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Let R be a prime ring of characteristic # 2 with a derivation
d # 0, L a noncentral Lie ideal of R such that [d(u),u]™ is
central, for all w € L. We prove that R must satisfy s, the
standard identity in 4 variables. We also examine the case
R is a 2-torsion free semiprime ring and [d([z,y]), [z, y]]™ is
central, for all z,y € R.

Let R be a prime ring and d a nonzero derivation of R. A well known
result of Posner [14] states that if the commutator [d(z),x] € Z(R), the
center of R, for any z € R, then R is commutative.

In [11] C. Lanski generalizes the result of Posner to a Lie ideal. To be
more specific, the statement of Lanski’s theorem is the following:

Theorem ([11, Theorem 2, page 282]). Let R be a prime ring, L a non-
commutative Lie ideal of R and d # 0 a derivation of R. If [d(x),z] € Z(R),
for all x € L, then either R is commutative, or char(R) = 2 and R satisfies
S4, the standard identity in 4 variables.

Here we will examine what happens in case [d(z),z]" € Z(R), for any
x € L, a noncommutative Lie ideal of R and n > 1 a fixed integer.

One cannot expect the same conclusion of Lanski’s theorem as the fol-
lowing example shows:

Example 1. Let R = Ms(F'), the 2 x 2 matrices over a field F', and take
L = R as a noncommutative Lie ideal of R. Since [z,y]?> € Z(R), for all
z,y € R, then also [d(z),z]?> € Z(R), for all z € R.

We will prove that:

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a
noncentral Lie ideal of R, d a nonzero derivation of R such that [d(u),u]” €
Z(R), for any u € L. Then R satisfies sy4.

We will proceed by first proving that:

Lemma 1.1. Let R be a prime ring of characteristic different from 2, L a
noncentral Lie ideal of R, d a nonzero derivation of R, n > 1. If d satisfies
[d(u),u]™ =0, for any u € L, then R is commutative.
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We then examine the case R is a 2-torsion free semiprime ring. The results
we obtain are:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero
derivation of R, n a fized positive integer, U the left Utumi quotient ring of
R and [d([z,y]), [z, y]]" = 0, for any x,y € R. Then there exists a central
idempotent element e of U such that on the direct sum decomposition eU &
(1—e)U, d vanishes identically on eU and the ring (1—e)U is commutative.

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero
derivation of R, n a fized positive integer, U the left Utumi quotient ring
of R and [d([z,y]), [z,y]]" € Z(R), for any x,y € R. Then there exists
a central idempotent e of U such that, on the direct sum decomposition
U=eU®(1—e)U, the derivation d vanishes identically on eU and the ring
(1 —e)U satisfies sy.

1. The case: R prime ring.

In all that follows, unless stated otherwise, R will be a prime ring of char-
acteristic # 2, L a Lie ideal of R, d # 0 a derivation of R and n > 1 a fixed
integer such that [d(x),z]" € Z(R), for all x € L.

For any ring S, Z(S) will denote its center, and [a, b] = ab — ba, [a,b]2 =
[la,b],b], a,b € S. In addition s4 will denote the standard identity in 4
variables.

We will also make frequent use of the following result due to Kharchenko
[8] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-
sided ideal of R. Let f(z1,...,zyn,d(x1,... ,x,)) a differential identity in 7,
that is

flori, ... rp,d(ry), ... ,d(ry)) =0 Yry,...,r, € 1.
One of the following holds:

1) Either d is an inner derivation in ), the Martindale quotient ring of
R, in the sense that there exists ¢ € @ such that d = ad(q) and d(x) =
ad(q) (z) = [g,z], for all z € R, and I satisfies the generalized polynomial
identity

f(rlv cee 5y Ty, [Q7T1]7 cee [q’ Tn]) = 07

2) or I satisfies the generalized polynomial identity

f(xla-" s Tns Y1, - - 7yn):0-

Lemma 1.1. Let R be a prime ring of characteristic different from 2, U
a noncentral Lie ideal of R, d a nonzero derivation of R and n > 1. If
([d(w),u])” =0, for any u € L, then R is commutative.
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Proof. Since we assume that char (R) # 2, by a result of Herstein [6],
L D [I,R], for some I # 0, an ideal of R, and also L is not commuta-
tive. Therefore we will assume throughout that L D [, R]. Without loss of
generality we can assume L = [I, ]].

