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ON THE ACTION OF THE GROUP OF
DIFFEOMORPHISMS OF A SURFACE ON SECTIONS OF

THE DETERMINANT LINE BUNDLE
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Let Σ denote a closed oriented surface. There is a nat-
ural action of the group Diff+(Σ) on sections of the chiral
determinant line over the space of gauge equivalence classes
of connections. The question we address is whether this action
is unitarizable. We introduce a SDiff-equivariant regulariza-
tion, and we prove the existence of, and explicitly compute,
the limit as the regularization is removed. The SDiff uni-
tary representations that arise, both by regularization and
after removing the regularization, appear to be new.

0. Introduction.

Let Σ denote a closed oriented surface, and let D denote the group of
orientation-preserving diffeomorphisms of Σ. Let K denote a connected
compact Lie group, A the space of K-connections in the trivial bundle
P = (Σ × K → Σ), and C the space of gauge equivalence classes of K-
connections. It is well-known that the orientation of Σ induces a Aut(P )-
invariant symplectic structure on A. Ideally we would want to consider the
action of D in the metaplectic representation, corresponding to a polariza-
tion coming from a choice of complex structure for Σ, but it is easy to check
that D is not implemented in this representation (see §1); instead D per-
mutes these representations. Roughly speaking, our goal is to understand
whether the gauge invariant sectors of these representations (the conformal
blocks of conformal field theory) can be coherently incorporated into a single
unitary representation for D.

To be more precise, there exists a nontrivial D-equivariant Hermitian line
bundle L → C (the projection to C of the prequantum line bundle on A).
The issue we address is whether, in the simplest case K = T, a submodule
of the natural action

D × Ω0(L)→ Ω0(L)(0.1)

can be unitarized. Heuristically the invariant inner product is given by

s1, s2 →
∫
C
〈s1, s2〉dV,
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where “dV ” is a fictitious D-invariant measure on C arising from the D-
invariant symplectic structure on A.

The submodule arises in the following way. Fix a complex structure on
Σ. We can then identify L with a determinant line bundle for ∂̄ coupled
to gauge potentials. There is a canonical section det which is fixed by the
subgroup Aut(Σ) ⊂ D. The submodule is the spherical representation for
the pair (D,Aut(Σ)) generated by det.

To obtain a unitary structure we choose a positive area form on Σ, and
introduce a regularization, in this case the Yang-Mills measure on (a com-
pletion of) C,

dνT ([A]) =
1
Z(T )

e−
1

2T

R
〈FA∧∗FA〉dV ([A]).(0.2)

For each T <∞, we rigorously obtain a SDiff-invariant unitary structure

s1, s2 → 〈s1, s2〉T =
∫

s1s̄2dν
|L|−2

T ,(0.3)

where dν
|L|−2

T denotes the renormalized coupling of the Yang-Mills measure
and Hermitian structure of L. In the genus = 0 case, the spherical function

φT : D/Aut(Σ)→ C : σ → 〈σ · det, det〉T(0.4)

is given by the formula

φT (σ) = det2(1 + T (∂∂̄ − ∂µ∂)−1∗)−1/2,(0.5)

where µ is the complex dilatation of σ−1 (see §1), and det2 denotes the
Hilbert-Schmidt regularized determinant. Although φT is defined on all of
D, only its restriction to SDiff is positive definite.

The main result of this paper is that one can remove the regularization.
After renormalizing φT , one can take the limit T → ∞ to obtain (in the
genus = 0 case) a positive definite function

φ : SDiff → C : σ →
detζ(4∆(1− ∂̄−1µ∂)−1)−1/2

detζ(4∆)−1/2
(0.6)

(the precise meaning of this formula is explained in §3). One can heuristically
arrive at this formula for φ by using ζ-function determinants to directly
“evaluate” certain integrals. On the other hand it is not at all transparent
that |φ| is bounded by 1 on SDiff, let alone that φ is a positive definite
function on SDiff; this follows by first evaluating the regularized integrals
and then taking the limit T → ∞. From a purely technical point of view,
one of the most interesting aspects of this work is the following: There are
two regularizations involved in arriving at (0.6), one probabilistic and one of
the ζ variety, and it is fascinating to see how they balance out (see Remarks
(2.28) and (3.30)).
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To go from (0.5) to (0.6), we establish a result of independent interest
concerning the multiplicative anomaly for ζ-function determinants. If E is a
classical, elliptic, invertible pseudo-differential operator on an n dimensional
compact manifold, with symbol satisfying the Agmon-Niremberg condition,
and if C has order < −n, so that it represents a trace class operator, then
it is known that

detζ(EeτC) = detζ(E)eτtr(C),(0.7)

as one would naively suspect ([KV]). We consider the borderline case in
which C has order −n, in which case the trace is replaced by a regularized
trace, depending upon E; see Lemma (3.10) for the precise statement.

The formula (0.6) defines an extension of φ to all of D, but this extension
cannot possibly be positive definite; for (0.6) defines a holomorphic function
of µ, hence cannot possibly be bounded by 1. This strongly suggests that the
action (0.1) is not unitarizable, so that the answer to our original question
is negative. We should mention that this question cannot be decided by
considering the Lie algebra action, for det cannot possibly be a differentiable
vector in a unitary representation for D (see §1).

The theory of unitary representations for various types of diffeomorphism
groups is basically at the stage of searching for interesting examples; we re-
fer to [I] for an account of this. It appears that the unitary representations
of SDiff which we have constructed, both the regularized representations
and their limit, are new (but, as pointed out by the referee, it is difficult to
judge this from the spherical function alone). Because we assume K = T is
abelian, the Yang-Mills measure (0.2) is essentially Gaussian, so that it is a
fairly mundane object. However, we should point out that in 2 dimensions,
the Yang-Mills measure is well-defined mathematically for any compact Lie
group K (see [Sen] or [Pi] and references there), so that the corresponding
representations should exist in this more general (and technically challeng-
ing) setting. In terms of mathematical physics, the regularized representa-
tions amount to a geometric formulation of the coupling of Yang-Mills fields
to massless fermions (see [Pi]). The unitary structure that should arise when
the regularization is removed should restrict to a canonical scalar product
on the spaces of conformal blocks in conformal field theory (or equivalently
the space of states for Chern-Simons theory), the existence of which has
been proven in some nonabelian cases by Gawedzki (see [G] and references
there). As we mentioned previously, understanding whether these blocks fit
together coherently to give a unitary representation of D was the original
motivation for this work.

