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Central extensions of gyrocommutative gyrogroups
(K-loops) are studied in order to clarify the status of a co-
cycle equation introduced by Smith and Ungar. A sufficient
and necessary conditions under which a central invariant ex-
tension is a gyrocommutative gyrogroup are formulated in
terms of a 2-cochain f(x, y). In particular, it is shown that for
central invariant extensions of gyrocommutative gyrogroups
defined by Cartan decompositions of simple Lie algebras, the
corresponding f(x, y) satisfies the cocycle equation, provided
an extension is a gyrocommutative gyrogroup.

1. Introduction.

There has been a renewal of an interest in loop theory in recent years, con-
cerning a special non-associative loop structure called a gyrocommutative
gyrogroup, known also under the name of a K-loop. It began with a paper
by A. Ungar [15], who pointed it out that the addition law of relativistic ve-
locities leads to an interesting algebraic structure on a unit ball in Rn, which
he originally called a K-loop. Further properties of these structures under
the name of gyrogroups and gyrocommutative gyrogroups were summarized
in [16]. Concerning terminology, see also remarks in [8].

Independent studies by A. Kreuzer [9] and H. Karzel, and H. Wefelscheid
[4] clarified the status of gyrocommutative gyrogroups within the framework
of loop theory and provided some important constructions generalizing an
example of Ungar.

In fact, gyrocommutative gyrogroups or similar structures were contem-
plated, although not explicitly under that name, by M. Kikkawa [5], in
relation to symmetric spaces and by P. Miheev and L. Sabinin in relation
to so called odular structures, [10]. That first aspect of gyrocommutative
gyrogroups has been discussed by Y. Friedman and A. Ungar in [2] and
recently by W. Krammer and H.K. Urbantke in [8].

One can obtain more examples of gyrocommutative gyrogroups by means
of their extensions. Such extensions are in fact extensions of loops. These
were discussed a long time ago by R.H. Bruck in [1]. They generalize exten-
sions of groups (see for example [12]). As for groups, the simplest among
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their extensions are the ones with an abelian kernel, which include central
extensions as well [12]. They are constructed, in principle, via a 2-cocycle,
i.e. a 2-cochain f(x, y) subject to a cocycle equation,

f(x1, x2) · f(x1 · x2, x3) = f(x2, x3) · f(x1, x2 · x3),(1)

under the assumption that the group under consideration acts trivially on
an abelian group.

Central invariant extensions of gyrocommutative gyrogroups, in a narrower
sense, were defined in [14] and then employed with a particular purpose of
reconstructing from a gyrocommutative gyrogroup of relativistic velocities,
the Lorentz group, i.e. SO0(1, n); more specifically a standard matrix rep-
resentation of that group. As far as central extensions are concerned it was
assumed that the operators generating the left associant of an extension (in
terminology of [10]) or the structure group of an extension (in terminology
of [9]) are central (in the sense of [14]). That assumption resulted in an
equation for the corresponding 2-cochain f(x, y) which the authors called a
cocycle equation. Thus, in principal the cocycle equation was incorporated
into a definition of a central extension of a gyrocommutative gyrogroup. It
reads,

f(x1, x2) · f(x2 · x1, x3) = f(x2, x3) · f(x1, x2 · x3).(2)

That brings us to a question whether such an extension always has to
arise from a 2-cochain satisfying the cocycle equation of [14]?

To answer that question we discuss matters in a context of central exten-
sions of loops according to R.H. Bruck [1]. Basic definitions and properties
of relevant concepts are presented in Sections 2 and 3. A multiplicative
notation instead of an additive one, preferred by the authors of [14], is em-
ployed. Definitions concerning extensions of loops are, except of small mod-
ifications, faithful copies of the ones in [1]. Definitions of a gyrogroup and a
gyrocommutative gyrogroup (K− loop) are equivalent to the ones of [16]; see
Appendix. They emphasize the role of three identities, known as a Bol iden-
tity, an A-loop identity and an inverse automorphic identity (see for example
[10]). In Section 4 a discussion is restricted to invariant, in the sense of [14],
central extensions of a gyrocommutative gyrogroup M with a trivial action
of M on an abelian group G. Also there, necessary and sufficient conditions
under which a 2-cochain f(x, y) determines an extension of M which is a
gyrogroup or a gyrocommutative gyrogroup (Theorems 16 and 17) are pro-
vided. Theorem 20 of Section 5 is a generalization of the fact pointed out in
[14], that central extensions of gyrocommutative gyrogroups corresponding
to symmetric 2-cochains are gyrocommutative gyrogroups again.

In Section 6 we discuss gyrocommutative gyrogroups determined by Car-
tan decompositions of noncompact semisimple and in particular simple Lie



CENTRAL EXTENSIONS OF GYROGROUPS 203

algebras. It turns out that any central invariant extension of the latter struc-
ture, if it is a gyrocommutative gyrogroup, then it arises from a 2-cochain
which satisfies a cocycle equation of [14], (2), (Theorem 29).

