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Let F : M3 ↪→ R5 be an embedding of an (oriented) Z2-
homology 3-sphere M3 in R5. Then F bounds an embedding
of an oriented manifold W 4 in R5. It is well known that the
signature σ(W 4) of W 4 is equal to the µ-invariant of M3 mod-
ulo 16. In this paper we prove that σ(W 4) itself completely
determines the regular homotopy class of F .

1. Introduction.

Let Imm[X, Y ] be the set of regular homotopy classes of immersions of a
manifold X in a manifold Y , and Emb[X, Y ] denote the subset of Imm[X, Y ]
consisting of all regular homotopy classes containing an embedding. Smale
[6] has given a 1-1 correspondence (the Smale invariant) s : Imm[Sn,RN ] →
πn(VN,n), where VN,n is the Stiefel manifold of all n-frames in RN . Hirsch
[2] has generalized this to the case of immersions of an arbitrary manifold
in an arbitrary manifold. These results solve the problem of the number of
regular homotopy classes in terms of homotopy theory, but do not succeed
in finding representatives for each class or determining which classes are
represented by an embedding.

According to Hughes [4], Imm[Sn,RN ] has a group structure under con-
nected sum and the Smale invariant actually gives a group isomorphism. [4]
gives explicit generators of Imm[S3,R4] and Imm[S3,R5].

Hughes-Melvin [5] determine which classes of Imm[Sn,Rn+2] are repre-
sented by an embedding, and prove that Emb[Sn,Rn+2] is isomorphic to
Z if n ≡ 3 mod 4, and to 0 otherwise. Furthermore, [5] proves that the
regular homotopy class of an embedding Sn ↪→ Rn+2(n ≡ 3 mod 4) can be
completely determined by the signature of its oriented “Seifert” manifold.
For example, in the case n = 3, we have the following diagram:

s : Imm[S3,R5] ≈−→ π3(V5,3) ≈ Z
∪ ∪

Emb[S3,R5] ≈−→ 24Z
f 7−→ −3

2σ(V 4)

where V 4 is an oriented Seifert manifold for f .
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This implies that there exist many n-knots which cannot be transformed
to the standard embedding even through a smooth deformation admitting
self-intersections (n ≡ 3 mod 4).

The purpose of this paper is to prove a similar statement for embeddings
of Z2-homology 3-spheres in R5. More precisely we prove that the regu-
lar homotopy class of an embedding of a Z2-homology 3-sphere in R5 is
completely determined by the signature of its oriented Seifert manifold.

Throughout this paper, manifolds and immersions are of class C∞. The
symbol “≈” denotes an appropriate isomorphism betweeen algebraic objects;
“∼” and “∼r” mean respectively “homotopic” and “regularly homotopic”.
We often do not distinguish between an immersion f and its regular homo-
topy class, both of which we denote by f .

The author is much grateful to Professor Yukio Matsumoto for his valu-
able advice and encouragement.

2. Preliminaries.

We recall some results of [9]. Let Mn be a parallelizable n-manifold, and
f : Mn # RN be an immersion. Fix a trivialization TM ∼= Mn ×Rn; we
can associate to f a map df : Mn → VN,n from Mn to the Stiefel manifold
VN,n, where VN,n is identified with the set of all injective linear maps from
Rn to RN . df is essentially the differential of f . By Hirsch’s theorem [2],
the correspondence f 7→ df gives a bijection between Imm[Mn,RN ] and the
homotopy set [Mn, VN,n]. Every oriented 3-manifold M3 is parallelizable, so
Imm[M3,R5] ≈ [M3, V5,3].

We now study the set [M3, V5,3]. Since V5,3 is simply connected, we can
make use of the results of Whitney [8]. Let πi = πi(V5,3), then π1 = 0,
π2 ≈ π3 ≈ Z. Therefore we must consider the secondary difference.

Identify π2 and π3 with Z in the same way as [9, Proof of Theorem 2]. For
a map ξ : M3 → V5,3 we can suppose ξ(M (1)) = p ∈ V5,3 because π1 = 0, (p
is a point in V5,3 and M (q) denotes the q-skeleton of M). So we can consider
the difference 2-cochain between ξ and the constant map to the point p.
Since ξ is defined over M3, this 2-cochain is actually a 2-cocycle. Let C2

ξ

denote its cohomology class in H2(M3;Z).
Next, for two maps ξ, η : M3 → V5,3 with ξ|M (2) ∼ η|M (2), denote by

∆3
ξ,η the difference 3-cochain.
The following is an application of [8, Theorem 8A] to our special case of

mappings of M3 in V5,3 (see also [9, proof of Theorem 2]).

Lemma 2.1 ([8, Theorem 8A], [9, Theorem 2]). Two maps ξ, η : M3 →
V5,3 are homotopic if and only if

(a) C2
ξ = C2

η ∈ H2(M3;Z).
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(b) There is a 1-cocycle X1 and a 2-cochain Y 2 such that ∆3
ξ,η = 4X1 ∪

C2
ξ + δY 2.