The outline of the paper is as follows. In §1 we briefly review what we
need to know from the theory of quasiconformal mappings, and the relation
of this to the symplectic action of D on the space of all connections. In
§2 and §3 we deal with the regularized and limiting representations in the
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genus = 0 case. In the last section we indicate the relatively minor changes
necessary to deal with the cases of positive genus.

Acknowledgement. I thank Lennie Friedlander and John Palmer for use-
ful discussions on determinants. I also thank the referee for useful comments.

1. The Quotient D/Aut(Σ).

Given a closed oriented surface Σ, there is a natural symplectic structure ω
on the real vector space Ω1(Σ) of one-forms on Σ:

ω(θ, η) =
∫

Σ
θ ∧ η.(1.1)

The choice of a complex structure j on Σ induces a positive polarization:

(Ω1)C = Ω0,1 ⊕ Ω1,0.(1.2)

Let σ denote an orientation-preserving diffeomorphism of Σ. Following stan-
dard practice, with respect to the decomposition (1.2), we write

D → Sp(Ω1, ω) : σ → (σ−1)∗ =
(

A B
B̄ Ā

)
,(1.3)

where we have extended (σ−1)∗ by complex linearity to (Ω1)C.
Given a general symplectic space (V, ω), it does not make sense to speak

of a bounded symplectic transformation. However, given a positive polar-
ization,

V C = V + ⊕ V −,(1.4)

where V + is a complex Hilbert space with respect to the form iω(θ, η̄), and
V − is the conjugate Hilbert space, we can define

Sp(L)(V
+ ⊕ V −, ω)

=
{

g =
(

A B
B̄ Ā

)
∈ Sp(V, ω) : B ∈ L

}
(1.5)

=
{(

A B
B̄ Ā

)
∈ L(V + ⊕ V −) : A∗A− B̄∗B̄ = 1, A∗B − B̄∗Ā = 0

}
,(1.6)

where “L” stands for bounded operators, B̄ is the conjugate of B, and the
adjoint is computed with respect to the Hilbert space structure of V + ⊕
V −. We then have a fibration over a (non-Riemannian) symmetric bounded
domain

0→ U(V +)→ Sp(L) → {Z ∈ L(V +, V −) : Z = Z̄∗, Z∗Z < 1} → 0,(1.7)
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where A→
(

A
Ā

)
, g → Z,

g =
(

A B
B̄ Ā

)
=
(

1
Z 1

)(
A

Ā− ZAW

)(
1 W

1

)
.(1.8)

It is more common to consider proper operator ideals, especially Hilbert-
Schmidt operators in representation-theoretic contexts, in place of L above,
but our point will be that L is natural in our context.

To apply this to our context, let V denote the completion of Ω1 with
respect to our chosen complex structure on Σ,

V =
{

θ ∈ Ω1
meas :

∫
θ ∧ ∗θ <∞

}
.(1.9)

The form ω extends continuously to V , and we let V + denote the completion
of Ω0,1.

Proposition 1.10. The map (1.3) extends to a representation of the group
of quasi-conformal homeomorphisms

Dqc → Sp(L)(V
+ ⊕ V −, ω).

In the genus= 0 case, the fibration (1.7) induces an exact sequence

0→ Aut(Σ)→ Dqc → Ω0
L∞<1

(T ∗0,1 ⊗ T 1,0)→ 0,

where σ → µ, the complex dilatation of σ−1, and Z̄(σ) = µ = −W (σ), where
µ is viewed as a multiplication operator (see Remark (2) below); in general
we have an exact sequence

0→ Aut(Σ)→ Dqc → Ω0
L∞<1

(T ∗0,1 ⊗ T 1,0)→M(Σ)→ 0,

where M(Σ) is the moduli space of Riemann surface structures for Σ, with
basepoint j.

Remarks 1.11. (1) Note that there is a Aut(Σ)-equivariant mapping

Ω0(T ∗0,1 ⊗ T 1,0)→ Ω0 : µ→ µ⊗ µ̄,(1.12)

so that there is a Aut(Σ)-invariant L∞ structure on Ω0(T ∗0,1 ⊗ T 1,0). In
(1.10) “L∞

<1” denotes the unit ball with respect to this Banach structure.
(2) Given µ ∈ Ω0

L∞(T ∗0,1 ⊗ T 1,0), there is an associated bounded “multi-
plication operator”

µ : V − → V + : θ → µ⊗ θ.(1.13)

Using the coordinate expressions, θ = fdz, µ = µ̃dz̄⊗ ∂
∂z , and µ⊗θ = µ̃fdz̄,

it is obvious that |µ|L = |µ|L∞ .
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(3) A homeomorphism σ is quasi-conformal provided (1) in holomorphic
coordinates σ has locally square-integrable partial derivatives, and (2) with
respect to the decomposition T C = T 1,0 ⊕ T 0,1, if

(dσ)C =
(

∂σ ∂̄σ
(∂̄σ)∗ (∂σ)∗

)
,(1.14)

then the complex dilatation

µσ =
∂̄σ

∂σ
∈ Ω0(T ∗0,1 ⊗ σ∗T 1,0 ⊗ (T ∗1,0 ⊗ σ∗T 1,0)−1) = Ω0,1(T 1,0)(1.15)

satisfies |µσ|L∞ < 1.

Proof of (1.10). Suppose σ is quasi-conformal. Then σ−1 is quasi-conformal,
and it is straightforward to show that

W (σ) = −µ, Z(σ) = µ̄.

For example to see that W (σ) = −µ, suppose that θ ∈ Ω1,0. Since W =
A−1B, we must show that

Bθ = −Aµθ, i.e., (σ∗θ)0,1 = −(σ∗(µθ))0,1.(1.16)

In local coordinates w = σ(z), θ = fdw, µ = µσ−1 = zw̄
zw

dw̄ ⊗ ∂
∂w , and((

zw zw̄

z̄w z̄w̄

)
◦ σ

)(
wz wz̄

w̄z w̄z̄

)
=
(

1
1

)
.(1.17)

The LHS of (1.16) equals f(σ(z))wz̄dz̄, and the RHS of (1.16) equals

−
(

zw̄

zw

)
◦ σ(z)w̄z̄f(σ(z))dz̄.(1.18)

Thus (1.16) follows from the (1, 2) entry of (1.17).
Thus σ quasi-conformal implies Z = µ̄ is bounded and |Z|L < 1. Since

AA∗ = (1−ZZ∗)−1, A and B are also bounded, and it follows that σ ∈ Sp(L).
Now suppose that we are given µ with |µ|L∞ < 1. The basic fact in the

theory of quasi-conformal mappings is that there exists a (possibly different)
complex structure j′ on Σ and a quasi-conformal mapping σ : (Σ, j′) →
(Σ, j) such that µ = µσ−1 (see Theorem 1.1 of Chapter V of [L]). In the
genus = 0, case j′ is equivalent to j, and we obtain the first exact sequence
in (1.10); in general we obtain the second sequence in (1.10), where µ maps
to the equivalence class of j′. This completes the proof. �

In the introduction we mentioned that the representations we consider
do not induce representations of Lie algebras. One way to see this, in the
genus = 0 case, is as follows.

