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It is shown that the local solution of parabolic equation
with nonlocal boundary condition representing entropy can
be extended to whole time domain for weights with large L1

norms. When the weight is identically zero on some part
of the boundary, it is shown that the boundary values can
decrease even when the other weights are some large.

1. Introduction.

This paper is concerned with the investigation of large time behavior of
solutions to parabolic initial value problem subject to nonlocal boundary
condition which describes the entropy in a quasi-static theory of thermoe-
lasticity, namely,

ut(x, t) = ∆u(x, t) + µu, (x, t) ∈ Ω× (0, T ),

u(z, t) =
∫

Ω
f(z, y)u(y, t) dy, z ∈ ∂Ω, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where u0(x) are assumed to be continuous on Ω and µ is a constant. The
function f(z, y) is defined for z ∈ ∂Ω and y ∈ Ω and continuous functions
in y ∈ Ω for each z ∈ ∂Ω. Since for each z ∈ ∂Ω, f(z, y) plays the weight
of integration in (1.1), the function f(z, y) is called weights throughout this
paper. Denote DT = Ω × (0, T ) and DT ∪ ΓT = Ω × [0, T ). The variable
z stands for a generic point of boundary ∂Ω. The large time behavior
of the solution u to Problem (1.1) is studied by taking an upper bound
for u in Section 2. It is shown that the solution of Problem (1.1) with
large weights f(z, ·) for each z ∈ ∂Ω has an exponential lower bound in
Section 3. Moreover, it is shown that the difference between maximum and
minimum value on the boundary ∂Ω can decrease if the weights are zero
on a nonempty subset of ∂Ω in z and zero on the boundary in y, that is,
f(z, y) = 0, z ∈ Γ ⊂ ∂Ω for all y ∈ Ω and f(z, y) = 0, y ∈ ∂Ω.
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A function u(x, t) is called a subsolution of Problem (1.1) on DT if u ∈
C2,1(DT ) ∩ C(DT ∪ ΓT ) satisfies

ut ≤ ∆u + µu on DT ,

u(z, t) ≤
∫ 1

0
f(z, y)u(y, t) dy, z ∈ ∂Ω, 0 < t < T,

u(x, 0) ≤ u0(x), x ∈ Ω.

(1.2)

A supersolution is defined by reversing inequalities in (1.2). Using the no-
tions of super and subsolution, we state the following:

Theorem 1.1. Comparison principle: Let f(z, y) be nonnegative and con-
tinuous in y on Ω for each z ∈ ∂Ω. Let also u and v be subsolution and
supersolution of Problem (1.1), respectively, and u(x, 0) < v(x, 0) for x ∈ Ω.
Then

u < v in DT .

As a corollary, u0(x) > 0(< 0) implies u(x, t) > 0(< 0). Moreover, the
local existence and uniqueness can be written as:

Theorem 1.2. Let u0 in (1.1) be continuous. Then for a small T , there is
a unique solution of Problem (1.1) in C2,1(DT ) ∩ C(DT ∪ ΓT ).

For the proofs of the comparison principle and the local existence theorem,
see [4]. Here one can see that the results hold without any restriction to
constant µ in the parabolic equation in (1.1). In this paper, we are only
interested in the positive solutions of Problem (1.1), and hence we assume
that u0 > 0. Throughout this paper, L1 and L2 norm of a function on Ω is
denoted by ‖ · ‖1 and ‖ · ‖2, respectively.

2. Global existence.

Under the convexity assumption on the domain Ω and the following assump-
tions on the weights;

‖f(z, ·)‖1 < 1 for each z ∈ ∂Ω,(2.1)

it was known ([3]) that the maximum modulus maxx∈Ω |v(x, t)| of solution
v to the parabolic equation,

vt = ∆v + νv, ν ≤ 0,

subject to the nonlocal boundary conditions in (1.1) decreases, moreover, it
was shown the exponential decay of the solution; there are some constants
c1 and γ > 0 such that

max
x∈Ω

|v(x, t)| ≤ c1e
−γt.(2.2)
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On the other hand, the author of [2] set up an example of one dimensional
problem with µ = 0 and weights that violate (2.1), such that its maximum
modulus of solution increases exponentially. In this paper, basic assumption
on the weights is that

f(z, y) ≥ 0 for y ∈ Ω,

for each z ∈ ∂Ω. One of the main concern is to find an upper bound of
solutions in (1.2) with nonnegative weights in the integrals of boundary
conditions which guarantees the global existence. For Problem (1.1) with
arbitrary nonnegative weights, the author could not find other results about
global existence. For convenience, let the domain Ω = {x = (x1, x2) ∈ R2 :
|x| < 1}. The results derived here can be extended to higher dimension
without difficulties.