Hence [d([z,y]), [z,y]]™ = 0, for any =,y € I, then I satisfies the differen-
tial identity

f(a,y,d(x),d(y)) = [[d(z),y] + [z, d(y)], [z, y]]" = 0.

If the derivation d is not inner, by Kharchenko’s theorem [8], I satisfies the
polynomial identity

fl@y.t,2) = [[z,y] + [z, 1], [z, y]]" = 0

and in particular, for z = 0,

([, t], [z, y]]" = 0.

Since the latter is a polynomial identity for I, and so for R too, it is well
known that there exists a field F' such that R and F, satisfy the same
polynomial identities (see [7, page 57, page 89]). Let e;; the matrix unit
with 1 in (i,j)-entry and zero elsewhere. Suppose m > 2. If we choose
T =e11, Yy = e, t = e19, then we get the contradiction

0 = [[e11, e12], [e11, e21]]" = [e12, —e21]™ = (—1)"e11 + €22 # 0.

Therefore m = 1 and so R is commutative.

Let now d be an inner derivation induced by an element A € @, the
Martindale quotient ring of R. Then, for any z,y € I, ([A,[z,y]]2)" = 0.
Since by [2] I and @ satisfy the same generalized polynomial identities, we
have ([A, [z, y]]2)" = 0, for any z,y € . Moreover, since () remains prime
by the primeness of R, replacing R by () we may assume that A € R and
C is just the center of R. Note that R is a centrally closed prime C-algebra
in the present situation [4], i.e., RC' = R. By Martindale’s theorem in [13],
RC (and so R) is a primitive ring which is isomorphic to a dense ring of
linear transformations of a vector space V over a division ring D. Since R
is primitive then there exist a vector space V and the division ring D such
that R is dense of D-linear transformation over V.

Assume first that dimp V > 3.

Step 1.
We want to show that, for any v € V', v and Av are linearly D-dependent.
Since if Av = 0 then {v, Av} is D-dependent, suppose that Av # 0. If v
and Av are D-independent, since dimp V' > 3, then there exists w € V such
that v, Av, w are also linearly independent. By the density of I, there exist
x,y € I such that
zv =0, zAv =w, zw =0

yv =0, yAv =0, yw = w.
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These imply that

[A, [z,y]]av = —v and 0= ([4, [z, y]]2)"v = (=1)"v,

which is a contradiction.
So we can conclude that v are Av are linearly D-dependent, for all v € V.

Step 2.

We show here that there exists b € D such that Av = vb, for any v € V.
Now choose v,w € V linearly independent. Since dimp V' > 3, there exists
u € V such that v,w,u are linearly independent. By Step 1, there exist
Ay, Gy, Ay € D such that

Av = vay, Aw = way,, Au = ua, that is A(v+ w + u) = vay, + way, + uay,.

Moreover A(v 4+ w + u) = (v + W + U)Gy4+u, for a suitable ayiyty € D.
Then 0 = v(aytwtu — v) + WAyt — Q) + U(Aytw+u — ay) and, because
v, w,u are linearly independent, a, = ay = @y = Gy4w+y. This completes
the proof of Step 2.

Let now r € R and v € V. By Step 2, Av = vb,r(Av) = r(vd), and
also A(rv) = (rv)b. Thus 0 = [A, r|v, for any v € V|, that is [4,7]V = 0.
Since V is a left faithful irreducible R-module, [A,r] =0, for all r € R, i.e.,
A € Z(R) and d = 0, which contradicts our hypothesis.

Therefore dimp V must be < 2. In this case R is a simple GPI ring with
1, and so it is a central simple algebra finite dimensional over its center.
From Lemma 2 in [10] it follows that there exists a suitable field F' such
that R C M (F), the ring of all k£ x k matrices over F', and moreover My (F)
satisfies the same generalized polynomial identity of R.