Proposition 1.19. Suppose that Σ = Ĉ, the Riemann sphere. Suppose that

π : D → U(H)
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is a unitary representation, and suppose also that there exists a smooth vector
v ∈ H which is fixed by Aut(Σ) = PSL(2, C). Then v is fixed by all of D.

Proof. Given that v is fixed by Aut(Σ), there is a mapping

D/Aut(Σ)→ P(H) : [g]→ P(g · v).(1.20)

Since v is a smooth vector, this is a differentiable mapping, and hence we
can pull the Fubini-Study metric back to obtain a D-invariant (possibly
incomplete) Riemannian structure on D/Aut(Σ). But by considering the
isotropy action of Aut(Σ) at the base point, this means that we have a
Aut(Σ)-invariant unitary structure for the natural action

Aut(Σ)× Ω0,1(T 1,0).(1.21)

But it is known that this particular representation for PSL(2, C) is not uni-
tarizable (see e.g. Chapter 1 of [K]). Since sl(2, C) is a maximal closed
subalgebra of vect(Σ), it follows that D must act trivially on v. This com-
pletes the proof. �

2. SDiff(S2) unitary representations.

Throughout this section and the next, Σ will denote a closed oriented surface
of genus = 0.

Let A denote the set of continuous T-connections in the trivial bundle
Σ × T → Σ, and let K denote the C1 gauge group. Since genus(Σ) = 0, K
is connected, hence K = exp(Ω0

C1(Σ, iR)). Define

(2.1) Ω0(L) =
{

f : A → C : f(A + dξ) = exp
(

i

∫
A ∧ dξ

)
f(A),

∀A ∈ A, ξ ∈ Ω0
C1(Σ, iR)

}
.

This is the space of sections of a line bundle L → A/K, hence the notation. It
is easy to check that the natural action by pullback leads to a representation

D × Ω0(L)→ Ω0(L).(2.2)

To unitarize this representation, it would suffice to have a D-invariant
measure on the base space A/K, since L has a natural Hermitian structure.
But such a measure does not exist. The point of this subsection is that this
naive idea can be made to work, provided that we choose an area form on
Σ, and restrict the representation to SDiff, the area-preserving diffeomor-
phisms.

So fix a smooth area form on Σ. We can then consider the Yang-Mills
measure, corresponding to temperature T , which is given heuristically by
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the expression

dνT−1Y M (A) =
1
Z

exp
(

1
2T

∫
F ∧ ∗F

)
DA,(2.3)

where F = dA is curvature. In this abelian context it is well-known that
one can interpret the projection of the heuristic expression (2.3) to A/K as
a Gaussian measure, and this Gaussian is SDiff-invariant. By definition the
“projection” is the Gaussian measure νT corresponding to the real Hilbert
space structure

F ·T F =
1
T

F · F = − 1
T

∫
F ∧ ∗F,(2.4)

where F is an iR-valued two-form with
∫

F = 0. Since SDiff acts orthogo-
nally on this Hilbert space, νT is an SDiff-invariant measure. The question
that we must address is whether we can use this measure to integrate func-
tions of the form s1s̄2, for s1, s2 ∈ Ω0(L).

The most interesting sections are obtained in the following way. Choose
a complex structure for Σ. We then have an isomorphism

A → Ω0,1
C0 : A→ a = A0,1, A = a− a∗.(2.5)

It is easy to check that the function

det : A → C : A→ exp
(

i

∫
(a ∧ (a∗ + Ha))

)
(2.6)

is in Ω0(L), where (because genus(Σ) = 0) H is the well-defined unitary
0th-order operator

H = ∂∂̄−1 : Ω0,1
L2 → Ω1,0

L2 .(2.7)

H is often referred to as either the Hilbert or Beurling transform. The
rationale for the notation is that, relative to our choice of complex structure,
L can be identified with the determinant line bundle with Quillen metric for
the family of Fredholm operators ∂̄κ1/2 + a, a ∈ Ω0,1, and the canonical
section corresponds to the function (2.6).

In order to have a better grasp of the section det, it is useful to consider
the parameterization of A

a = ∂̄x, x ∈ Ω0
C1(Σ, C)/C.(2.8)

A gauge transformation A→ A+dξ corresponds to a→ a+ ∂̄ξ, i.e., adding
a iR-valued function to x. Hence we can parameterize the space A/K by
x ∈ Ω0

C1(Σ, R). The relation between (R-valued) x and the curvature F is
simply

F = i ∗∆x = 2∂∂̄x.(2.9)
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In terms of x the projection of the Yang-Mills measure with temperature
T to A/K is the Gaussian measure corresponding to the real Hilbert space
structure

x ·T x = − 1
T

∫
F ∧ ∗F =

1
T

∫
∗∆x ∧∆x.(2.10)

From this we can spot the basic source of difficulty: This Gaussian measure
is not supported on x ∈ C1; rather, it is only supported on x ∈ C0 ∩
W 1−ε, for ε > 0. Hence we cannot integrate functions of the form s1s̄2 in
a straightforward manner. Essentially what we must do is show that the
bundle L can be SDiff-equivariantly extended to the support of νT .

In terms of (C-valued) x, the section det is given by the expression

det|x = exp
(

i

∫
∂̄x ∧ 2∂(Re(x))

)
= exp

(
i

∫
x ∧ F

)
,(2.11)

where the first equality makes sense if x ∈ C1, the second if x ∈ C2. Given
σ ∈ D we obtain a transition function

cA/K(σ, x) =
σ · det

det

∣∣∣∣
x

(2.12)

for the line bundle L over A/K, where we are viewing (R-valued) x ∈ C1/R
as a global coordinate. We can also interpret cA/K as a cocycle, i.e., it
satisfies the equation

cA/K(σ1 ◦ σ2) = cA/K(σ1)σ1 · cA/K(σ2),(2.13)

for σ1, σ2 ∈ D.
To understand why cA/K extends to the support of νT , and why the ex-

tension is an SDiff-cocycle, we must have an explicit formula for it. Let j
denote the original complex structure, and let j′ = σ · j denote the trans-
formed complex structure; we do the same for the corresponding D-bar
operators, ∗-operators, and so on.