Theorem 2.1. For the solution u to Problem (1.1) with nonnegative
weights f , there is a sufficiently smooth function S(x, t) such that

u(x, t) < S(x, t), t > 0.(2.3)

The choice of the function S(x, t) depends on the weights and supx∈Ω u0(x).

Proof. Let S = p + q with p and q such that

p(x, t) = Aeκt+a(r−1) and q(x, t) = Aeκt−a(r+1), x ∈ Ω, t > 0,(2.4)

where r = |x| =
(
x2

1 + x2
2

)1/2. The positive constants A, a and κ will be
chosen later. Then p and q satisfy

p(z, t) = Aeκt, q(z, t) = Aeκte−2a for each z ∈ ∂Ω,

‖p(·, t)‖2 =
√

2π

(
1
2a

− 1
4a2

+
e−2a

4a2

)1/2

Aeκt,

‖q(·, t)‖2 =
√

2π

{
e−2a

4a2
−

(
1
2a

+
1

4a2

)
e−4a

}1/2

Aeκt.

If a satisfies

√
2π

{(
1 + 2a

4a2

)1/2

+
(

1
2a

)1/2
}

max
z∈∂Ω

{‖f(z, ·)‖2} ≤ 1,(2.5)

then one has

{‖p(·, t)‖2 + ‖q(·, t)‖2} ‖f(z, ·)‖2 < Aeκt for each z ∈ ∂Ω.(2.6)
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Note that
∂S

∂r
(0, t) = 0, t > 0,

ar−1
{

ea(r−1) − e−a(r+1)
}
≤ ar−1ea(r−1),

lim
r→0

{
ar−1ea(r−1)

}
= a2e−a,

ea(r−1) + e−a(r+1) ≥ 2e−a.

Since ar−1ea(r−1) is decreasing for r < 1/a and increasing for r > 1/a, one
has ar−1ea(r−1) ≤ max{a2e−a, a}. Choose the constant a so large that (2.5)
holds and,

a2e−a < a, ar−1ea(r−1) ≤ a,

and take an integer k ≥ 2 so that 2ake−a > a. Now let

κ ≥ a2 + ak + µ.

Then, by the choice of κ, k and a, we see that S = p + q satisfies

St = κS

≥ akS + a2S + µS

= Aeκtak
{

ea(r−1) + e−a(r+1)
}

+ a2S + µS

≥ Aeκtak(2e−a) + a2S + µS

≥ Aeκta + a2S + µS

≥ Aeκtar−1ea(r−1) + a2S + µS

≥ Aeκtar−1
(
ea(r−1) − e−a(r+1)

)
+ a2S + µS

= r−1 ∂S

∂r
+

∂2S

∂r2
+ µS

= ∆S + µS on DT ,

and by the inequality (2.6), we obtain for z ∈ ∂Ω,

S(z, t) = p(z, t) + q(z, t) = A
(
eκt + eκte−2a

)
> Aeκt

> ‖f(z, ·)‖2(‖p(·, t)‖2 + ‖q(·, t)‖2)

≥
∫

Ω
f(z, y)(p + q) dy

=
∫

Ω
f(z, y)S(y, t) dy, 0 < t < T.
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Note that above inequalities hold for arbitrary positive constant A. After
choosing a and κ, let A satisfy 2Ae−a > supx∈Ω u0(x). Then one has

S(x, 0) = A
{

ea(r−1)+e−a(r+1)
}
≥ sup

x∈Ω

u0(x).

Hence S(x, t) is a supersolution to (1.1), and thus inequality (2.3) holds by
Theorem 1.1. �

By Theorem 2.1, we have a supersolution for any T > 0. Hence the local
solution u on DT from Theorem 1.2 is bounded in DT for arbitrary T > 0,
and thus u can be extended to the whole time domain.

3. Decreasing property of boundary values.

In this section, boundary behavior of the solution to Problem (1.1) is studied.
The difference of largest and smallest boundary values grows exponentially
(inequality (3.4)). When the weights are identically zero on some part of
boundary, it is shown that the difference can be nonincreasing in Theorem
3.2.