2. Definitions of basic concepts.

Let G be an abelian group, M a loop, [11], and χ a function, χ : M →
Aut(G), which satisfies the following properties,

1χ = idG,(3)

where 1 and idG are units of M and Aut(G) respectively, and

(x · y)χ = xχ · yχ,(4)

for all x, y ε M.
Given g ε G and x ε M, we denote the value of an automorphism xχ at g

by gx.

Definition 1. A (G,M,χ)-extension (E,θ) is a pair consisting of a loop E
and a homomorphism θ of E onto M, such that,

(i) ker(θ) ⊂ A(E), where A(E) is the associator of E, i.e. a subset A(E)
of E, such that (e1 · e2) · e3 = e1 · (e2 · e3) if at least one of e1, e2, e3 is
in A(E),

(ii) the center of ker(θ) equals to G,
(iii) g · e = e · (g x) for all g ∈ G, e ∈ E and x = eθ.

A (G,M,χ)-extension, (E, θ), is called central if ker(θ) = G.

Definition 2. A normalized 2-cochain f is a function f : M2 → G, with
values f(x1, x2), taking the value 1 whenever one of x1 or x2 is 1.

The 3-coboundary δf of f is the following normalized 3-cochain,

(5) δf(x1, x2, x3)

= [f(x1, x2)x3] · [f(x2, x3)]−1 · f(x1 · x2, x3) · [f(x1, x2 · x3)]−1.

Definition 3. Let f be a normalized 2-cochain. We define a central
(G,M,χ) extension, (E, θ), as follows.

(i) E is the set of all ordered pairs (x, g), where x ∈M and g ∈ G,
(ii) (x, g) · (y, h) = (x · y, f(x, y) · (g y) · h),
(iii) (x, g)θ = x.

We denote this central extension by (G,M,χ, f).

Remark 1. In order to fulfill the conditions of Definition 1 G has to be
identified with its homomorphic image in E under a natural injective homo-
morphism which sends g ∈ G into (1, g).

It is known, [1], that each central (G,M,χ)-extension is equivalent to at
least one (G,M,χ, f)-extension.
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Further discussion will concern extensions corresponding to a trivial func-
tion χ, i.e. the one that assigns to each x ∈ M the identity automorphism
of G. Such extensions will be referred to as (G,M) or (G,M, f)-extensions
respectively.

To define a gyrogroup and a gyrocommutative gyrogroup we point out
certain important identities.

Definition 4. Let M be a loop. The following identities,

Lx ◦ Ly ◦ Lx = Lx·(y·x),(6)

`(x, y) ◦ Lz = L`(x,y)z ◦ `(x, y),(7)

where `(x, y) = L−1
x·y ◦ Lx ◦ Ly , and

(x · y)−1 = x−1 · y−1,(8)

are called a B, an A and an I-identity respectively. B stands for Bol, A for
an A-loop, and I for inverse automorphic. (For any z ∈ M , z−1 means its
right inverse.)

For purposes of this paper we introduce the following terminology. A loop
will be called a B-loop, a BA-loop or a BAI-loop, if a B, a B and an A or
B, A and I-identities hold.

Remark 2. There are other equivalent forms of those identities. In partic-
ular, (7) means that the mapping `(x, y) is an automorphism of M for all
x, y ∈M . We list below two identities equivalent to (6) and (7) correspond-
ingly,

x · (y · (x · z)) = (x · (y · x)) · z,(9)

l(x, y)(z · w) = (l(x, y)z) · l(x, y)w.(10)

Now we define a gyrogroup and a gyrocommutative gyrogroup.

Definition 5. Any BA-loop is called a gyrogroup and any BAI-loop is
called a gyrocommutative gyrogroup.

We have also this natural definition.

Definition 6. A central (G,M) extension, (E, θ), of a gyrocommutative gy-
rogroup is called a B, a BA or a BAI-extension if E is a B, a BA or a
BAI-loop respectively.

3. Central extensions of gyrocommutative gyrogroups.

We study now (G,M) central extensions of a gyrocommutative gyrogroup M.
We follow the method of Bruck, [1].
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Let u(x) be a normalized transversal function of E. Thus, for each x ∈M ,
u(x) is an element of E, such that

u(x)θ = x,(11)

and

u(1) = 1 .(12)

Then every e ∈ E has a unique representation of the form e = u(x) · g,
with g ∈ G and x = eθ. Moreover,

u(x) · g · u(y) · h = u(x) · u(y) · g · h = u(x · y) · f(x, y) · g · h,(13)

where f is a normalized, because of (12), 2-cochain. (There is no need for
additional parentheses in that identity since g, h ∈ G ⊂ A(E), and G is
abelian.) Then the mapping u(x) · g 7→ (x, g) gives the equivalence of E and
(G,M, f). (See [1].)