3. Main results.

Let M3 be a closed oriented 3-manifold. Let D3 be the 3-disk, which from
now on we will often identify with the northern hemisphere of the 3-sphere
S3. Fix an inclusion D3 ⊂ M3, and put M0 = M3 − intD3. Suppose
F0 : M3 ↪→ R5 is an embedding such that F0|D3 coincides with the northern
part of the standard embedding S3 ⊂ R5. For an immersion f : S3 # R5,
we can assume f |(the southern hemisphere) is standard, so define the map

]F0 : Imm[S3,R5] −→ Imm[M3,R5]
f 7−→ F0]f

where (F0]f)|M0 = F0|M0, and (F0]f)|D3 = f |D3. The normal bundle of
F0 is trivial and if F0 is altered on D3 its normal bundle does not change.
So we can in fact define the map

]F0 : Imm[S3,R5] −→ Imm[M3,R5]0
where Imm[M3,R5]0 is the subset of Imm[M3,R5] consisting of all regu-
lar homotopy classes of immersions with trivial normal bundle. Note that
Emb[M3,R5] ⊂ Imm[M3,R5]0.

Proposition 3.1. If H2(M3;Z) has no elements of even order, then

]F0 : Imm[S3,R5] −→ Imm[M3,R5]0
is bijective.

Proof. Let νF be the normal bundle of an immersion F : M3 # R5. Since
there is the bundle map

νF −→ V5,5

↓ ↓
M3 dF−→ V5,3

and since the Euler class of the S1-bundle V5,5 → V5,3 is equal to 2Σ2 for a
generator Σ2 ∈ H2(V5,3;Z) ≈ Z, we have

νF is trivial,
⇔ the normal Euler class of F (denoted by χF ) is zero,
⇔ dF

∗(2χF ) = 2dF
∗(χF ) = 0,

⇔ 2C2
dF

= 0,
⇔ C2

dF
= 0.

Therefore, Imm[M3
0 ,R5]0 ≈ H3(M0;Z) = 0 by [9, Theorem 2]. This means

that ]F0 is surjective from the covering homotopy property for immersion
spaces (see [7]).
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We next prove the injectivity. For two immersions f, g : S3 # R5, by
Lemma 2.1,

F0]f ∼r F0]g,
⇔ d(F0]f) ∼ d(F0]g),
⇔ ∆3

d(F0]f),d(F0]g)
is a coboundary.

If we consider D3 as a 3-cell, ∆3
d(F0]f),d(F0]g)

is a 3-cochain which assigns

s(f)− s(g) ∈ π3(V5,3) to D3, and 0 ∈ π3(V5,3) to other 3-cells by definition.
So clearly

∆3
d(F0]f),d(F0]g)

is a coboundary,
⇔ s(f) = s(g) ∈ π3(V5,3),
⇔ f ∼r g : S3 → R5.

This completes the proof. �

Remark 3.2. We already know, by a result of Wu ([9, Theorem 2]), that
for a closed oriented 3-manifold M3, Imm[M3,R5]0 ≈ Z t · · · t Z, i.e.,
the disjoint union of as many copies of Z as the number of elements c ∈
H2(M3;Z) with 2c = 0. In particular, in our case where H2(M3;Z) has no
elements of even order, this implies that Imm[M3,R5]0 ≈ Z.

We now investigate ]F0 restricted to Emb[M3,R5]. We want to show that
]F0 gives a bijection between Emb[S3,R5] and Emb[M3,R5].

Theorem 3.3. If H1(M3;Z2) = 0, then

]F0 : Emb[S3,R5] −→ Emb[M3,R5]

is bijective.

Furthermore, under the identification Imm[M3,R5]0
Prop. 3.1

≈ Imm[S3,R5]
Smale inv.

≈ Z,

Emb[M3,R5] ≈ 24Z
F 7−→ 3

2(σ(W 4
F )− σ(W 4

F0
))

where W 4
F stands for an oriented Seifert manifold for F , and σ(W 4

F ) is its
signature.

Proof. Extend the embedding F0 : M3 ↪→ R5 to an embedding F0 : W 4
F0

↪→
R5. Take a suitable neighbourhood of M3 in W 4

F0
diffeomorphic to M3 ×

[0, 1), and further extend F0 to an embedding (denoted again by F0)

F0 : W 4
F0

∪
M×{0}

M3 × (−1, 0] ↪→ R5.

Let F : M3 ↪→ R5 be an embedding, and extend F to

F : W 4
F ∪

M×{0}
M3 × (−1, 0] ↪→ R5.
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in the same way as above.
Take a neighbourhood M ′

0 of M0 in M3. Since M ′
0 × (−1, 1) is paralleliz-

able,

Imm[M ′
0 × (−1, 1),R5] ≈ [M ′

0 × (−1, 1), V5,4] ≈ [M0, SO(5)].