Lemma 2.14. Suppose that σ ∈ D, and let µ = µσ−1.
(a) (∂̄′)0,1 = (1− µµ̄)−1(∂̄ − µ∂).
(b) (∂̄′)1,0 = µ̄(∂̄′)0,1.
(c) a′ = (1 + µ̄)(1− µ conj)−1a, where conj denotes conjugation.
(d) x′ = (∂̄ − µ∂)−1(∂̄ + µ∂)x, for R-valued x; x′ = x, for iR-valued x.
(e) ∂′∂̄′ = 2∂∂̄(1+∂̄−1µ∂

1−∂̄−1µ∂
+ 1+∂−1µ̄∂̄

1−∂−1µ̄∂̄
)−1.

(f) σ · det ( det)∗ = exp(i
∫

(1− ∂̄−1µ∂)−1x∧F ) = exp(−S(µ)F ·F ). where
S(µ) = i ∗ (∂(∂̄ − µ∂))−1.

(g) cA/K(σ, F ) = exp(−(S(µ)− S(0))F · F ).
(h) The real and imaginary parts of S(µ) are symmetric, with respect to

the real Hilbert space structure (2.4).
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(i) Re(S(µ)) = i∗ (∂′∂̄′)−1 = 2∗∗′∆′−1 (the Laplacian on 2-forms); hence
if σ ∈ SDiff, ReS(µ) = 2∆′−1.

Proof of (2.14). In j-holomorphic coordinates suppose that w = σ(z), f =
f(w). Then

∂̄′wf = σ−1∗(∂̄z{f ◦ σ})(2.15)

= (fw̄w̄z̄ ◦ σ−1 + fwwz̄ ◦ σ−1)dz̄

= (fw̄ − µfw)w̄z̄ ◦ σ−1z̄w̄dw̄ + (fw̄ − µfw)w̄z̄ ◦ σ−1z̄wdw.

Using (1.17), we see that

w̄z̄ ◦ σ−1z̄w̄ =
(

zw

zwz̄w̄ − zw̄z̄w

)
z̄w̄ =

1
1− µµ̄

.(2.16)

Similarly w̄z̄ ◦ σ−1z̄w = µ̄(1− µµ̄)−1. This proves (a) and (b).
We have ∂̄x = a, ∂̄′x′ = a′, where

A = a− a∗ = a′ − a′∗.

This implies

a = (∂̄′x′)0,1 − conj((∂̄′x′)1,0)(2.17)

= (1− µµ̄)−1(1− µconj)(∂̄ − µ∂)x′

= (1 + µconj)−1(∂̄ − µ∂)x′.

Hence

a′ = ∂̄′{(∂̄ − µ∂)−1(1 + µconj)a} = (1 + µ̄)(1− µconj)−1a,(2.18)

which proves (c), and also

(∂̄ − µ∂)x′ = (1 + µconj)∂̄x,(2.19)

which implies (d).
We have

(∂̄ − µ∂)−1(∂̄ + µ∂) =
1 + ∂̄−1µ∂

1− ∂̄−1µ∂
.(2.20)

For R-valued x

2∂∂̄x = F = 2∂′∂̄′Re(x′),(2.21)

hence (e) follows from (2.20) and (d).
For R-valued x,

σ · det( det)∗ = ei
R

(x′+x)∧F = e
i

R
2

1−∂̄−1µ∂
x∧F

,(2.22)

which is (f). Part (g) follows immediately from (f).
In part (h) it suffices to show that (∂∂̄ − ∂µ∂)∗ is symmetric, and this is

immediate from integration by parts.
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We have S(0) = 2∆ (acting on 2-forms), and by (f) |det| = exp(−2∆F ·F ).
Together with (g) we now see that

|σ · det| = exp(−2∆′F ·′ F )(2.23)

= exp(−2 ∗ ∗′∆′F · F ) = exp(−ReS(µ)F · F ).

This proves (i). �

Given a real Hilbert space H and a symmetric Hilbert-Schmidt operator
S on H (possibly with values in HC), one can interpret “Sv · v − trS” as a
random variable with respect to the Gaussian measure dν associated to H.
More precisely, if {εn} is an orthonormal basis for H (hence also HC), and
Pn the orthogonal projection onto the C-span of the first n basis elements,
then the regularization of the symmetric form defined by S is the L2(dν)
limit

Sreg = lim
n→∞

(PnSx · x− tr(PnS)).(2.24)

This definition is independent of the choice of orthonormal basis. Moreover∫
e−Sregdν = det((1 + 2S)e−2S)−1/2,(2.25)

and if S′ is also Hilbert-Schmidt and symmetric, and O ∈ O(H), then

(S + S′)reg = Sreg + S′reg,

O · (Sreg) = (OSO−1)reg(2.26)

(see Section 4 of [R]).
In our context the Hilbert-Schmidt operator is ∆−1, or some 0th-order

perturbation. (Note that ∆−1, while not trace class, is in the Dixmier trace
class L+

1 , so that the regularization in our case is necessary, but very mild.)

Definition 2.27. Given σ ∈ D,

cT (σ) = exp(−T (S(µ)− S(0))reg)

(a random variable with respect to νT ).

Remarks 2.28. (a) The appearance of T in the above definition is poten-
tially confusing; it appears because we are regularizing with respect to νT ,
the Gaussian corresponding to the inner product 1

T F · F .
(b) In the next section we will see that (2.27) is fine for σ ∈ SDiff, but

needs adjustment for general µ; see Remark (3.30) below, expecially (3.32).
The point is that one cannot indiscrimately subtract a trace!

Proposition 2.29. cT is an SDiff-cocycle with respect to νT , i.e.,

cT (σ1 ◦ σ2) = cT (σ1)σ1 · cT (σ2)

as random variables with respect to νT , ∀σ1, σ2 ∈ SDiff.
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Proof. This follows immediately from (2.13) and (2.26), since SDiff acts
orthogonally with respect to νT . �

Although it is somewhat artificial in our current context, we can now view
L as a measureable line bundle over the support of νT , using the transition
functions cT (σ), σ ∈ SDiff.