Thus, for all x, y ∈M ,

u(x) · u(y) = u(x · y) · f(x, y).(14)

We make now few simple observations.

Lemma 7. Let (E, θ) be a central (G,M) extension and u(x) a normalized
transversal function of E. Then for all g ∈ G and e ∈ E,

g · e = e · g,(15)

and

(e · g)−1 = g−1 · e−1 = e−1 · g−1.(16)

If E is a B-loop, then

(u(x))−1 = u(x−1) · [f(x, x−1)]−1 = [f(x, x−1)]−1 · u(x−1),(17)

f(x, x−1) = f(x−1, x),(18)

`(u(a), u(b))u(c) = u(`(a, b)c) · ga,b,c,(19)

where

ga,b,c = [f(a, b) · f((a · b)−1, a · b)]−1(20)

· f((a · b)−1, a · (b · c)) · f(a, b · c) · f(b, c)

and

`(u(a), u(b))g = g,(21)

for all g ∈ G.
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Proof. Indeed, (15) follows directly from (iii) of Definition 1. (16) is a con-
sequence of the fact that G ⊂ A(E) and (15). e−1 is understood here as the
right inverse of e in the loop E.

For B-loops right and left inverses coincide [11]. Due to (14) we have,

u(x) · u(x−1) = f(x, x−1),(22)

and consequently

u(x−1) = [u(x)]−1 · f(x, x−1).(23)

Next,

u(x−1) · u(x) = f(x−1, x),(24)

u(x) = [u(x−1)]−1 · f(x−1, x)(25)

and due to (16),

[u(x)]−1 = [f(x−1, x)]−1 · u(x−1).(26)

Then from (23) and (26) we get (18) and (17). To prove (19) we employ
(15) and the other just proven identities. The method of proving (21) is
similar. �

We prove now this fact.

Proposition 8. Let M be a gyrocommutative gyrogroup. The central exten-
sion E = (G,M, f) is a B-extension, if and only if,

f(x, y · (x · z)) · f(y, x · z) · f(x, z) = f(x · (y · x), z) · f(x, y · x) · f(y, x).
(27)

Proof. It is clear, due to (9) and (13), (see also [1]), that a B-identity for E
is equivalent to,

u(x) · (u(y) · (u(x) · u(z))) = (u(x) · (u(y) · u(x))) · u(z).(28)

Now, using (14), (15), the fact that G ⊂ A(E) and commutativity of G,
one obtains,

(29) u(x) · (u(y) · (u(x) · u(z)))
= u(x · (y · (x · z))) · f(x, y · (x · z)) · f(y, x · z) · f(x, z)

and

(30) (u(x) · (u(y) · u(x))) · u(z)
= u((x · (y · x)) · z) · f(x · (y · x), z) · f(x, y · x) · f(y, x).

That shows equivalence of (28) and (27), since M is a B-loop. �

As far as BA-extensions are concerned we have,
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Proposition 9. Let M be a gyrocommutative gyrogroup. The central ex-
tension E = (G,M, f) is a BA-extension if and only if it is a B-extension
and,

f(z, w) · gx,y,z·w = f(`(x, y)z, `(x, y)w) · gx,y,z · gx,y,w.(31)

Proof. An A− identity for E is equivalent to (see (10)),

`(u(x), u(y)) · (u(z) · u(w)) = [`(u(x), u(y))u(z)] · `(u(x), u(y))u(w).(32)

To put it into an equivalent form of (31), it suffices to apply (19), (20)
and (21). Indeed, one can rewrite then (32) into,

(33) u(`(x, y)(z · w)) · f(z, w) · gx,y,z·w

= u(`(x, y)z · `(x, y)w) · f(`(x, y)z, `(x, y)w) · gx,y,z · gx,y,w,

which due to the fact that M is an A-loop is equivalent to (31). �

Finally we have a Proposition concerning central BAI-extensions.

Proposition 10. Let M be a gyrocommutative gyrogroup. The central ex-
tension E = (G,M, f) is a BAI-extension if and only if it is a BA-extension
and,

f(x−1, x) · f(y−1, y) = f(x−1, y−1) · f(x, y) · f((x · y)−1, x · y).(34)

Proof. An I-identity for E is equivalent to,

(u(x) · u(y))−1 = (u(x))−1 · (u(y))−1.(35)

Next one derives, by a rather straightforward process, which employs
Lemma 7, these identities,

[u(x) · u(y)]−1 = u((x · y)−1) · [f(x, y) · f((x · y)−1, x · y)]−1,(36)

and

[u(x)]−1 · [u(y)]−1 = u(x−1 · y−1) · f(x−1, y−1) · [f(x−1, x) · f(y−1, y)]−1.
(37)

Feeding them back into (35) and making use of the fact that M satisfies
an I-identity, one infers equivalence of (35) and (34). �

4. Central invariant extensions of gyrocommutative gyrogroups.

Definition 11. A central extension E = (G,M, f) of a loop M is called
invariant if

f(`(a, b)x, `(a, b)y) = f(x, y)(38)

for all a, b, x, y ∈M .