If we assume k > 3, by the same argument as in Steps 1 and 2, we get a
contradiction.

Obviously if £ = 1 then R is commutative. Thus we may assume R C
My (F), where Ms(F) satisfies ([4, [z, y]]2)" = 0.

Since for any a,b € My(F), [a,b> € Z(R) then it follows easily that

2 _ _ | a1n a2

([A, [x,y]]2)? = 0, for any =,y € My(F). Let A = [ ol o } If we
choose = = ej9,y = eg; then we get:

0 4
[A, e11 — 622]2 = |: 4a21 6612 ]
B B o | 16(ai2a21) 0
0= ([A,e11 — ex)2)” = [ 0 16(a12a21) |

Therefore either ajo = 0 or ag; = 0. Without loss of generality we can pick
a1 = 0.
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Now let [z,y] = [e11, €12 + €21] = €12 — e21. In this case we have:
2(@22 — all) —2a91
Aery— _
[A,e12 — ea1]2 [ Z 20y, 2(a11 — ass)

2(age — ai1) —2as; 2 _ 0
—2as; 2(a11 — az)

that is
4(ag)? + 4(a1; — ax)* =0
(a21)* = —(ag2 —ann)® (1).
On the other hand if [z,y] = [e11, e12 — €21] = e12 + €21 then
2(a11 — ag2) —2a1
A, 2=
([ €12 +e2l2) [ 2a21 2(azo —a1)
2
2(a11 — az) —2az; _ 0
2a9; 2(age — ai1)
that is

4(age — a11)® — 4(ag)? =0

(a21)? = (a2 — a1)? (2).
(1) and (2) imply that as; = 0 and a;; = age which means that A is
a central matrix in Ms(F), A € F and d = 0, a contradiction. Therefore
k=1, ie., Ris commutative. [l

Lemma 1.2. Let R = My(F), the ring of k x k matrices over a field F
of characteristic # 2. If ¢ # 0 is a noncentral element of R such that
(lg, [z, y]]2)™ € F, for any x,y € R, then k < 2.

Proof. Suppose k > 3. Let i,j,r be distinct indices and ¢ = > amn€mn,
with a,,, € F. For simplicity we assume that ¢ = 1,5 = 2,r = 3. If we
choose [z,y] = [e12, €23 — e31] = €13 + €32, then

(¢, [z, y]]2 = a21€11 + azie22 — 2a21€33 + E Yn€in + E Omem2
n#l m#2
with v,, 6, € F, and

([a; [, y]]2)" = (a21)"e11 + (a21)"e22 + (—2a21)"e33 + Z Qpein + Z Bmema
n#l m#2

with au,, B € F'. Since by assumption ([g, [z,y]]2)" € F, then o, = B, = 0,
for all m,n, and (a21)"” = (—2a21)" = 0, i.e., a1 = 0. In a similar way we
may conclude that a;; = 0, for any 7 # j. Therefore if k > 3, ¢ is a diagonal
matrix, ¢ = Et asest, with a; € F.

If we show that ¢ is a central matrix, then we get a contradiction to our
assumption and so k must be less or equal than 2.
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Let [x,y] = [eij — €ji, €j;] = €;j + eji. Therefore
9, [z, y]]2 = 2(aii — ajj)ei + 2(aj; — ai)ej;
and
(g [z, yll2)"™ = 2"(ais — ajj)"eii + 2" (aj5 — aii)"ej;.

Since ([g, [z, y]]2)" € F and k > 3, it follows that a; = a;;. Thus ¢ is a
central matrix.

Notice that if n = 1 then by using the same argument and choosing
[x,y] = e12, we get N = [q, [z, y]]o = —2e12¢e12, which has rank 1 and so it
cannot be central in My(F'), with & > 2. This implies that if n = 1 then

k=1, and R must be a commutative field. The proof of Lemma 1.2 is now
complete. O

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a
noncentral Lie ideal of R, d a nonzero derivation of R such that [d(u),u]™ €
Z(R), for any u € L. Then R satisfies sy.