Definition 2.30. We define a measure dν
|L|−2

T having values in the line
bundle |L|−2 by

s1s̄2dν
|L|−2

T =
s1

det

( s2

det

)∗
e−TS(0)regdνT ,

where s1, s2 are sections of L over the support of νT .

Proposition 2.31. (a) dσ∗| det|2dν
|L|−2

T

d| det|2dν
|L|−2

T

= |cT (σ)|2.

(b) dν
|L|−2

T is SDiff-invariant.

Proof of (2.31). Part (a) follows immediately from the definition of the mea-
sure

|det|2dν
|L|−2

T = e−TS(0)regdνT(2.32)

and the fact that σ∗(S(0)reg) = Re(S(µ)reg), by (i) of (2.14).
Part (b) is a restatement of (a). �

We can now define a SDiff-invariant unitary structure on sections of L
over the support of νT by

〈s1, s2〉 =
∫

s1s̄2dν
|L|−2

T .(2.33)

We let πT denote the unitary representation of SDiff acting on sections
of L over the support of νT . We can equivalently view πT as the cocycle
representation

SDiff × L2
(
|det|2dν

|L|−2

T

)
(2.34)

given by σ · f = (f ◦ σ−1)cT (σ) (where the function f corresponds to the
section s = f det).

Proposition 2.35. The spherical function for the representation πT of
SDiff corresponding to the vector det is given by

〈πT (σ) · det, det〉 =
∫

σ · det( det)∗dν
|L|−2

T

=
∫

e−TS(µ)regdνT = det(1 + 2TS(µ))e−2TS(µ)
)−1/2

.

This follows from (2.25).
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Remarks 2.36. (a) There is a simple explanation for why the vector det
is not a smooth vector for the unitary action of SDiff. Given v ∈ Vect (Σ),

v · det|A =
d

dt

∣∣∣
t=0

etv · det|A = det|A(d(log det)|A(−LvA))

= idet|A
(∫

(iv{∂̄−1F} − ∂̄−1{(ivF )0,1}) ∧ F

)
.

The operator
F → ∗(iv{∂̄−1F} − ∂̄−1{(ivF )0,1})

has order = −1, hence generally it is not Hilbert-Schmidt, and it is not
possible to regularize the corresponding quadratic form.

(b) The partition function of abelian Yang-Mills (at temperature T ) cou-
pled to fermions (with coupling constant 1) is the integral

Z(T ) =
∫
|det|2dν

|L|−2

T = (det(1 + 4T∆−1)e−4T∆−1
)−1/2.

An interesting question is whether one can compute the corresponding quan-
tity in the nonabelian case.

3. The limit T →∞.

As in the preceding section, Σ denotes a genus = 0 oriented surface, and we
consider the representation (2.2). We fix a complex structure, so that we
have a distinguished section det. We also fix an area form, so that we can
use the Yang-Mills construction of the preceding section. Our objective is
to prove that the SDiff-submodule generated by the section det is unitary
with respect to the Hermitian inner product

〈σ1 · det, σ2 · det〉 = lim
T→∞

1
Z(T )

∫
cT (σ−1

2 σ1)|det|2dν
|L|−2

T ,(3.1)

where Z(T ) is the partition function in (b) of (2.36).

Proposition 3.2. Suppose that σ ∈ SDiff, µ = µσ−1. Then

lim
T→∞

det((1 + 2TS(µ))e−2TS(µ))−1/2

det((1 + 2TS(0))e−2TS(0))−1/2
=

detζ(4∆)1/2

detζ(4∆(1− ∂̄−1µ∂)−1)1/2
,

and this defines a positive definite function on SDiff.

To explain the meaning of the RHS of (3.2), and before undertaking the
proof, we need some preparatory remarks concerning determinants (we will
use [Sh] and [KV] as basic references). Suppose that E is an invertible
elliptic classical pseudo-differential operator of positive real order d, on a
compact manifold of dimension n, and suppose that its principal symbol
σd satisfies the Agmon-Nirenberg condition, i.e., there is a ray Lθ extending
from the origin in the complex plane such that at each point of the manifold,
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the spectrum of σd intersects trivially with Lθ. In our context E will always
have the property that we can choose Lθ to be the negative real axis, as in
§10 of [Sh]. In this situation one can form the complex powers E−s, s ∈ C,
and the ζ-function

ζE(s) = tr(E−s), Re(s) > n/d,(3.3)

has a meromorphic extension to all of C which is regular in a neighborhood of
s = 0 (§10 and §13 of [Sh], respectively). We then define the ζ determinant
in the usual way, detζE = exp(−ζ ′(0)). In particular this is the meaning of
the determinants on the RHS of (3.2), where we have thrown out the zero
eigenvalue (note that the symbol of ∆(1−∂̄−1µ∂)−1 is ρ|ξ|2(1−µ̃(z)ξ̄−1ξ)−1,
where µ̃ and ρ are local representations for µ and the area form, respectively;
since |µ̃| < 1, the negative real axis is a spectral cut).

Now initially suppose also that C is a pseudo-differential operator of order
< −n, so that C represents a trace class operator. In this case we have

detζ

(
EeτC

)
= (detζE) eτtrC .(3.4)

To see this, note that (EeτC)−sC is a trace class operator for all s ∈ C,
hence the trace of this holomorphic family is an entire function of s. Also

∂

∂τ
ζEeτC (s) =

∂

∂τ
tr(EeτC)−s = −str((EeτC)−sC), Re(s) > n/d.(3.5)

By analytic continuation this equality is valid in all of C, in particular in a
neighborhood of s = 0. Hence

∂

∂τ
ζ ′EeτC (0) = −trC,(3.6)

implying that
∂

∂τ
detζ(EeτC) = detζ(EeτC)trC,(3.7)

which integrates to (3.4).
Now suppose that order (C) ≤ −n. In this case C ∈ L+

1 (the dual of the
Macaev ideal; see [C]), and (EeτC)−sC is trace class for Re(s) > 0. The
trace of this family has a meromorphic extension to the complex plane, and
in a neighborhood of s = 0, we have

tr((EeτC)−sC) =
Res(C)

s
+ h(s),(3.8)

where Res (C) is the noncommutative residue and h(s) is holomorphic. The
value of h at s = 0 is called the finite part of the trace; we will write “FPtr”
for the finite part:

FPtr((EeτC)−sC) = h(0).(3.9)

Note that if order (C) < −n, then Res(C) = 0 and h(0) = trC.
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Lemma 3.10. Suppose that E is classical, elliptic, invertible and satisfies
the Agmon-Nirenberg condition as above, and C has order ≤ −n. Then

(a) detζ(EeτC) = detζ(E) eτFPtr(E−sC).
(b) The linear functional C → FPtr(E−sC) depends only upon the prin-

cipal symbol of E.