And it follows by obstruction theory that Imm[M ′
0 × (−1, 1),R5] ≈

[M0, SO(5)] consists of a unique element, because π2(SO(5)) = 0,
H3(M0;π3(SO(5)))=0, and H1(M0;π1(SO(5))) ≈ H1(M3;Z2)=0. There-
fore we can alter F by a regular homotopy (we use again the letter F to
represent the resulting immersion) so that

F |(M ′
0 × (−1, 1))(x, t) = F0|(M ′

0 × (−1, 1))(x,−t), (x, t) ∈ M ′
0 × (−1, 1).

Consider the manifold V 4
F = W 4

F0
∪

M0×{0}
W 4

F (the orientation of V 4
F is

taken to be in accord with the one of W 4
F0

), whose boundary is S3. Using F

and F0, construct a map from V 4
F to R5. This map is an immersion except

on S2 = ∂M0 ⊂ ∂V 4
F . Pushing a neighbourhood of S2 into V 4

F , we have an
immersion G of the whole V 4

F in R5 (Figure 1).

Figure 1.
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Figure 2.

Now clearly F ∼r F0](G|∂V 4
F ) : M3 # R5 (Figure 2). By Proposition

3.1, the regular homotopy class of F depends only on the regular homotopy
class of G|∂V 4

F : S3 # R5. Since [5, Proof of Theorem and Corollary 2]
actually proves that if an immersion f : S3 # R5 bounds an immersion of
an oriented 4-manifold V 4 then s(f) is equal to −3

2σ(V 4), we can see

s
(
G|∂V 4

F

)
= −3

2
σ(V 4

F ) ∈ 24Z,

and G|∂V 4
F ∈ Emb[S3,R5]. Thus, the map ]F0 gives a bijection from

Emb[S3,R5] to Emb[M3,R5]. Therefore, identifying Imm[M3,R5]0
Prop. 3.1
≈

Imm[S3,R5]
Smale inv.

≈ Z, F ∈ Emb[M3,R5] corresponds to 3
2σ(V 4

F ) =
−3

2(σ(W 4
F0

)− σ(W 4
F )) by Novikov additivity. This completes the proof. �

Remark 3.4. We actually proved here that if an immersion F : M3 # R5

bounds an immersion of an oriented 4-manifold W 4
F then F corresponds to

3
2(σ(W 4

F )− σ(W 4
F0

)) under the above identification Imm[M3,R5]0 ≈ Z.

Remark 3.5. Suppose M3 is a Z2-homology sphere. By Theorem 3.3,
we can choose F0 so that σ(W 4

F0
) = µ(M3)′, where µ(M3)′ is the inte-

ger in {0, 1, · · · , 15} representing the µ-invariant µ(M3) ∈ Z/16Z. Let
S : Imm[M3,R5]0 → Z denote the previous identification through this F0,
Imm[M3,R5]0≈Imm[S3,R5]≈Z. Then Theorem 3.3 implies that S(F ) =
3
2(σ(W 4

F )− µ(M3)′) ∈ 24Z if F ∈ Emb[M3,R5].

4. Realizing h-cobordisms in R5.

In this section, we study the following problem. Suppose M1, M2 are
two Z2-homology 3-spheres which are mutually h-cobordant and let Si :
Imm[Mi,R5]0 → Z (i = 1, 2) denote the bijections as in Remark 3.5. Is it
possible to relate S1 to S2?

Let M1, M2 be as above, and V be an h-cobordism between M1 and M2.
Let Fi : Mi ↪→ R5 be embeddings and Wi be oriented Seifert manifolds
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for them (i = 1, 2). Abstractly each Mi bounds a simply connected spin
4-manifold W ′

i of signature σ(W ′
i ) = σ(Wi) (taking a connected sum with

some copies of the ±K3-surface if necessary) (i = 1, 2)(see [3]). Consider
the closed manifold

Y = W ′
1 ∪

M1

V ∪
M2

W ′
2.

Y is a simply connected spin 4-manifold of signature ±(σ(W ′
1) − σ(W ′

2)),
since W ′

1 ∪
M1

V is homotopy equivalent to W ′
1 and since each Mi admits a

unique spin structure. By Cochran [1], Y can embed in R5 if σ(W ′
1) =

σ(W ′
2). Clearly this embedding restricted to each Mi is regularly homotopic

to Fi (i=1,2), using Theorem 3.3.
Conversely, suppose H : V ↪→ R5 is an embedding. H can extend to

an immersion of W1 ∪ V in R5 for a Seifert manifold W1 for H|M1, if the
trivialization of the normal bundle of H|M1 (for the construction of W1) is
suitably chosen. This, together with Theorem 3.3, implies that S1(H|M1) =
S2(H|M2) ∈ Z because σ(W1) = σ(W1 ∪ V ).

Thus, we have:

Proposition 4.1. Let Mi, Si (i = 1, 2) and V be as above. For embeddings
Fi : Mi ↪→ R5 (i = 1, 2), S1(F1) = S2(F2) ∈ Z if and only if there is an
embedding H : V ↪→ R5 with H|Mi ∼r Fi (i = 1, 2) (or equivalently, there
is an immersion H : V # R5 with H|Mi = Fi (i = 1, 2)).
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