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We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of
the Diophantine equation (xn −1)/(x−1) = yq with q prime,
then there exists a prime number p such that p divides x and
q divides p − 1. This allows us to solve completely this Dio-
phantine equation for infinitely many values of x. The proofs
require several different methods in diophantine approxima-
tion together with some heavy computer calculations.

1. Introduction.

A longstanding conjecture claims that the Diophantine equation

(1)
xn − 1
x− 1

= yq in integers x > 1, y > 1, n > 2, q ≥ 2

has finitely many solutions, and, maybe, only those given by

35 − 1
3− 1

= 112,
74 − 1
7− 1

= 202 and
183 − 1
18− 1

= 73.

Among the known results, let us mention that Ljunggren [11] solved (1)
completely when q = 2 and Ljunggren [11] and Nagell [12] when 3|n and
4|n: they proved that in these cases there is no solution, except the previous
ones. For more information and in particular for finiteness type results under
some extra hypotheses, we refer the reader to Shorey & Tijdeman [17], [18]
and to the survey of Shorey [16].

Very recently, some new results have been obtained by Bennett, Bugeaud,
Mignotte, Roy, Saradha and Shorey, and, now, Equation (1) is completely
solved when x is a square (there is no solution in this case [15], [6], [1]),
when x is a power of any integer in the interval {2, . . . , 10} (the only two
solutions are listed above [5]) or, under hypothesis (H) below, when x is
a power of a prime number [5]. In [5] and [6], the proofs require several
different methods in diophantine approximation together with some heavy
computer calculations, one of the main tools being a new lower bound for
linear forms in two p-adic logarithms (see [3]), which applies very well to (1)
and allows us to considerably reduce the time of computation.

In the present work, using the same methods, we show that (1) has no
solution (x, y, n, q) with y ≡ 1 (mod x). As a corollary, we answer a question
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left open by Edgar [7]. Further, we give an irrationnality statement for
Mahler’s numbers, which completes results of [15] and [3].

2. Statement of the results.

First, we warn the reader that the proofs of the results obtained in Le [10]
and in Yu & Le [19] are incorrect. Indeed, they all depend on Lemma 3 of
[10], which is false, see the comment of Yuan Ping-Zhi [20]. The purpose of
the present article is to supply a correct proof of all their claims. However,
we notice that our method is essentially different from theirs.

Theorem 1. Equation (1) has no solution (x, y, n, q) where x and y satisfy
the following hypothesis

(H) Every prime divisor of x also divides y − 1,

except (18, 7, 3, 3). Consequently, for all other solutions (x, y, n, q) of (1)
with q prime, there exists a prime number p such that p divides x and q
divides p− 1.

The last assertion easily follows from the first one. Indeed, let (x, y, n, q)
be a solution of (1), not satisfying (H). Let p be a prime factor of x such that
p does not divide y − 1. Regarding (1) modulo p, we have yq ≡ 1 (mod p).
However, y 6≡ 1 (mod p) and, since q is prime, q must divide p− 1. Conse-
quently, Equation (1) with q ≥ 3 prime implies that x > 2q.

Remark. Saradha and Shorey [15] showed that Equation (1) with (H)
implies that max{x, y, n, q} is bounded by an effectively computable absolute
constant. Further, Theorem 1 was proved for x > 6 × 1019 in [3] and for
x = zt with t ≥ 1 and z = 6, 10 or z prime in [5].

The main tool of the proof of Theorem 1 is a sharp lower bound for
the p-adic distance between two rational numbers, obtained by Bugeaud
[3]. Although this improvement of the estimates of Bugeaud & Laurent [4]
seems to be very slight, it is of great interest for the problem investigated
here. Indeed, it leads to considerably smaller numerical upper bounds, and
allows us to do the numerical computation in a reasonable time. We should
also mention that this tool can be used only when there is a prime factor of
x dividing y − 1.