Proof of (3.10). We have

FPtr(EeτC)−sC = FPtr((EeτC)−sC − E−se−sτCC)(3.11)

+ FPtr(E−se−sτCC − E−sC) + FPtr(E−sC).

We must show that the first two terms on the RHS are zero. As s→ 0,

(EeτC)−sC − E−se−sτCC = −s(log(EeτC)− log E − τC)C + O(s2)
(3.12)

E−se−sτCC − E−sC = −sτC2 + O(s2)(3.13)

where we have used a spectral cut near Lθ to form the logarithms (see
(2.8) of [KV] for the definition of the logarithms and basic properties).
The (non-classical) pseudo-differential operator log(EeτC)− log E− τC has
order ≤ −1 + ε, for any ε > 0, because the log and 0th order terms cancel
out in the calculation of the symbol, and we are assuming that E is classical.
Thus the RHSs of both (3.12) and (3.13) are of the form −sT +O(s2), where
T is trace class. It follows that the first two terms on the RHS of (3.11) are
zero.

As before
∂

∂τ
ζEeτC (s) = −str((EeτC)−sC), Re(s) > 0.(3.14)

Since the first two terms on the RHS of (3.12) are zero, as s→ 0,
∂

∂τ
ζEeτC (s) = −FPtr(E−sC) + O(s).(3.15)

Thus
∂

∂τ
detζ(EeτC) = detζ(EeτC)FPtr(E−sC),(3.16)

and this completes the proof of (a)
The proof of (b) follows the same pattern as for (a). Suppose that

order (F ) < order (E), where E + F is also invertible. Then we can write
E + F = E(1 + B), where order (B) ≤ −1, and since the spectrum of 1 + B
is discrete, we can find a spectral cut to form the compex powers of 1 + B.
Then

FPtr((E(1 + B))−sC) = FPtr(E−s(1 + B)−sC) = FPtr(E−sC),(3.17)

where the first equality uses (3.12) with log(1+B) (which is of order ≤ −1)
in place of C, and the second uses (3.13) in the same way. �
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Proof of (3.2). In the preceding section we viewed S(µ) as an operator on
a Hilbert space of two-forms. In this proof we will replace S(µ) by ∗S(µ)∗,
so that we can view it as an operator on functions. Also recall that ∆′ =
σ ◦∆ ◦ σ−1.

Fix T > 0. Let E denote an operator as in (3.10) (for us E = ∆ or ∆′).
The manifold Σ has dimension 2, the operator S(µ) has order −2, and the
operator (1 + 2TS(µ))e−2TS(µ) is of the form 1+ order(−4). Hence by (3.4)
and (3.10),

detζ

(
1
T

E2

)
det((1 + 2TS(µ))e−2TS(µ))(3.18)

= detζ(E(T, µ)e−2TS(µ))

= detζ(E(T, µ)) exp(−2TFPtr(E(T, µ)−sS(µ))),

where E(T, µ) = 1
T E2(1 + 2TS(µ)).

Now we claim that

FPtr(E(T, µ)−sS(µ)) = FPtr

((
1
T

E2

)−s

(1 + 2TS(µ))−sS(µ)

)
(3.19)

= FPtr

((
1
T

E2

)−s

S(µ)

)
= Re s(S(µ)) lnT + FPtr(E−sS(µ)).

The first two equalities follow from (b) of (3.10). The third equality follows
simply from T s = 1 + slnT + O(s2),

tr(E−sS(µ)) =
Res(S(µ))

s
+ FPtr(E−sS(µ)) + O(s) as s→ 0(3.20)

and the fact that changing the argument in a meromorphic function from s
to 2s does not change the constant term in a Laurent expansion.

From (3.18) and (3.19) we therefore conclude that

detζ

(
1
T

E2

)
det((1 + 2TS(µ))e−2TS(µ))(3.21)

= detζ

(
1
T

E2 + 2E2S(µ)
)

T−TRe s(S(µ))e−TFPtr(E−s2S(µ)).

Since ∆ and ∆′ have the same spectrum, (3.21) implies that

detζ( 1
T ∆2 + ∆2S(µ))

detζ( 1
T ∆′2 + ∆′2S(µ))

= exp(−TFPtr((∆−s −∆′−s)S(µ))).(3.22)

Since the LHS of (3.22) has a finite limit as T →∞, we conclude that

FPtr(∆−sS(µ)) = FPtr(∆′−sS(µ)).(3.23)



DIFFEOMORPHISMS ACTING ON THE DETERMINANT LINE BUNDLE 193

Let C(σ) = S(µ)−S(0), where µ = µσ−1 . Using (g) of (2.14), we see that
(2.13) translates into the equality of operators

C(σ1 ◦ σ2) = C(σ1) + σ1C(σ2)σ−1
1 ,(3.24)

for σ1, σ2 ∈ SDiff. It follows from (3.23) and (3.24) that

SDiff → C : σ → FPtr(∆−sC(σ))(3.25)

is a homomorphism of groups. But the only such homomorphism of groups
is the trivial map. We therefore conclude that

FPtr(∆−s(S(µ)− S(0))) = 0,(3.26)

provided that µ corresponds to a σ ∈ SDiff. [Note: There is a more direct
way to see that the real part of (3.26) is zero, for by (i) of (2.14) and (3.23),

ReFPtr(∆−s(S(µ)− S(0))) = 2FPtr(∆′−s∆′−1 −∆−s∆−1) = 0.](3.27)

Now the principal symbol of S(µ) is of the form

ρ|ξ|−2(1− ξµ̃ξ)−1,(3.28)

where ρ and µ̃ are the local representations for µ and our fixed area ele-
ment, respectively. Since the density for Re s(S(µ)) can be computed by
integrating over |ξ| = 1, it follows that Re s(S(µ)) is independent of µ. Now
combining this with (3.21) we have

det((1 + 2TS(µ))e−2TS(µ))
det((1 + 2TS(0))e−2TS(0))

(3.29)

=
detζ

(
1
T ∆2 + ∆22S(µ)

)
detζ

(
1
T ∆2 + 4∆

) e−2TFPtr(∆−sS(µ)−∆−sS(0))

for any µ. By (3.26), if µ corresponds to σ ∈ SDiff, then the exponential
term vanishes. One can now take the limit T → ∞. This completes the
proof. �

Remarks 3.30. It is very unlikely that (3.26) vanishes for a general µ,
hence the limit in (3.2) probably does not exist for general µ. But this
makes perfectly good sense for the following reason. In the previous section,
following standard practice in probability theory, we regularized

σ · det( det)∗ = exp(−S(µ)F · F )(3.31)

by subtracting a trace, that is we replaced S(µ)F ·F by “S(µ)F ·F−trS(µ)”,
where this had to be properly interpreted as a random variable with respect
to νT . The proof of (3.2) makes it clear that this is inadequate; we should
actually have replaced (3.31) by

exp(−TFPtr(∆−sS(µ))) exp(−TS(µ)reg(νT )),(3.32)

that is, we should have added the trace back in! If we make this change,
then the limit in (3.2) exists for all µ.
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4. The Cases genus (Σ) > 0.