Proof. Let I be the nonzero two-sided ideal of R such that 0 # [I,R] C L
and J be any nonzero two-sided ideal of R. Then V = [I,J%] C L is a
Lie ideal of R. If, for every v € V, [d(v),v]" = 0, by Lemma 1.1, R is
commutative. Otherwise, by our assumptions, J N Z(R) # 0. Let now K
be a nonzero two-sided ideal of Rz, the ring of the central quotients of R.
Since K N R is an ideal of R then K N RN Z(R) # 0, that is K contains an
invertible element in Rz, and so Ry is simple with 1.

Moreover we may assume L = [I,I]. For any z,y € I, [d([z,v]), [z, y]]" €
Z(R), ie.,

[[d([z,y]), [z,y]]",7] =0 for any x € R.

Thus I satisfies the differential identity

[y, r,d(@), d(y) = [[[d(z),y] + [z, d(y)], [z, y]]",r] = 0.
If the derivation is not inner, by [8], I satisfies the polynomial identity
flxyy,roz,t) = [[[t,y] + [z, 2], [z, y]]", ] = 0
and in particular, for z = 0,
[Ht? y]? [:E? y]]n’ 7’] =0.
In this case we know that there exists a field F' such that R and F;, satisfy

the same polynomial identities. Thus [[t,y], [z, y]]" is central in F,,,. Suppose
m > 3 and choose x = e3a,y = e33,t = ea3.

[tvy] = €23, [:va] = —€32
[t y], [z, y]] = —e22 + es3

[[tv y]7 ['Ia y]]n = (_1)n622 + es3 ¢ Z(R)
contrary to our assumptions. This forces m < 2, i.e., R satisfies s4.
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Notice that in the case n = 1, [[¢, y], [z, y]] must be central in F,. But if
m >2and t = e, y = e12, T = ea1, we get the contradiction [[t,y], [z, y]] =
2e12 ¢ Z(R). Therefore m must be equal to 1 and R is commutative.

Now let d be an inner derivation induced by an element A € Q). By
localizing R at Z(R) it follows that ([A, [z, y]]2)" € Z(Rz), for all z,y € Rz.

Since R and Ry satisfy the same polynomial identities, in order to prove
that R satisfies Sy(z1, z2, 3, 24), we may assume that R is simple with 1
and [R,R| C L.

In this case, ([A4, [z,y]]2)" € Z(R), for all z,y € R. Therefore R satisfies
a generalized polynomial identity and it is simple with 1, which implies
that @ = RC = R and R has a minimal right ideal. Thus A € R = Q
and R is simple artinian that is R = Dy, where D is a division ring finite
dimensional over Z(R) [13]. From Lemma 2 in [10] it follows that there
exists a suitable field F' such that R C My(F), the ring of all k x k matrices
over F', and moreover My (F') satisfies the generalized polynomial identity
[([A,[z,y]]2)", 2] = 0. By Lemma 1.2, if n > 2 then k¥ < 2 and R satisfies
s4, also if n =1 then £ = 1 and R must be commutative. O

2. The case: R semiprime ring.

In all that follows R will be a 2-torsion free semiprime ring. We cannot
expect the same conclusion of previous section to hold, as the following
example shows:

Example 2. Let R; be any prime ring not satisfying s4 and Re = Ms(F),
the ring of 2 x 2 matrices over the field F. Let R = R1 ® Rs, d a nonzero
derivation of R such that d = 0 in R;. Consider L = [R, R|. It is a non-
central Lie ideal of R. Let 71,81 € Ry, r2,82 € Ra, u = [(r1,72), (51, $2)]-
Therefore d(u) = (0, d([r2, s2])) and [d(w), u] = (0, [d([r2, s2]), [r2, S2]]). Since
[d([?"g, 82]), [7“2, 82]]2 € Z(RQ), then

[d(w), u)? = (0, [d([r2, 52]), [r2, 52]1)* = (0, [d([ra, 52)), [r2, 52]]*) € Z(R)
but R does not satisfy sq4.