For fixed coprime rational positive integers a and b, we denote by ordb a
the least positive integer value of t for which at ≡ 1 (mod b). It is known
(cf. [7]) that every solution (x, y, n, q) of (1) with y an odd prime satisfies
n = ordy x, and Edgar [7] asked whether we also have q = ordx y. Using
Theorem 1, we are able to answer positively Edgar’s question.

Theorem 2. Every solution (x, y, n, q) of (1) satisfies q = ordx y.



ON THE DIOPHANTINE EQUATION
xn − 1

x− 1
= yq 259

A problem arising in the theory of finite groups and strongly connected to
Equation (1) is to find prime numbers P and Q and rational integers n ≥ 3
and a ≥ 1 such that (Qn − 1)/(Q − 1) = P a, see e.g., [8]. Our Theorem
1 allows us to prove that the latter equation with a ≥ 2 is not solvable for
Q ∈ {2, 3, 5, 7, 13, 17, 19, 37, 73, 97, . . . }. In order to give a precise statement,
we need first to introduce some notations. Let S1 be the set of all positive
integers greater than 1 and composed only by 2 and by the primes of the
form 2a + 1, for a ≥ 1. We remark that S1 is much bigger than the set
also denoted by S1 in [15]. Let p be a prime number of the form 2a 3b + 1,
with integers a ≥ 0, b > 0 and p 6≡ 55 (mod 63). Thus p ≡ 1, 4, 7 (mod 9),
p 6≡ 1 (mod 7), and when p ≡ 1 (mod 9), we have p 6≡ 6 (mod 7). Let f be
any nonnegative integer satisfying f 6≡ 1, 4 (mod 6) if either p ≡ 1 (mod 9),
p ≡ 3, 4 (mod 7) or p ≡ 4 (mod 9), and f 6≡ 2, 5 (mod 6) if either p ≡
1 (mod 9), p ≡ 2, 5 (mod 7) or p ≡ 7 (mod 9). Let S2 be the set of all
numbers of the form 2f p. Put S3 = S1 ∪S2 and notice that S3 is an infinite
set. The next statement directly follows from Theorem 1. It completes
Corollary 2 of [15] and Corollary 1 of [3]. For its proof, the reader is directed
to [15] and [3].

Corollary 1. Equation (1) has no solution (x, y, n, q), where x = ht, with
h ∈ S3 and t ≥ 1, other than (h, t, y, n, q) = (3, 1, 11, 5, 2), (7, 1, 20, 4, 2) and
(18, 1, 7, 3, 3).

As already mentioned in details in [15], Theorem 1 can be applied to
obtain irrationality statements. Let g ≥ 2 and h ≥ 2 be integers. For any
integer m ≥ 1, we define (m)h = a1 · · · ar to be the sequence of digits of m
written in basis h, i.e., m = a1 hr−1 + · · ·+ ar, with a1 > 0 and 0 ≤ ai < h
for 1 ≤ i ≤ r. For a sequence (ni)i≥1 of nonnegative integers, we put

ah(g) = 0.(gn1)h (gn2)h . . .

and we call Mahler’s numbers the real numbers obtained in this way. It is
known that ah(g) is irrational for any unbounded sequence (ni)i≥1; see the
work of Sander [14] for an account of earlier results in this direction. Sander
also considered the case when (ni)i≥1 is bounded with exactly two elements
occurring infinitely many times, which are called limit points. As mentioned
in [15], his paper contained an incorrect application of a result of Shorey
& Tijdeman [17], hence his Theorem 3 remains unproved. Here, we extend
Corollary 3 of [15] and Theorem 5 of [3] as follows.

Theorem 3. Let (ni)i≥1 be a bounded sequence of nonnegative integers
which is not ultimately periodic and has exactly two limit points N1 < N2.
Let g ≥ 2 and h ≥ 2 be integers such that g 6= 1+h+ . . .+hL−1 for every in-
teger L ≥ 2 if (N1, N2) = (0, 1). Assume also that (N1, N2, g, h) is not equal
to (0, 2, 11, 3), (0, 2, 20, 7), (0, 3, 7, 18) or to (1, 4, 7, 18) and that gN2−N1 is
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not equal to 1 + h whenever gN1 < h. If h ∈ S3, then ah(g) is irrational.