Definition 12. For any 2-cochain f we define a 3-cochain ∆f,

∆f(x, y, z) = f(x, y) · [f(y, z)]−1 · f(y · x, z) · [f(x, y · z)]−1.(39)
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The expression for ∆f is different from the one for δf , (5). Indeed, those
two are related by,

δf(x, y, z) = ∆f(x, y, z) · f(x · y, z) · [f(y · x, z)]−1.(40)

However, it is ∆f rather than δf , which is important in analysis of
identities of Propositions 8-10. We have now a sequence of a Proposition
and two Theorems that correspond to Propositions 8-10 in case of central
invariant extensions.

Proposition 13. Let M be a gyrocommutative gyrogroup. The central in-
variant extension E = (G,M, f) is a B-extension if and only if,

∆f(x, y · x, `(y, x)z) ·∆f(y, x, z) = 1.(41)

Proof. We rewrite (27) as,

f(v, u · (v · w)) · f(u, v · w) · f(v, w) = f(v · (u · v), w) · f(v, u · v) · f(u, v).
(42)

From (39) we infer that

f(u, v · w) · f(v, w) ·∆f(u, v, w) = f(u, v) · f(v · u,w).(43)

Hence (42) can be put into,

f(v, u · (v · w)) · f(v · u,w) = f(v · (u · v), w) · f(v, u · v) ·∆f(u, v, w).(44)

However,

u · (v · w) = (u · v) · `(u, v)w(45)

and

f(v · u,w) = f(`(u, v)(v · u), `(u, v)w) = f(u · v, `(u, v)w),(46)

since M is a gyrocommutative gyrogroup and (38) holds. Consequently, (44)
can be rewritten as,

(47) f(x, (y · x) · `(y, x)z) · f(y · x, `(y, x)z)
= f(x · (y · x), z) · f(x, y · x) ·∆f(y, x, z).

We simplify (47) further by means of (43) applied to the left-hand side of
(47) with u = x, v = y · x and w = `(y, x)z . The result is,

(48) f((y · x) · x, `(y, x)z)
= f(x · (y · x), z) ·∆f(y, x, z) ·∆f(x, y · x, `(y, x)z).

Finally, we observe that

f(x · (y · x), z) = f(`(y, x)`(x, y · x)((y · x) · x), `(y, x)z)(49)

= f((y · x) · x, `(y, x)z),
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where the last inference is based on the identity,

`(y, x)`(x, y · x) = `(y, x)`(x, y) = idM ,(50)

satisfied in any gyrocommutative gyrogroup M (see [16], [14]). Feeding (49)
back into (48) reduces (48) to a desired form of (41). It is clear that an
outlined process of inference of (41) from (27) can be reversed. Therefore
(41) and (27) are indeed equivalent. �

Before we discuss BA-extensions, we need an identity.

Lemma 14. Let M be a gyrocommutative gyrogroup and E = (G,M, f) an
invariant central B-extension. Then,

f((a · b)−1, a · (b · c)) · f(b · a, c) = f(a · b, (a · b)−1).(51)

Proof. We employ (42) with v = (a · b)−1, u = a · b and w = (a · b) · `(a, b)c.
That leads to,

f((a · b)−1, (a · b) · `(a, b)c) · f(a · b, `(a, b)c) = f(a · b, (a · b)−1).(52)

However,

f((a · b)−1, (a · b) · `(a, b)c) = f((a · b)−1, a · (b · c)),(53)

and

f(a · b, `(a, b)c) = f(`(a, b)(b · a), `(a, b)c) = f(b · a, c).(54)

Feeding (53) and (54) back into (52) one arrives at (51). �

Now we prove this Lemma.