The related object we need to mention is the left Utumi quotient ring U
of R. For basic definitions and preliminary results we refer the reader to [1],
5], [9].

In order to prove the main result of this section we will make use of the
following facts:

Claim 1 ([1, Proposition 2.5.1]). Any derivation of a semiprime ring R
can be uniquely extended to a derivation of its left Utumi quotient ring U,
and so any derivation of R can be defined on the whole U.
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Claim 2 ([3, p. 38]). If R is semiprime then so is its left Utumi quotient
ring. The extended centroid C' of a semiprime ring coincides with the center
of its left Utumi quotient ring.

Claim 3 ([3, p. 42]). Let B be the set of all the idempotents in C, the
extended centroid of R. Assume R is a B-algebra orthogonal complete. For
any maximal ideal P of B, PR forms a minimal prime ideal of R, which is
invariant under any derivation of R.

We will prove the following:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero deri-
vation of R, n a fixed positive integer, U the left Utumi quotient ring of
R and [d([z,y]), [z,y]]" = 0, for any x,y € R. Then there exists a central
idempotent element e of U such that on the direct sum decomposition eU &
(1—e)U, d vanishes identically on eU and the ring (1—e)U is commutative.

Proof. Since R is semiprime, by Claim 2, Z(U) = C, the extended cen-
troid of R, and, by Claim 1, the derivation d can be uniquely extended on
U. Since U and R satisfy the same differential identities (see [12]), then
[d([z,y]), [z,y]]" = 0, for all z,y € U. Let B be the complete boolean
algebra of idempotents in C' and M be any maximal ideal of B.

Since U is a B-algebra orthogonal complete (see [3, p. 42, (2) of Fact
1]), by Claim 3, MU is a prime ideal of U, which is d-invariant. Denote
U = U/MU and d the derivation induced by d on U. For any ,7 € U,
[d([Z,7]), [z,7]]" = 0. In particular U is a prime ring and so, by Lemma 1.1,

d=0in U or U is commutative. This implies that, for any maximal ideal
M of B, d(U) C MU or [U,U] C MU. In any case d(U)[U,U] C MU, for
all M. Therefore d(U)[U,U] C (), MU = 0.

By using the theory of orthogonal completion for semiprime rings (see
[1, Chapter 3]), it follows that there exists a central idempotent element e
in U such that on the direct sum decomposition eU & (1 — e)U, d vanishes
identically on eU and the ring (1 — e)U is commutative. O

]

We come now to our last result:

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero deri-
vation of R, n a fixed positive integer, U the left Utumi quotient ring of
R and [d([z,y]), [z,y]]" € Z(R), for any z,y € R. Then there exists a
central idempotent e of U such that, on the direct sum decomposition U =
eU @ (1 — e)U, the derivation d vanishes identically on eU and the ring
(1 —e)U satisfies sy.
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Proof. By Claim 2, Z(U) = C, and by Claim 1 d can be uniquely defined
on the whole U. Since U and R satisfy the same differential identities, then
[d([x,y]), [z,y]]" € C, for all x,y € U. Let B be the complete boolean alge-
bra of idempotents in C' and M any maximal ideal of B. As already pointed
out in the proof of Theorem 2.1, U is a B-algebra orthogonal complete and
by Claim 3, MU is a prime ideal of U, which is d-invariant. Let d the deriva-
tion induced by d on U = U/MU. Since Z(U) = (C+ MU)/MU = C/MU,
then [d([x,v]), [z,y]]" € (C + MU)/MU, for any x,y € U. Moreover U
is a prime ring, hence we may conclude, by Theorem 1.1, that d = 0 in
U or U satisfies s4. This implies that, for any maximal ideal M of B,
d(U) € MU or sy(x1,22,23,24) C MU, for all z1,x9,23,24 € U. In any
case d(U)sa(x1,x2,23,24) C () MU = 0. From [1, Chapter 3], there ex-
ists a central idempotent element e of U, the left Utumi quotient ring of R,
such that there exists a central idempotent e of U such that d(eU) = 0 and
(1 — e)U satisfies s4. O
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