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Let R be a prime ring of characteristic 6= 2 with a derivation
d 6= 0, L a noncentral Lie ideal of R such that [d(u), u]n is
central, for all u ∈ L. We prove that R must satisfy s4 the
standard identity in 4 variables. We also examine the case
R is a 2-torsion free semiprime ring and [d([x, y]), [x, y]]n is
central, for all x, y ∈ R.

Let R be a prime ring and d a nonzero derivation of R. A well known
result of Posner [14] states that if the commutator [d(x), x] ∈ Z(R), the
center of R, for any x ∈ R, then R is commutative.

In [11] C. Lanski generalizes the result of Posner to a Lie ideal. To be
more specific, the statement of Lanski’s theorem is the following:

Theorem ([11, Theorem 2, page 282]). Let R be a prime ring, L a non-
commutative Lie ideal of R and d 6= 0 a derivation of R. If [d(x), x] ∈ Z(R),
for all x ∈ L, then either R is commutative, or char(R) = 2 and R satisfies
s4, the standard identity in 4 variables.

Here we will examine what happens in case [d(x), x]n ∈ Z(R), for any
x ∈ L, a noncommutative Lie ideal of R and n ≥ 1 a fixed integer.

One cannot expect the same conclusion of Lanski’s theorem as the fol-
lowing example shows:

Example 1. Let R = M2(F ), the 2 × 2 matrices over a field F , and take
L = R as a noncommutative Lie ideal of R. Since [x, y]2 ∈ Z(R), for all
x, y ∈ R, then also [d(x), x]2 ∈ Z(R), for all x ∈ R.

We will prove that:

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a
noncentral Lie ideal of R, d a nonzero derivation of R such that [d(u), u]n ∈
Z(R), for any u ∈ L. Then R satisfies s4.

We will proceed by first proving that:

Lemma 1.1. Let R be a prime ring of characteristic different from 2, L a
noncentral Lie ideal of R, d a nonzero derivation of R, n ≥ 1. If d satisfies
[d(u), u]n = 0, for any u ∈ L, then R is commutative.
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We then examine the case R is a 2-torsion free semiprime ring. The results
we obtain are:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero
derivation of R, n a fixed positive integer, U the left Utumi quotient ring of
R and [d([x, y]), [x, y]]n = 0, for any x, y ∈ R. Then there exists a central
idempotent element e of U such that on the direct sum decomposition eU ⊕
(1−e)U , d vanishes identically on eU and the ring (1−e)U is commutative.

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero
derivation of R, n a fixed positive integer, U the left Utumi quotient ring
of R and [d([x, y]), [x, y]]n ∈ Z(R), for any x, y ∈ R. Then there exists
a central idempotent e of U such that, on the direct sum decomposition
U = eU ⊕ (1− e)U , the derivation d vanishes identically on eU and the ring
(1− e)U satisfies s4.

1. The case: R prime ring.

In all that follows, unless stated otherwise, R will be a prime ring of char-
acteristic 6= 2, L a Lie ideal of R, d 6= 0 a derivation of R and n ≥ 1 a fixed
integer such that [d(x), x]n ∈ Z(R), for all x ∈ L.

For any ring S, Z(S) will denote its center, and [a, b] = ab− ba, [a, b]2 =
[[a, b], b], a, b ∈ S. In addition s4 will denote the standard identity in 4
variables.

We will also make frequent use of the following result due to Kharchenko
[8] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-
sided ideal of R. Let f(x1, . . . , xn, d(x1, . . . , xn)) a differential identity in I,
that is

f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0 ∀r1, . . . , rn ∈ I.

One of the following holds:
1) Either d is an inner derivation in Q, the Martindale quotient ring of

R, in the sense that there exists q ∈ Q such that d = ad(q) and d(x) =
ad(q) (x) = [q, x], for all x ∈ R, and I satisfies the generalized polynomial
identity

f(r1, . . . , rn, [q, r1], . . . , [q, rn]) = 0;

2) or I satisfies the generalized polynomial identity

f(x1, . . . , xn, y1, . . . , yn) = 0.

Lemma 1.1. Let R be a prime ring of characteristic different from 2, U
a noncentral Lie ideal of R, d a nonzero derivation of R and n ≥ 1. If
([d(u), u])n = 0, for any u ∈ L, then R is commutative.
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Proof. Since we assume that char (R) 6= 2, by a result of Herstein [6],
L ⊇ [I,R], for some I 6= 0, an ideal of R, and also L is not commuta-
tive. Therefore we will assume throughout that L ⊇ [I,R]. Without loss of
generality we can assume L = [I, I].

Hence [d([x, y]), [x, y]]n = 0, for any x, y ∈ I, then I satisfies the differen-
tial identity

f(x, y, d(x), d(y)) = [[d(x), y] + [x, d(y)], [x, y]]n = 0.

If the derivation d is not inner, by Kharchenko’s theorem [8], I satisfies the
polynomial identity

f(x, y, t, z) = [[z, y] + [x, t], [x, y]]n = 0

and in particular, for z = 0,

[[x, t], [x, y]]n = 0.