Lemma 15. Let Φ : M → G be a homomorphism of a loop M into a group
G. Then for all x, y, z ∈M ,

Φ(`(x, y)z) = Φ(z).(55)

Proof. Indeed,

Φ(x · (y · z)) = Φ(x) · Φ(y) · Φ(z)(56)

and

Φ(x · (y · z)) = Φ((x · y) · `(x, y)z) = Φ(x) · Φ(y) · Φ(`(x, y)z).(57)

Hence (55) follows. �

Theorem 16. Let M be a gyrocommutative gyrogroup. The central invari-
ant extension E = (G,M, f) is a BA-extension if and only if

∆f(x, y · x, z) ·∆f(y, x, z) = 1(58)

and

∆f(x, y, z · w) = ∆f(x, y, z) ·∆f(x, y, w).(59)
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Proof. Let E be a BA-extension. We show first that the condition (31) of
Proposition 9 implies (59). Indeed, due to (38), (31) reads,

gx,y,z·w = gx,y,z · gx,y,w.(60)

Making use of (39), with u = a, v = b, and w = c in (20), one obtains,

f((a · b)−1, a · b) ·∆f(a, b, c) · ga,b,c = f(b · a, c) · f((a · b)−1, a · (b · c)).
(61)

Employing now (61) and (51) in (60), one arrives at (59). Now, hav-
ing established that, we employ Lemma 15 to prove that (41) implies (58).
Conversely, if E is a central invariant extension and satisfies (58) and (59),
then by Lemma 15 it satisfies (41) as well. Thus E is a B-extension. Conse-
quently, (61) holds and because of (51) it reads ga,b,c = [∆f(a, b, c)]−1. Next,
(59) can be rewritten into (60) which for invariant extensions is (31). �

Theorem 17. Let M be a gyrocommutative gyrogroup. The central invari-
ant extension E = (G,M, f) is a BAI-extension if and only if,

∆f(x, y · x, z) ·∆f(y, x, z) = 1,(62)

∆f(x, y, z · w) = ∆f(x, y, z) ·∆f(x, y, w)(63)

and

f(x, y) ·∆f(y, x, x−1) = f(y, x) ·∆f(x · y, x−1, y−1).(64)

Proof. Due to Theorem 16 it suffices to prove that a central invariant BA-
extension is a BAI-extension if and only if (64) holds. We prove that (64)
is equivalent to (34).

From (43) with u = x−1 · y−1, v = x and w = y, we get,

(65) f(x−1 · y−1, x · y) · f(x, y) ·∆f(x−1 · y−1, x, y)

= f(x−1 · y−1, x) · f(y−1, y).

Next, using (65) and an I-identity for M in (34), one arrives at,

f(x−1, x) ·∆f(x−1 · y−1, x, y) = f(x−1, y−1) · f(x−1 · y−1, x).(66)

Employing again (43), with u = y−1, v = x−1, w = x, we arrive at,

f(y−1, x−1) · f(x−1 · y−1, x) = f(x−1, x) ·∆f(y−1, x−1, x).(67)

Feeding it back into (66) leads to,

f(x−1, y−1) ·∆f(y−1, x−1, x) = f(y−1, x−1) ·∆f(x−1 · y−1, x, y),(68)

which is equivalent to (64). �
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5. Central symmetric and invariant extensions of a
gyrocommutative gyrogroup.

Definition 18. A central extension E = (G,M, f) is called symmetric if,

f(x, y) = f(y, x).(69)

We prove this Proposition.

Proposition 19. Let M be a gyrocommutative gyrogroup and let E =
(G,M, f) be a central, symmetric, invariant, BA-extension. Then, E is
a BAI-extension. In particular,

∆f(z, y, x) = (∆f(x, y, z))−1,(70)

∆f(x, y, y) = 1,(71)

and

∆f(a, b, c) = ∆f(c, a, b) = ∆f(b, c, a).(72)

Proof. We prove (70)-(72) first. In order to prove (70) it suffices to apply
a definition of ∆f, and (69). Next we employ identities, (58) and (59) of
Theorem 16. In particular, in (58) we substitute x = a, y = b/a and z = c.
Since M is a B-loop (even a gyrocommutative gyrogroup), then (see [10],
[13]),

b/a = a−1 · ((a · b) · a−1).(73)

Feeding that back into (58), applying (70) and (59), one arrives at,

∆f(a, b, c) = ∆f(c, a, b) ·∆f(c, a, a−1).(74)

Putting b = 1, one infers that ∆f(c, a, a−1) = 1, which due to (59) is
equivalent to ∆f(c, a, a) = 1. That in turn is equivalent to (71). Now, (74)
reads,

∆f(a, b, c) = ∆f(c, a, b),(75)

which implies (72).
Next, it is not difficult to prove the principal assertion of the Proposition.

Indeed, it suffices to prove the identity (64) of Theorem 17. That identity
is a straightforward consequence of (69), (59) and (70)-(72). �

We close this section with a Theorem.

