for large |<z| imply that the even holomorphic function F satisfies the hy-
pothesis for h in Lemma 3.21 with n = mjα and m = mα. The same
lemma also ensures that the application of Ac

2 to F m2α-times and of Ac
1 to

(Ac
2)

m2α F mα-times is legittimate and gives an even holomorphic function
on Sj .
F holomorphically extends f(t), t ∈ R, to Sj . Hence (Ac

1)
mα (Ac

2)
m2α F (z)

holomorphically extends Amα
1 Am2α

2 f(t), t ∈ R, to Sj . Up to constant mul-
tiples, AF (z) holomorphically extends Af(t), t ∈ (0,∞) to some neighbor-
hood U of <+

j , and, because of Theorem 3.2, Af(t) = Amα
1 Am2α

2 f(t) on
R. Thus, up to a constant, AF (z) must agree with (Ac

1)
mα (Ac

2)
m2α F on

Sj ∩ U , and, therefore, it is even. �

Proof of Theorem 2.1 (Sufficiency). Proposition 3.18 and Lemma 3.20 proved
that AF is holomorphic in a neighborhood of <+

j . Because of Proposi-
tion 3.22, AF has to be even, so we can extend it holomorphically to C\iπj Z
by setting AF (z) := AF (−z) if <z < 0. The growth condition proved in
Proposition 3.18 therefore holds on all C\iπj Z. In particular, AF is bounded
near each point in iπj Z, and therefore it extends to be entire. By continuity,
the growth condition can be extended to C to become: For every integer
N ≥ 0 there is a constant σN > 0 such that for all z ∈ C

|AF (z)| ≤ σN(1 + |z|)−Ner|=z|.
Thus: If f satisfies the conditions stated in Theorem 2.1, then Af(t), t ∈ R,
extends to be an even entire function AF on C which is of exponential type
r and rapidly decreasing. �

4. Proof of Theorem 2.3.

The study of the spherical transform on complex groups is greatly simplified
by an explicit formula for the elementary spherical functions. Let (a∗c)

′ :=
{λ ∈ a∗c : 〈α, λ〉 6= 0 for all α ∈ Σ}, where 〈·, ·〉 denotes the C-bilinear
extension to a∗c of the inner product in a∗ induced by the Cartan-Killing
form. Then, for every λ ∈ (a∗c)

′ and H ∈ a

∆(H)ϕλ(expH) = 2−|Σ
+| π(ρ)
π(iλ)

∑
w∈W

(detw)eiwλ(H)(4.1)

where ∆ is given by (2.5), W is the Weyl group, |Σ+| denotes the cardinality
of Σ+, and π is the polynomial function on a∗c defined by

π(ν) :=
∏

α∈Σ+

〈α, ν〉.(4.2)
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Formula (4.1), due to Harish-Chandra, relates the spherical transform of
a function f ∈ S(K\G/K) to the Fourier transform of the function H 7−→
∆(H)f(expH) on a. Indeed, since

∆(wH) = (detw)∆(H)

for all H ∈ a and w ∈ W , we obtain from Formula (1.5): Up to a constant
multiple, for all λ ∈ (a∗)′ := (a∗c)

′ ∩ a∗,

Sf(λ) =
∫
a+

f(expH)ϕ−λ(expH)[∆(H)]2 dH

=
1
|W |

∫
a

∆(H)f(expH)∆(H)ϕ−λ(expH) dH

=
2−|Σ

+|

|W |
π(ρ)
π(−iλ)

∑
w∈W

∫
a

(detw)∆(H)f(expH)e−iwλ(H) dH

= 2−|Σ
+| π(ρ)
π(−iλ)

∫
a

∆(H)f(expH)e−iλ(H) dH.

Therefore, up to a constant depending only on |Σ+| and on the normalization
of the measures,

π(−iλ)Sf(λ) = F(∆(f ◦ exp))(λ)(4.3)

for all λ ∈ (a∗)′. By continuity, (4.3) holds for all λ ∈ a∗.

Proof of Theorem 2.3. Since π(−iλ) is a polynomial in λ, Formula (4.3) to-
gether with the classical Paley–Wiener theorem prove that Sf is compactly
supported, with suppSf ⊂ Br, if and only if ∆(H)f(expH), H ∈ a, extends
to an entire function F̃ on ac which is rapidly decreasing and of exponential
type r. Set F (H̃) := F̃ (H̃)

∆(H̃)
, H̃ ∈ ac. Then F is a meromorphic function on

C with singularities at most on the set

{H̃ ∈ ac : ∆(H̃) = 0} =
⋃

α∈Σ+

{H̃ ∈ ac : α(<H̃) = 0 and α(=H̃) ∈ iZ}.

Since F̃ agrees with ∆(H)f(expH) on a, F extends to be holomorphic on
the set {H ∈ a : α(H) = 0 for some α ∈ Σ+} by setting F (H) := f(expH).
So F extends f(expH), H ∈ a. In particular, F must be W -invariant. �

We conclude this section with a remark on the Abel transform. For com-
plex groups an explicit formula for the inverse Abel transform is available.
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As proved by Gangolli7 , if f ∈ S(K\G/K), then, up to a constant multiple,

f(expH) =
∏

α∈Σ+

1
sinhα(H)

∂(Hα)Af(expH)(4.4)

where Hα ∈ a is uniquely determined by the condition α(H) = 〈Hα,H〉 for
all H ∈ a, and ∂(Hα) is the corresponding differential operator on a.

Theorem 1.2 can be also proved using Formula (4.4) to characterize the
functions f whose Abel transform extends to a rapidly decreasing entire
function of exponential type r. However, doing so, we would not free our-
selves from the use of the explicit espression for the elementary spherical
functions. In fact, the only known general procedure to get (4.4) is to
take the inverse Fourier transform of both sides of (4.3), using the prop-
erty S = F ◦ A. Note that this is not the case for the rank-one groups.
In fact, the explicit formulas for A and A−1 we used has been determined
by Rouvière (and others) directly, without assuming any knowledge of the
elementary spherical functions on the group.
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