Since the latter is a polynomial identity for I, and so for R too, it is well
known that there exists a field F such that R and Fm satisfy the same
polynomial identities (see [7, page 57, page 89]). Let eij the matrix unit
with 1 in (i,j)-entry and zero elsewhere. Suppose m ≥ 2. If we choose
x = e11, y = e21, t = e12, then we get the contradiction

0 = [[e11, e12], [e11, e21]]n = [e12,−e21]n = (−1)ne11 + e22 6= 0.

Therefore m = 1 and so R is commutative.
Let now d be an inner derivation induced by an element A ∈ Q, the

Martindale quotient ring of R. Then, for any x, y ∈ I, ([A, [x, y]]2)n = 0.
Since by [2] I and Q satisfy the same generalized polynomial identities, we
have ([A, [x, y]]2)n = 0, for any x, y ∈ Q. Moreover, since Q remains prime
by the primeness of R, replacing R by Q we may assume that A ∈ R and
C is just the center of R. Note that R is a centrally closed prime C-algebra
in the present situation [4], i.e., RC = R. By Martindale’s theorem in [13],
RC (and so R) is a primitive ring which is isomorphic to a dense ring of
linear transformations of a vector space V over a division ring D. Since R
is primitive then there exist a vector space V and the division ring D such
that R is dense of D-linear transformation over V .

Assume first that dimD V ≥ 3.

Step 1.
We want to show that, for any v ∈ V , v and Av are linearly D-dependent.
Since if Av = 0 then {v,Av} is D-dependent, suppose that Av 6= 0. If v

and Av are D-independent, since dimD V ≥ 3, then there exists w ∈ V such
that v,Av,w are also linearly independent. By the density of I, there exist
x, y ∈ I such that

xv = 0, xAv = w, xw = v

yv = 0, yAv = 0, yw = w.
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These imply that

[A, [x, y]]2v = −v and 0 = ([A, [x, y]]2)nv = (−1)nv,

which is a contradiction.

So we can conclude that v are Av are linearly D-dependent, for all v ∈ V .

Step 2.
We show here that there exists b ∈ D such that Av = vb, for any v ∈ V .

Now choose v, w ∈ V linearly independent. Since dimD V ≥ 3, there exists
u ∈ V such that v, w, u are linearly independent. By Step 1, there exist
av, aw, au ∈ D such that

Av = vav, Aw = waw, Au = uau that is A(v + w + u) = vav + waw + uau.

Moreover A(v + w + u) = (v + w + u)av+w+u, for a suitable av+w+u ∈ D.
Then 0 = v(av+w+u− av) + w(av+w+u− aw) + u(av+w+u− au) and, because
v, w, u are linearly independent, au = aw = av = av+w+u. This completes
the proof of Step 2.

Let now r ∈ R and v ∈ V . By Step 2, Av = vb, r(Av) = r(vb), and
also A(rv) = (rv)b. Thus 0 = [A, r]v, for any v ∈ V , that is [A, r]V = 0.
Since V is a left faithful irreducible R-module, [A, r] = 0, for all r ∈ R, i.e.,
A ∈ Z(R) and d = 0, which contradicts our hypothesis.

Therefore dimD V must be ≤ 2. In this case R is a simple GPI ring with
1, and so it is a central simple algebra finite dimensional over its center.
From Lemma 2 in [10] it follows that there exists a suitable field F such
that R ⊆ Mk(F ), the ring of all k×k matrices over F , and moreover Mk(F )
satisfies the same generalized polynomial identity of R.

If we assume k ≥ 3, by the same argument as in Steps 1 and 2, we get a
contradiction.

Obviously if k = 1 then R is commutative. Thus we may assume R ⊆
M2(F ), where M2(F ) satisfies ([A, [x, y]]2)n = 0.

Since for any a, b ∈ M2(F ), [a, b]2 ∈ Z(R) then it follows easily that

([A, [x, y]]2)2 = 0, for any x, y ∈ M2(F ). Let A =
[

a11 a12

a21 a22

]
. If we

choose x = e12, y = e21 then we get:

[A, e11 − e22]2 =
[

0 4a12

4a21 0

]

0 = ([A, e11 − e22]2)2 =
[

16(a12a21) 0
0 16(a12a21)

]
.