We briefly indicate the changes necessary to handle the case in which
genus (Σ) is positive.

First, it is no longer the case that the gauge group is connected; in fact,
we can identify

0 → K0 → K → π0(K) → 0∥∥∥∥ ∥∥∥∥ ∥∥∥∥
0 → Ω0(Σ; iR)/2πiZ exp−→ Map(Σ, T) π0−→ H1(Σ, 2πiZ) → 0

(4.1)

where π0(g) = [g−1dg] ∈ H1(Σ, 2πiZ). We define

Ω0(L) = {f : A → C : f(A + g−1dg) = c(g,A)f(A), ∀A ∈ A, g ∈ K}
(4.2)

where c(g,A) = exp( 1
2πi

∫
A∧g−1dg). The group D acts naturally on Ω0(L).

Remarks 4.3. (a) Ω0(L) is the space of sections of a D-equivariant line
bundle over C, i.e., c satisfies the cocycle identity

c(g1g2, A) = c(g1, A)c(g2, A + g−1
1 dg1);(4.4)

this depends crucially on the fact that

exp
(

1
2πi

∫
g−1
2 dg2 ∧ g−1

1 dg1

)
= 1.(4.5)

(b) There is a refinement of (4.2), which depends upon the additional
choice of a spin structure on Σ. A spin structure determines a function

(−1)q : H1(Σ, 2πiZ)→ {±1}(4.6)

satisfying (−1)q(λ1+λ2) = (−1)q(λ1)(−1)q(λ2)e
1

4πi

R
λ1∧λ2 , where q of a simple

loop is 0 or 1, depending upon whether the spin structure restricted to the
loop is trivial or nontrivial. We then define Ω0(Lq) to consist of functions
satisfying

f(A + g−1dg) = (−1)q(π0(g)) exp
(

1
4πi

∫
A ∧ g−1dg

)
f(A).(4.7)

The (−1)q factor compensates for the fact that the square root of the LHS
of (4.5) may not be 1. In this case we have a representation of Dq on Ω0(Lq).

To define the Yang-Mills measure, we must fix an area form as before.
As in the genus = 0 case, the support of the Yang-Mills measure is thicker
than the space of gauge equivalence classes of continuous T-connections, C.
To complete the space C in a D-equivariant way, one can adopt the point of
view that a connection is a parallel transport functor, hence that C consists
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of holonomy functors. This is described in [Pi], see especially §2.5 for the
abelian case. The resulting completion of C has the structure of a principal
bundle

Ccompletion ← H1(Σ, T)
↓

{F ∈ Ω2 :
∫

F = 0}completion
(4.8)

over a completion of the space of curvatures, where

H1(Σ, T) = Hom(π1(Σ), T).(4.9)

The Yang-Mills measure, again denoted by dνT , is the unique H1(Σ, T)-
invariant probability measure on the completion of C which projects to the
Gaussian corresponding to the inner product (2.4).

Now fix a complex structure for Σ. The section det is characterized in
the following:

Lemma 4.10. There is a unique section det of L with det(0) = 1 such
that

exp
(

1
2πi

∫
a ∧ a∗

)
det

is a holomorphic function of a.

Proof. There is a canonical splitting of the sequence

0→ Ω0/C→ Ω0,1 → H0,1 → 0(4.11)

Ω0,1 = ∂̄Ω0 ⊕ ker(∂), a = ∂̄x + a0(4.12)

because ∂a = ∂∂̄x uniquely determines x ∈ Ω0/C. Note that x depends
holomorphically on a. The function

exp
(

i

2π

∫
{a ∧ a∗ − ∂a ∧ (∂∂̄)−1∂a}

)
= exp

(
i

2π

∫
(a0 ∧ a∗0 + x ∧ F )

)(4.13)

satisfies the transformation property (4.2) for g = exp(ξ) ∈ K0, the identity
component of K. It follows that the section det has the form

det(A) = exp
(

i

2π

∫
(a0 ∧ a∗0 + x ∧ F )

)
Θ(a),(4.14)

where Θ is a holomorphic function which is K0-invariant, hence G0-invariant,
where G is the complexification of K. Thus Θ descends to a function on H0,1.
For g ∈ K, not necessarily in the identity component, as in (4.12) we can
write uniquely

g−1dg = dξ + θ, g−1∂̄g = ∂̄ξ + θ0,1(4.15)
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where ∂θ0,1 = 0, ξ ∈ Ω0(Σ, iR)/iR, θ ∈ H1(Σ, 2πiZ). Then

Θ(a + g−1∂̄g)

(4.16)

=
det(A + g−1dg)

exp
(

i
2π

∫
{(a + g−1∂̄g) ∧ (a + g−1∂̄g)∗ − ∂(a + g−1∂̄g) ∧ x(a + g−1∂̄g)}

)
= exp

(
i

2π

∫ {
A ∧ g−1dg −

{
−a ∧ θ1,0 + θ0,1 ∧ (a∗ − θ1,0)

}})
Θ(a)

= exp
(

i

2π

∫ {
a ∧ 2θ0,1 − θ0,1 ∧ θ1,0

})
Θ(a).