Remark. We point out that all the assumptions imposed in Theorem 3
are necessary. Indeed, if (N1, N2, g, h) is equal to (0, 2, 11, 3), (0, 2, 20, 7),
(0, 3, 7, 18) or to (1, 4, 7, 18), we see that all the digits of gN1 and gN2 with
respect to base h are identically equal to 1 in the first three cases and to 7 in
the last case. Further, if gN1 < h and gN2−N1 = 1 + h, then we write gN2 =
gN1 + gN1 h to see that all the digits of gN1 and gN2 are identically equal to
gN1 with respect to base h. Observe that there are instances, for example
(N1, N2, g, h) = (0, 2, 2, 3), (0, 2, 3, 8), (0, 3, 2, 7), (0, 4, 2, 15), (0, 2, 3, 8), when
the relation gN2−N1 = h + 1 with gN1 < h and h ∈ S3 is satisfied. Finally,
if N0 = 0, N1 = 1 and g = 1 + h + · · · + hL−1 for an integer L ≥ 2, then
the digits of gN1 and gN2 are identically equal to 1. Thus ah(g) is rational
in each of these cases.

3. Auxiliary results.

Our main auxiliary result is a lower bound for the p-adic distance between
two powers of algebraic numbers. Before stating it, we have to introduce
some notation.

Let p be a prime number and denote by vp the p-adic valuation normalized
by vp(p) = 1. Let x1/y1 and x2/y2 be two nonzero rational numbers and
denote by g the smallest positive integer such that

vp

(
(x1/y1)g − 1

)
> 0 and vp

(
(x2/y2)g − 1

)
> 0.

Assume that there exists a real number E such that vp

(
(x1/y1)g−1

)
≥ E >

1/(p− 1). Theorem BU below provides explicit upper bounds for the p-adic
valuation of

Λ =
(

x1

y1

)b1

−
(

x2

y2

)b2

,

where b1 and b2 are positive integers. As in [3], we let A1 > 1, A2 > 1 be
real numbers such that

log Ai ≥ max{log |xi|, log |yi|, E log p}, (i = 1, 2)

and we put

b′ =
b1

log A2
+

b2

log A1
.

Theorem BU. With the above notation, let x1/y1 and x2/y2 be multi-
plicatively independent and assume that either p is odd or v2(x2/y2−1) ≥ 2.
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Then we have the upper estimates

vp(Λ) ≤ 36.1 g

E3 (log p)4
(
max{log b′

+ log(E log p) + 0.4, 6 E log p, 5}
)2 log A1 log A2

and

vp(Λ) ≤ 53.8 g

E3 (log p)4
(
max{log b′

+ log(E log p) + 0.4, 4 E log p, 5}
)2 log A1 log A2.

Proof. This is Theorem 2 of [3]. �

The following lemma is due to Saradha & Shorey [15] and originate in a
work of Le [9]. Its proof uses Skolem’s method.

Lemma 1. Let (x, y, n, q) be a solution of Equation (1) satisfying the hy-
pothesis (H). Then we have

xn+1−2β ≤
(

n + 3
4

)2 (
2 +

4
x

)n−1

q
α q
q−1 ,

where α = n + 1 if q does not divide x, α = 2n if q divides x, and β =
max{1, n/q}.

Proof. This is Lemma 18 of [15]. �

Lemma 2. Let (x, y, n, q) be a solution of Equation (1) satisfying the hy-
pothesis (H) and such that q does not divide x. Then we have x ≤ 2000 if
q = 3 and

x ≤ max{961, 2.1382 q},
if q ≥ 5.

Proof. The case q = 3 follows from Lemma 1. Further, we deduce from the
hypothesis (H) that y ≡ 1 (mod x). Arguing as in the proof of Lemma 19 of
[15], we get n ≥ q +2 and, for q ≥ 5, we conclude exactly as in that lemma,
and obtain the claimed upper bound. �

Lemma 3. Equation (1) has no solution (x, y, n, q) with y ≤ 2n.