Theorem 20. Let M be a gyrocommutative gyrogroup and E = (G,M, f) a
symmetric, invariant, BA-extension. E is a BAI-extension if and only if,

∆f(x, y, z · w) = ∆f(x, y, z) ·∆f(x, y, w),(76)

∆f(z, y, x) = (∆f(x, y, z))−1,(77)
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∆f(x, y, y) = 1,(78)

and

∆f(x, y, z) = ∆f(z, x, y) = ∆f(y, z, x).(79)

Proof. Indeed, necessity of these conditions follows from Theorem 16 and
Proposition 19 . Conversely, it is not difficult to infer from them (58).
Thus, according to Theorem 16, E is a BA-extension and by Proposition
19, it is a BAI-extension. �

6. Gyrocommutative gyrogroups determined by Cartan
decompositions of noncompact semisimple Lie algebras.

For definitions of related concepts the reader is referred to [3].
Let g be a noncompact semisimple Lie algebra over R and let g = t + p,

be a Cartan decomposition of g. Then the mapping θ : T + X 7→ T − X,
where T ∈ t and X ∈ p is an involutive automorphism of g.

We say that a pair (G,H) is associated with (g, θ) if G is a connected Lie
group with Lie algebra g and H is a Lie subgroup of G with Lie algebra t.
We shall refer to (G,H) as to a pair of a noncompact type.

Theorem 21 (Helgason [3]). Let (G,H) be a pair of a noncompact type
associated with (g, θ). Then:

(i) There exists an involutive, analytic automorphism Θ of G whose fixed
point set is H and whose differential at the identity of G is θ. In
particular H is closed.

(ii) The mapping ϕ : p×H → G, defined by

ϕ(X,h) = (expX)h(80)

is a diffeomorphism.

Remark 3. According to that Theorem, G = PH, where P = exp p, is an
exact decomposition of G, i.e. any element g ∈ G has a unique representation
g = ph, where p ∈ P and h ∈ H. We refer to those p and h as to P - and
H-factors of g respectively.

Next, there is a natural binary operation ? on P determined by the exact
decomposition of G. Indeed, ∀p1, p2 ∈ P, one defines p1 ? p2 to be a unique
P -factor of p1p2. Thus,

p1p2 = (p1 ? p2)h(p1, p2),(81)

where h(p1, p2) is an H − factor of p1p2. It turns out that this operation
provides a gyrocommutative gyrogroup structure on P . The origins of this
fact can be traced in papers of M. Kikkawa [5]; see also [10], [2] and for the
most recent discussion of the subject, [8]. Notice also that the inverse in the
group G of an element p ∈ P , which we denote by p−1, is an element of P and
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it is the inverse of p in the loop (P, ?). Indeed, 1 = pp−1 = (p?p−1)h(p, p−1).
Consequently, p ? p−1 = 1. The same is true for p−1 ? p.

Theorem 22. Let (G,H) be a pair of a noncompact type associated with
(g, θ), G = PH the corresponding exact decomposition of G and ? a binary
operation on P determined by the decomposition. Then (P, ?) is a smooth
gyrocommutative gyrogroup.

The following fact will be useful in a sequel.

Lemma 23. Let n be a positive integer, n ≥ 2 and p1, . . . , pn ∈ P . Then,

pnpn−1 · · · p2p1 = qnhn,(82)

where qn, hn are elements of P and H respectively, determined recursively
by,

q1 = p1, h1 = 1,(83)

and (see (81)),

qk+1 = pk+1 ? qk, hk+1 = h(pk+1, qk)hk,(84)

for k = 1, . . . , n− 1.

Proof. By induction. For n = 2 it follows from (81). Suppose the assertion
is true for n = m. Take n = m+ 1. Then,

pm+1pm · · · p1 = pm+1qmhm = (pm+1 ? qm)h(pm+1, qm)hm,

where the last equality is inferred from (81). Hence qm+1 = pm+1 ? qm, and
hm+1 = h(pm+1, qm)hm. Thus the assertion is true for n = m+ 1. �

Now we can prove the following Proposition.

Proposition 24. Let (G,H) be a pair of noncompact type associated with
(g, θ), where g is simple. Let G = PH be the corresponding exact decompo-
sition of G. Then, the group G is generated by the set P and the subgroup
H is generated by the set

S = {h(p1, p2) : p1, p2 ∈ P},(85)

in the sense that any element of G or H is a product of a finite number of
elements of P or S respectively.

Proof. Indeed, the homogeneous space G/H of the pair (G,H) is reductive
(see [7], p. 27), because Ad(h)p ⊂ p, for all h ∈ H (see [3]). Then, ([7],
p. 27), l = p + [p, p] is a nontrivial ideal of g and the corresponding connected
normal subgroup of G is generated by the set P = {exp(X) : X ∈ p}.
However, since g is simple l = g and G itself is generated by the set P .

To prove the second part of this Proposition, assume that h ∈ H. Then
according to the first part of the Proposition there exists a finite sequence
p1, . . . , pn of elements of P , such that h = pn · · · p1. Employing Lemma
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23 we infer that h = qnhn, where qn ∈ P, hn ∈ H and hn is a product of
elements from S. Moreover, since G = PH is an exact decomposition, we
must have qn = 1 and h = hn. �

We need yet another definition ([10]).