Thus Θ : H0,1 → C satisfies

Θ(a + λ0,1) = exp
(

i

2π

∫ (
a ∧ 2λ1,0 − λ0,1 ∧ λ1,0

))
Θ(a)(4.17)

for all a ∈ H0,1, λ ∈ H1(Σ, 2πiZ). This implies that Θ is essentially Rie-
mann’s theta function

Θ(a) =
1
Z
∑

λ

exp
(

i

2π

∫
λ1,0 ∧ (a + 2λ0,1)

)
.(4.18)

�

Remark 4.19. If we choose a spin structure q as in (b) of (4.3), i.e., a square
root of the canonical bundle, then we can identify Lq with the determinant
line of the family of Fredholm operators {∂̄κ1/2 + a : a ∈ Ω0,1}, equipped
with the Quillen metric. In this case the section det is identified with the
canonical section, and (4.18) is replaced by the normalized theta function

Θq(a) =
1
Z
∑

(−1)q exp
(

i

4π

∫
λ1,0 ∧ (a + 2λ0,1)

)
.(4.20)

Now suppose that σ ∈ D. As in (2.14) we denote transformed objects
using primes.

Lemma 4.21.

(a) (∂̄′)0,1 = (1− µµ̄)−1(∂̄ − µ∂).
(b) (∂̄′)1,0 = µ̄(∂̄′)0,1.
(c) a′ = (1 + µ̄)(1− µ conj)−1a, where conj denotes conjugation.
(c)′ a′0 = f(µ, a0), where f depends linearly on a0.
(d) x′ = (∂∂̄−∂µ∂)−1{(∂∂̄+∂µ∂)x+∂[µā0 +A′0,1

0 −µA′1,0
0 ]}, for R-valued

x, where A0 = a0 − ā0.
(e) ∂′∂̄′ = 2∂∂̄((∂∂̄ − ∂µ∂)−1(∂∂̄ − ∂µ∂) + ∂[µā0 + A′0,1

0 − µĀ′1,0
0 ]+

conjugate)−1.
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(f)

σ · det( det)∗

= exp(−S(µ)F · F )

· exp
(

i

2π

∫
(∂∂̄ − ∂µ∂)−1

(
∂
[
µā0 + A′0,1

0 − µĀ′1,0
0

])
∧ F

)
· exp

(
i

2π

∫
(a′0 ∧ ā′0 + a0 + ā0)

)
Θ′(a′0)Θ̄(a0),

where S(µ) = i
2π ∗ (∂∂̄ − ∂µ∂)−1.

(h) The real and imaginary parts of S(µ) are symmetric, with respect to
the real Hilbert space structure (2.4).

(i) Re(S(µ)) = i ∗ (∂′∂̄′)−1 = 2 ∗ ∗′∆′−1 (on 2-forms); hence if σ ∈ SDiff,
ReS(µ) = 2∆′−1.

Proof of (4.21). If we view a as the projection (Ω1)C → Ω0,1, then using
(1.10),

a′ = σ∗ ◦ a ◦ σ∗ =
(

A(σ) B(σ)
B̄(σ) Ā(σ)

)(
1

0

)(
A(σ−1) B(σ−1)
B̄(σ−1) Ā(σ−1)

)
(4.22)

=
(

A(σ)A∗(σ) −A(σ)B̄∗(σ)
B̄(σ)A∗(σ) −B̄(σ)B̄∗(σ)

)
=
(

(1− µµ̄)−1 −(1− µµ̄)−1µ
µ̄(1− µµ̄)−1 −µ̄(1− µµ̄)−1µ

)
=
(

1
µ̄ 1

)(
(1− µµ̄)−1

0

)(
1 −µ

1

)
.

If we apply this to a one-form of the form df = ∂̄f + ∂f , then we obtain
(a) and (b). If we apply this to a one-form of the form A = a− ā, then we
obtain (c).

Similarly, if we view a0 as the projection onto ker(∂ : Ω0,1 → Ω2), then

a′0 = σ∗ ◦ a0 ◦ σ∗ =
(

A(σ)a0A
∗(σ) −A(σ)a0B̄

∗

B̄(σ)a0A
∗(σ) −B̄(σ)a0B̄

∗

)
.(4.23)

If σ ∈ Aut(Σ), then σ ◦ a0 ◦ σ∗ = a0; this implies (c)′ (although we would
dearly love to have an explicit formula).

Assuming that x is real, as in the proof of (2.13),

a = ∂̄x + a0 = (1 + µ conj)−1(∂̄ − µ∂)x′ + (a′0 − ā′0)
0,1(4.24)

=⇒ (∂̄ + µ∂)x + a0 + µā0 = (∂̄ − µ∂)x′ + A′0,1
0 − µA′1,0

0 .

By applying ∂ to both sides and solving for x′, we obtain (d).
The other parts follow as in the proof of (2.14). �
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Given σ ∈ SDiff, we define

cT (σ) = exp(−T (S(µ)− S(0))reg + TL(µ, a0) ·T F )(4.25)

· exp
(

i

2π

∫
(a′0 ∧ ā′0 − a0 ∧ ā0)

)
Θ′

Θ
,

(a random variable with respect to νT ), where

L(µ, a0) =
i

2π
∗ (∂∂̄ − ∂µ∂)−1(∂[µa0 + A′0,1

0 − µA′1,0
0 ])(4.26)

(a smooth two-form with vanishing integral). As in (2.29), cT is an SDiff-
cocycle with respect νT .

We define the measure dν
|L|−2

T having values in the line bundle |L|−2 by

s1s̄2dν
|L|−2

T =
s1

det

( s2

det

)∗
e−TS(0)rege

i
2π

R
a0∧ā0 |Θ|2dνT ,(4.27)

where s1, s2 are sections of L over the support of νT . We then have (2.31),
and we can define the representation πT . The spherical function is given by

φT (σ) = 〈πT (σ) · det, det〉 =
∫

σ · det( det)∗dν
|L|−2

T

(4.28)

=
∫

e−TSreg+TL·T F− 1
4π

(|A′
0|2+|A0|2)Θ′Θ̄dνT

= det
(
(1 + 2TS)e−2TS

)−1/2
∫

e
T
2

(1+2TS)−1L·Le−
1
4π

(|A′
0|2+|A0|2)Θ′Θ̄

where S = S(µ), L = L(µ,A0), |A0|2 = −
∫

A0 ∧ ∗A0, and the integral is
with respect to the translation invariant measure on the torus H1(Σ, T).

Proposition 4.29. In terms of the notations of the preceding paragraph,
the limit

lim
T→∞

φT (σ)
φT (0)

=
detζ(4∆)1/2

detζ(2∆2(∂∂̄ − ∂µ∂)−1)1/2

∫
e2πi∗(∂∂̄−∂µ∂)L·Le−

1
4π

(|A′
0|2+|A0|2)Θ′Θ̄

exists and defines a positive definite function on SDiff.

This follows from (3.2).
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