Proof. Let (x, y, n, q) be a solution of (1). Recall that a primitive prime
divisor of xn−1 is congruent to 1 modulo n and that there exists a primitive
prime divisor for every odd n (see [13], page 20), which, consequently, is
greater or equal to 2n + 1. If n is even, then n = 2m with m odd, and we
observe that (xm−1)/(x−1) and xm +1 are relatively prime, each having a
primitive prime factor (see [13], page 20). Hence, the lemma is proved. �
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An important tool of our proof is a corollary to the following very deep
result of Bennett [1], which completes an earlier work of Bennett & de Weger
[2].

Theorem BE. If a, b and q are integers with b > a ≥ 1 and q ≥ 3, then
the equation

|axq − byq| = 1
has at most one solution in positive integers (x, y).

Proof. This is Theorem 1.1 of [1]. �

Corollary BE. Equation (1) has no solution (x, y, n, q) with n ≡
1 (mod q) and q ≥ 3.

Proof. This is Corollary 1.2 of [1], and this follows easily from Theorem BE.
Indeed, let (x, y, n, q) be a solution of (1), and assume that for a rational
integer ` we have n = q ` + 1. Then we get x (xl)q − 1 = (x− 1) yq. In view
of Theorem BE, this is impossible, since (1, 1) is a solution of the equation
xXq − (x− 1) Y q = 1. �

4. Proof of Theorem 1.

Let (x, y, n, q) be a solution of (1) satisfying the following assumption

(H) Every prime divisor of x also divides y − 1.

In view of the results of [12], [11] and [5] stated in the beginning of Section 1,
we can suppose that n ≥ 5 and x ≥ 11. Moreover, we can restrict ourselves
to the case when q is an odd prime number. Indeed, if ` is a prime divisor
of q, we observe that (x, yq/`, n, `) is a solution of (1) such that every prime
divisor of x also divides y − 1, hence divides yq/` − 1.

• Sharp absolute upper bound for x and q under the assumption (H).

Our first goal is to obtain an absolute bound for q and for x, which
improves Theorem 4 of [3]. More precisely, we distinguish the cases q divides
x and q does not divide x, and we compute an upper estimate in each case.
We proceed as follows: Firstly, we apply Theorem BU in order to bound q
by a polynomial in log x and, secondly, we deduce from Lemmas 1 and 2
that x is smaller than a polynomial in q.

Application of Theorem BU.

We put

Λ = (1− x)−
(

1
y

)q

= −xn y−q,

and we note that 1−x and 1/y are multiplicatively independent (for a proof,
see [15], below inequality (51)). Let p be a prime factor of x and let α ≥ 1
be such that pα divides x but pα+1 does not. We assume that pα 6= 2, and
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notice that, if 4 divides x, then y ≡ 1 mod 4 and Theorem BU applies with
the prime p = 2.

Since pα divides (y− 1) · yq−1
y−1 and, in view of (H), p divides y− 1, we get

that pα divides y − 1 when q 6= p. If q = p, we infer from yp−1
y−1 ≡ p mod p2

that max{p, pα−1} divides y − 1. Thus, we deduce that, if α ≥ 2, we have
y ≥ x(α−1)/α ≥ x1/2, whence, by xn > yq, we obtain the inequality

(2) n ≥ (q + 1)/2,

which appears to be very useful. Applying Theorem BU and Lemma 3, we
get y ≥ 11 and

vp(Λ) ≤ δ
36.1

α3 (log p)4

(
max

{
log

(
q

log x
+ 0.42

)
+ 0.4,

6 α log p, 5
})2

log y log(x− 1)

and

vp(Λ) ≤ δ
53.8

α3 (log p)4

(
max

{
log

(
q

log x
+ 0.42

)
+ 0.4,

4 α log p, 5
})2

log y log(x− 1),

with δ = 1 if p 6= q or α = 1 and δ = α/(α− 1) if p = q and α ≥ 2.
Further, vp(Λ) = nα and n log x ≥ q log y, thus we get

(3) q ≤ δ max
{

36.1
α2 (log p)2

(
log

(
q

log x
+ 0.42

)
+ 0.4

)2

,

36 · 36.1,
25 · 36.1

α2 (log p)2

}
log2 x

α2 (log p)2

and

(4) q ≤ δ max
{

53.8
α2 (log p)2

(
log

(
q

log x
+ 0.42

)
+ 0.4

)2

,

16 · 53.8,
25 · 53.8

α2 (log p)2

}
log2 x

α2 (log p)2
.