Definition 25. Let M be a loop. Then its left associant, asl(M) is a sub-
group of the group of left multiplications of M , LMlt(M), generated by the
set, {`(x, y) : x, y ∈M}.

A relation between asl(P ) and H is clarified in the following Proposition.

Proposition 26. Under the assumptions of Proposition 24, the group
asl(P ) is identical to the group of conjugations of P by elements of H.

Proof. Indeed, for all p1, p2, p3 ∈ P,

`(p1, p2)p3 = (p1 ? p2)−1 ? (p1 ? (p2 ? p3)).

However, employing (81) one obtains,

p1p2p3 = (p1 ? (p2 ? p3))h,

(p1 ? p2)−1 = h12p
−1
2 p−1

1 ,

where h, h12 ∈ H and h12 = h(p1, p2) ∈ S. (Concerning the inverses of
elements of P see Remark 3.) Hence,

h12p3 = (p1 ? p2)−1(p1 ? (p2 ? p3))h = [`(p1, p2)p3]h1,

where h1 is yet another element of H.
Consequently, `(p1, p2)p3 = (h12p3h

−1
12 )(h12h

−1
1 ). Since the left-hand side

of the previous equation is an element of P , and the factors of its right-hand
side are in P and H respectively, therefore h12h

−1
1 = 1 and,

`(p1, p2)p3 = h12p3h
−1
12 .

Notice that h12 depends on p1 and p2 only. Therefore `(p1, p2) is indeed
a conjugation of P by h12 ∈ H. Consequently, any element of asl(P ) is a
conjugation of P by an element of H. Conversely, given h ∈ H, it can be
represented as a product of elements of the form h(p, q), where p, q ∈ P, (85).
Therefore a conjugation by h is a product of conjugations by such elements.
Since a conjugation by h(p, q) equals to `(p, q), therefore a conjugation by
h is an element of asl(P ). �

Now we arrive at this result.

Proposition 27. Under the assumptions of Proposition 24, let Φ : P → A,
be a homomorphism of a gyrocommutative gyrogroup P into an abelian group
A. Then there exists a homomorphism Ψ : G→ A, such that Ψ |P = Φ and
for all h ∈ H, Ψ(h) = 1.
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Proof. Indeed, we define the mapping Ψ : G → A by, Ψ(g) = Φ(p) for
all g ∈ G, where p is a unique P -factor of g. Next we verify that Ψ is a
homomorphism. Indeed, for p1, p2 ∈ P and h1, h2 ∈ H, there exists, due to
(81), h ∈ H such that,

p1h1p2h2 = p1p
h1
2 h1h2 = (p1 ? p

h1
2 )h,

where ph1
2 = h1p2h

−1
1 .

Consequently,

Ψ(p1h1p2h2) = Φ(p1 ? p
h1
2 ) = Φ(p1)Φ(ph1

2 ).(86)

However, according to Proposition 26, the conjugation of P by h1 is an
element of asl(P ). Then, employing Lemma 15 we can rewrite (86) into,

Ψ(p1h1p2h2) = Φ(p1)Φ(p2) = Ψ(p1h1)Ψ(p2h2).

�

Finally we point out the following fact.

Proposition 28. Let ψ : g → a, be a homomorphism of a simple Lie algebra
g, with a Cartan decomposition g = t + p, into an abelian Lie algebra a, such
that ψ |t= 0. Then, ψ = 0.

Proof. Indeed, kerψ 6= {0} and kerψ is an ideal of g. But g is simple.
Therefore kerψ = g. �

We arrive now at the main assertion of this section.

Theorem 29. Let (G,H) be a pair of a noncompact type associated with
(g, θ), where g is simple. Let G = PH be the corresponding exact decomposi-
tion of G and ? a binary operation on P determined by that decomposition.
Let E = (A,P, f), where A is an abelian Lie group and f(p, q) a smooth
2-cochain, be a central, invariant extension of P . Then:

(i) E is a BA-extension if and only if ∆f(p, q, r) = 1, for all p, q, r ∈ P .
(ii) E is a BAI-extension if and only if ∆f(p, q, r) = 1 and f(p, q) =

f(q, p), for all p, q ∈ P.