From now on, it is assumed that µ ≥ 0. A lower bound of the solution of
Problem (1.1) with weights satisfying for each z ∈ ∂Ω,

f(z, y) ≥ 0, y ∈ Ω and ‖f(z, ·)‖1 > 1,(3.1)

can be obtained by the following Theorem:

Theorem 3.1. If µ ≥ 0 and u is a solution to Problem (1.1) and the weight
f satisfies (3.1), then there are positive constants c2 and γ such that

u(x, t) ≥ c2e
γt on DT .(3.2)

Proof. Let v = u−1, where u is the positive solution to Problem (1.1). By
denoting F (z) = ‖f(z, ·)‖1, we see that for arbitrary T > 0,

vt = u−2 (−∆u− µu)

= ∆v − 2
|∇u|2

u3
− µv

≤ ∆v − µv on DT ,

and for t > 0,

v(z, t) =
(∫

Ω
f(z, y)u(y, t) dy

)−1

≤ F−1(z)
∫

Ω

f(z, y)
F (z)

u−1(y, t) dy.
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Since ‖f(z, ·)‖1/F 2(z) < 1 for each z ∈ ∂Ω and µ ≥ 0, one has v ≤ c1e
−γt

for some positive constants c1 and γ by (2.2) and Theorem 1.1. Therefore,
the solution u to Problem (1.1) satisfies (3.2) with c2 = c−1

1 . �

For weights satisfying (3.1), consider maximum and minimum of bound-
ary values;

M(t) = max
z∈∂Ω

u(z, t), m(t) = min
z∈∂Ω

u(z, t).

Let M(t) = u(α, t),m(t) = u(β, t) for some α, β ∈ ∂Ω. Then, if

f(α, y) > f(β, y) for each y ∈ Ω,(3.3)

the difference δ(t) = M(t)−N(t) satisfies

δ(t) =
∫

Ω
{f(α, y)− f(β, y)}u(y, t) dy

≥ c{‖f(α, ·)‖1 − ‖f(β, ·)‖1}eγt,

(3.4)

for some positive constant c by Theorem 3.1. Hence the difference of the
boundary values become exponentially large if (3.1) and (3.3) are satisfied.

This increasing property fails when some weights are identically zero, that
is, for some nonempty set Γ ⊂ ∂Ω, f(z, ·) ≡ 0 for z ∈ Γ. To see this, assume
that, for each z ∈ ∂Ω, f(z, y) ∈ C2

y (Ω) and that

f(z, y) ≡ 0 for each z ∈ ∂Ω, y ∈ ∂Ω.(3.5)

By the assumption (3.5) and using integration by parts, we see that, for
ξ ∈ Γc,

du(ξ, t)
dt

= −
∫

∂Ω
∇nf(ξ, ω)u(ω, t) dω +

∫
Ω
{∆yf(ξ, y) + µf(ξ, y)}u(y, t) dy

=
∫

Ω

[
∆yf(ξ, y) + µf(ξ, y)−

∫
∂Ω

f(ω, y)∇nf(ξ, ω) dω

]
u(y, t) dy

=
∫

Ω
Iξ(f ; y)u(y, t) dy.

(3.6)

Therefore, if Iξ(f ; y) ≥ 0 for each y ∈ Ω, then the boundary value u(ξ, t)
increases, and if Iξ(f ; y) ≤ 0, then the boundary value decreases. Since we
are interested in the weights for which the value u(ξ, t) decreases, consider
the nonnegative function g on Ω such that

∆g = λg in Ω,(3.7)

and

g = 0 on ∂Ω.(3.8)
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Define the characteristic function on ∂Ω = Γ ∪ Γc by

χ(z) =
{

0 for z ∈ Γ
1 for z ∈ Γc,

(3.9)

and let

h(z, y) = χ(z)g(y).(3.10)

Theorem 3.2. If Γ is sufficiently large in the sense that∫
Γ
∇ng(ω) dω is sufficiently large,(3.11)

then, for sufficiently small µ ≥ 0, the boundary values of the solution to
Problem (1.1) with weights given by (3.10) are nonincreasing.

Proof. For ξ ∈ ∂Ω, Iξ(h, y) satisfies

Iξ(h; y) = χ(ξ)∆g(y) + µχ(ξ)g(y)−
∫

∂Ω
χ(ω)χ(ξ)g(y)∇ng(ω) dω

= χ(ξ)∆g(y) + µχ(ξ)g(y)− χ(ξ)
∫

Γc

g(y)∇ng(ω) dω

= χ(ξ)
{

λ + µ−
∫

Γc

∇ng(ω) dω

}
g(y).

(3.12)

If the nonnegative constant µ is sufficiently small, then we can set Iξ(h; y)
as nonpositive by taking Γ as sufficiently large in the sense of (3.11) while
‖h(z, ·)‖1 are large for z ∈ Γc. This can be done because the eigenvalue
λ is fixed negative number and g is a smooth function. Therefore, by the
identities (3.6), we get the conclusion. �

On the other hand, since g(y) is nonnegative for every y ∈ Ω, ∇ng(ω) in
(3.12) is nonpositive. Thus, if

µ > −λ,

then Iξ(h; y) > 0 on arbitrary proper subset Γc of ∂Ω. Therefore, u(ξ, t) is
increasing for ξ ∈ Γc.
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