Application of Lemma 1.
If q does not divide x, Lemma 2 provides the upper bound x ≤ 2000 if

q = 3 and, else,

(5) x ≤ max{961, 2.1382q}.
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Assume now that q divides x. If q = 3, an easy calculation leads to
x ≤ 160000. If q ≥ 5 and n ≥ q, it follows from Lemma 1 that

x ≤
(

n + 3
4

) 2q
n(q−2)+q

(
2 +

4
x

) q(n−1)
n(q−2)+q

q
q2

q−1
2n

n(q−2)+q ,

whence

(6) x ≤
(

q + 3
4

) 2
q−1

(
2 +

4
x

) q
q−2

q
2 q2

(q−1)(q−2) ,

and, assuming x ≥ 106 and considering separately the cases q ≥ 800 and
q < 800, we get

(7) x ≤ max
{
1.4× 106, 2.05 q2q2/(q−1)(q−2)

}
.

If q ≥ 5 and n < q, it follows from Lemma 1 that

(8) x ≤
(

n + 3
4

)2/(n−1) (
2 +

4
x

)
q

q
q−1

2n
n−1 .

Since the map q 7→ qq/(q−1) is increasing, we infer from (2) that

x ≤
(

n + 3
4

)2/(n−1) (
2 +

4
x

)
(2n− 1)

n(2n−1)

(n−1)2 ,

and, assuming that n ≤ 400, we get x ≤ 1.4× 106. For n > 400, we deduce
from (8) under the assumption x ≥ 106 the bound

(9) x ≤ 2.05 q
2.005 q
(q−1) .

By (5), (7) and (9), we see that in all cases we have

x ≤ max
{
1.4× 106, 2.1382 q, 2.05 q2.005 q/(q−1), 2.05 q2q2/(q−1)(q−2)

}
,

which implies that x ≤ 1.4 × 106 whenever q ≤ 802 and, since 2.005 ≥
2q/(q − 2) as soon as q ≥ 802, we always have

(10) x ≤ max
{
1.4× 106, 2.05 q2.005 q/(q−1)

}
.

Absolute upper bound for q and for x.
Suppose first that q does not divide x and recall that we have assumed

x ≥ 11. If x 6= 12, then the primary part of x, i.e., the greatest prime
power dividing x, is at least equal to 5. Using (3) with pα replaced by 5 and
noticing that δ = 1, we get

(11) q ≤ max
{

5.39
(

log
(

q

log x
+ 0.42

)
+ 0.4

)2

, 501.8
}

log2 x.
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We make a direct computation in the case x = 12 and combine (11) with
(5) to obtain that, for all x, we have

q ≤ 72000

and, consequently,

(12) x ≤ 154000.

Suppose now that q divides x, whence q2 divides x, as easily seen. We
then use (4) with the prime number p = q and with α ≥ 2. Since δ ≤ 2 and
4 α log 3 ≥ 5, we get

(13) q ≤ 2 max
{

53.8
α2 (log q)2

(
log

(
q

log x
+0.42

)
+0.4

)2

, 860.8
}

log2 x

α2 (log q)2
.

Combining (13) with (10) and replacing α by 2 yields

q ≤ 1901

and

(14) x ≤ 7.76× 106.

• Strategy of the computational part of the proof.