Proof. The conditions (59) of Theorem 16 or (63) of Theorem 17 are crucial.
Indeed, let ∀p, q ∈ P,Φp,q be a mapping of P into A, defined by

Φp,q(r) = ∆f(p, q, r),

for all r ∈ P . Now, if that mapping is a homomorphism of a gyrocommutative
gyrogroup P into a group A, then it can be extended to a homomorphism
Ψp,q of the group G into A such that Ψp,q |P = Φp,q and Ψp,q(h) = 1, for all
h ∈ H (Proposition 27). Ψp,q induces, in turn, a homomorphism ψp,q of Lie
algebras g and a (ψp,q is a differential of Ψp,q at 1 ∈ G). It must be a trivial
homomorphism, by Proposition 28; ∀p, q ∈ P,∀Z ∈ g, ψp,qZ = 0. However,
the group G is generated by elements of the form expZ, where Z ∈ g, and
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Ψp,q(expZ) = expψp,qZ = 1. Thus Ψp,q is itself trivial. Consequently, if
∆f(p, q, r) satisfies (59) of Theorem 16, then ∆f = 1, which already implies
identity (58). Similarly, (63) of Theorem 16, implies ∆f = 1, (62) and
reduces (64) into, f(p, q) = f(q, p).

Conversely, given that ∆f = 1, one infers using Theorem 16 that E is a
BA-extension. Likewise, assuming ∆f = 1 and the identity f(p, q) = f(q, p),
one employs Theorem 17 to infer that E is a BAI-extension. �

Remark 4. The equation, ∆f = 1 (2) has been called in [14] a cocycle
equation. Together with a condition of invariance for a cochain f , they were
employed there to study central extensions of gyrocommutative gyrogroups.
Our slightly more general treatment of central extensions shows that at
least for a class of gyrocommutative gyrogroups discussed in this section
(Theorem 29), a cocycle equation emerges in a natural way. This class
of gyrocommutative gyrogroups is determined by Cartan decompositions of
simple Lie algebras. Many of classical Lie algebras are of that type. (For
their list see [6], Appendix C.) In particular, a gyrocommutative gyrogroup,
which has been one of the main objects studied in ([14]), and which arises
from the pair (SO0(1, n), SO(n)), belongs to that class.

Appendix.

For completeness of presentation we clarify here how the definitions of gy-
rogroup and gyrocommutative gyrogroup used in this paper correspond to
the original ones.

According to [16] a gyrogroup is a grupoid (M, ·) satisfying the following
axioms.

(G1) There is an element 1 ∈M , such that,

1 · x = x,

for all x ∈M.
(G2) For each x ∈M there is an a ∈M such that

a · x = 1.

(G3) For any x, y, z ∈ M there exists a unique element gyr[x, y]z ∈ M
such that

x · (y · z) = (x · y) · gyr[x, y]z.

(G4) If gyr[x, y] denotes the map of M into M , given by z 7→ gyr[x, y]z
then gyr[x, y] ∈ Aut(M, ·).

(G5) For all x, y ∈M

gyr[x, y] = gyr[x · y, y].



CENTRAL EXTENSIONS OF GYROGROUPS 217

From these axioms one can infer (see [16]) that the equation x ·y = z has
a unique solution for x or y, given the other two elements. Thus (M, ·) is a
loop, [11].

Proposition 30. Let (M, ·) be a loop. (M, ·) is a gyrogroup if and only if
it is an A-loop and it is a left Bol loop, [11].

Proof. Indeed, suppose that (M, ·) is a gyrogroup. Then (G3) can be rewrit-
ten into gyr[x, y]z = L−1

x·yLxLyz = `(x, y)z. Hence gyr[x, y] = `(x, y). There-
fore (G3) and (G4) are equivalent to the statement that (M, ·) is an A-
loop. To prove Bol-identity we calculate LxLyLxz = x · (y · (x · z)) =
x · ((y · x) · `(y, x)z) = (x · (y · x)) · `(x, y · x)`(y, x)z. However, (see [16]),
`(x, y · x) = `(x, y) and `(y, x) = (`(x, y))−1. Hence LxLyLx = Lx·(y·x),
which is a Bol identity, (6).

Conversely, let (M, ·) be an A − loop and a Bol loop. Then (G1) −
(G4) hold automatically. It suffices to prove (G5). We obtain, L(x·y)·y =
L(x·y)·(x−1·(x·y)) = Lx·yLx−1Lx·y, where we have employed the fact that for
Bol loops `(x, x−1) = `(x−1, x) = Lx−1Lx = idM , [11]. Therefore
L−1

(x·y)·yLx·yLy = L−1
x·yL

−1
x−1L

−1
x·yLx·yLy = L−1

x·yLxLy, which is equivalent to
`(x · y, y) = `(x, y), which is (G5). �

Now, according to [16], (M, ·) is a gyrocommutative gyrogroup if it is a
gyrogroup, which satisfies an additional axiom,

(G6) x · y = gyr[x, y](y · x).
As it has been indicated in [16], this identity in a gyrogroup is equivalent

to an inverse automorphic identity, (8).
Therefore the following is true.

Proposition 31. Let (M, ·) be a loop. (M, ·) is a gyrocommutative gyro-
group if and only if it is an A-loop, a left Bol loop and it satisfies an inverse
automorphic identity.
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