In view of the above discussion, we are left to consider a finite number of
pairs (x, q). It follows from (12) and (14) and from the results of [12], [11]
and [5] that we have to prove that, for given integers 11 ≤ x0 ≤ 7.76×106 and
q0 ≥ 3, there is no solution (x0, y, n, q0) of (1) satisfying hypothesis (H), with
n 6≡ 0 (mod 3) and n 6≡ 0 (mod 4). Furthermore, if such solution exists,
known results on Catalan’s equation imply that n must be odd. Indeed, if
n = 2m, then xm

0 − yq0
1 = −1 for some positive integer y1 dividing y, and

this is impossible since x0 < 1011, by a result of Hyyrö (see [13], pages 261
and 263).

We now describe our algorithm.

Firstly, using (3) or (4), we compute the bound on q obtained for x0. If
this bound is smaller than q0 we have of course nothing to do (in this case,
there is no solution), otherwise we have to work. And to work means:

– to consider the first prime numbers p with p ≡ 1(mod q0) and to work
modulo p,

– for each p, it leads to some conditions on the exponent n of Equa-
tion (1), more precisely it implies that n belongs to some set modulo
p− 1,

– it appears that combining these conditions for several values of p and
using that n 6≡ 0 (mod 3) and n 6≡ 0 (mod 2) yield n ≡ 1(mod q0),
which is excluded by Corollary BE, due to Bennett.
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It remains to describe how we proceed to treat all the pairs (x, q).
We first prove that there is no solution satisfying (H), q ≤ 97, n 6≡

0 (mod 3) and n 6≡ 0 (mod 2). Indeed, we prove a little more, namely that
there is no solution with q ≤ 97 and x less than the bound given by (6).

Secondly, assuming that q ≥ 101 and q divides x, we treat the pairs (x, q)
with

101 ≤ q ≤ 1901, x ≤ 7.76× 106 and q2 divides x.

This can be done very quickly, since there are not many pairs to consider.
Lastly, we are left with pairs (x, q) such that q does not divide x. After

some hundreds of hours of CPU with very fast computers, we could treat
the full range 101 ≤ q ≤ 100000 and x bounded by (5). It appeared that
there is no solution. �

5. Proof of Theorems 2 and 3.

Proof of Theorem 2. Let (x, y, n, q) be a solution of (1) and set k = ordxy.
We have yq ≡ 1 (mod x) and k divides q. Letting q′ = q/k and y′ = yk and
assuming that q′ > 1, we see that (x, y′, n, q′) is also a solution of (1), which
satisfies y′ ≡ 1 (mod x). In view of Theorem 1, this is impossible. Thus
q′ = 1 and k = q, as asserted. �

Proof of Theorem 3. Sander ([14], Theorem 2) proved that ah(g) is irrational
if and only if gN2−N1 6= (htL − 1)/(ht − 1) for every integer L ≥ 1, where
t is given by the inequalities ht−1 ≤ gN1 < ht. As noticed in [15], we have
(N1, N2) = (0, 1) or N2 − N1 ≥ 2. To the first case corresponds the first
condition in the statement of Theorem 3. Now we assume that N2−N1 ≥ 2
and L = 2, i.e., gN2−N1 = ht + 1. We have t ≥ 2 by an assumption
of Theorem 3 and we observe that (g, h, t) = (3, 2, 3) is excluded by the
definition of t. Let p be a prime divisor of N2 −N1. In view of the results
on Catalan equation, N2 − N1 and t are odd and we have p ≥ 5. We re-
write the equation as ht = Gp − 1 with G = g(N2−N1)/p to observe that h
is divisible by a prime number of the form 1 + sp. Thus 1 + sp = 2a + 1 or
1 + sp = 2a3b + 1 since h ∈ S3. This is not possible for p ≥ 5.

Consequently, we have N2 −N1 ≥ 2 and L ≥ 3, whence we deduce from
Corollary 1 that (h, t, g, L, N2−N1) belongs to

{
(3, 1, 11, 5, 2), (7, 1, 20, 4, 2),

(18, 1, 7, 3, 3)
}
, and we conclude by the definition of t. �

Remark. Shorey has pointed out to us that an assumption gN2−N1 6= h+1
whenever gN1 < h should be added in Corollary 3 of [15]. Indeed, observe
that ah(g) is rational if gN2−N1 = h + 1 with gN1 < h.
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