Therefore either a12 = 0 or a21 = 0. Without loss of generality we can pick
a12 = 0.
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Now let [x, y] = [e11, e12 + e21] = e12 − e21. In this case we have:

[A, e12 − e21]2 =
[

2(a22 − a11) −2a21

−2a21 2(a11 − a22)

]
([

2(a22 − a11) −2a21

−2a21 2(a11 − a22)

])2

= 0

that is
4(a21)2 + 4(a11 − a22)2 = 0

(a21)2 = −(a22 − a11)2 (1).
On the other hand if [x, y] = [e11, e12 − e21] = e12 + e21 then

([A, e12 + e21]2)2 =
[

2(a11 − a22) −2a21

2a21 2(a22 − a11)

]
([

2(a11 − a22) −2a21

2a21 2(a22 − a11)

])2

= 0

that is
4(a22 − a11)2 − 4(a21)2 = 0

(a21)2 = (a22 − a11)2 (2).
(1) and (2) imply that a21 = 0 and a11 = a22 which means that A is

a central matrix in M2(F ), A ∈ F and d = 0, a contradiction. Therefore
k = 1, i.e., R is commutative. �

Lemma 1.2. Let R = Mk(F ), the ring of k × k matrices over a field F
of characteristic 6= 2. If q 6= 0 is a noncentral element of R such that
([q, [x, y]]2)n ∈ F , for any x, y ∈ R, then k ≤ 2.

Proof. Suppose k ≥ 3. Let i, j, r be distinct indices and q =
∑

amnemn,
with amn ∈ F . For simplicity we assume that i = 1, j = 2, r = 3. If we
choose [x, y] = [e12, e23 − e31] = e13 + e32, then

[q, [x, y]]2 = a21e11 + a21e22 − 2a21e33 +
∑
n6=1

γne1n +
∑
m6=2

δmem2

with γn, δm ∈ F , and

([q, [x, y]]2)n = (a21)ne11 +(a21)ne22 +(−2a21)ne33 +
∑
n6=1

αne1n +
∑
m6=2

βmem2

with αn, βm ∈ F . Since by assumption ([q, [x, y]]2)n ∈ F , then αn = βm = 0,
for all m,n, and (a21)n = (−2a21)n = 0, i.e., a21 = 0. In a similar way we
may conclude that aij = 0, for any i 6= j. Therefore if k ≥ 3, q is a diagonal
matrix, q =

∑
t attett, with at ∈ F .

If we show that q is a central matrix, then we get a contradiction to our
assumption and so k must be less or equal than 2.
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Let [x, y] = [eij − eji, ejj ] = eij + eji. Therefore

[q, [x, y]]2 = 2(aii − ajj)eii + 2(ajj − aii)ejj

and
([q, [x, y]]2)n = 2n(aii − ajj)neii + 2n(ajj − aii)nejj .

Since ([q, [x, y]]2)n ∈ F and k ≥ 3, it follows that aii = ajj . Thus q is a
central matrix.

Notice that if n = 1 then by using the same argument and choosing
[x, y] = e12, we get N = [q, [x, y]]2 = −2e12qe12, which has rank 1 and so it
cannot be central in Mk(F ), with k ≥ 2. This implies that if n = 1 then
k = 1, and R must be a commutative field. The proof of Lemma 1.2 is now
complete. �

Theorem 1.1. Let R be a prime ring of characteristic different from 2, L a
noncentral Lie ideal of R, d a nonzero derivation of R such that [d(u), u]n ∈
Z(R), for any u ∈ L. Then R satisfies s4.

Proof. Let I be the nonzero two-sided ideal of R such that 0 6= [I,R] ⊆ L
and J be any nonzero two-sided ideal of R. Then V = [I, J2] ⊆ L is a
Lie ideal of R. If, for every v ∈ V , [d(v), v]n = 0, by Lemma 1.1, R is
commutative. Otherwise, by our assumptions, J ∩ Z(R) 6= 0. Let now K
be a nonzero two-sided ideal of RZ , the ring of the central quotients of R.
Since K ∩R is an ideal of R then K ∩R ∩Z(R) 6= 0, that is K contains an
invertible element in RZ , and so RZ is simple with 1.

Moreover we may assume L = [I, I]. For any x, y ∈ I, [d([x, y]), [x, y]]n ∈
Z(R), i.e.,

[[d([x, y]), [x, y]]n, r] = 0 for any x ∈ R.

Thus I satisfies the differential identity

f(x, y, r, d(x), d(y)) = [[[d(x), y] + [x, d(y)], [x, y]]n, r] = 0.

If the derivation is not inner, by [8], I satisfies the polynomial identity

f(x, y, r, z, t) = [[[t, y] + [x, z], [x, y]]n, r] = 0

and in particular, for z = 0,

[[[t, y], [x, y]]n, r] = 0.

In this case we know that there exists a field F such that R and Fm satisfy
the same polynomial identities. Thus [[t, y], [x, y]]n is central in Fm. Suppose
m ≥ 3 and choose x = e32, y = e33, t = e23.

[t, y] = e23, [x, y] = −e32

[[t, y], [x, y]] = −e22 + e33

[[t, y], [x, y]]n = (−1)ne22 + e33 /∈ Z(R)
contrary to our assumptions. This forces m ≤ 2, i.e., R satisfies s4.
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Notice that in the case n = 1, [[t, y], [x, y]] must be central in Fm. But if
m ≥ 2 and t = e11, y = e12, x = e21, we get the contradiction [[t, y], [x, y]] =
2e12 /∈ Z(R). Therefore m must be equal to 1 and R is commutative.

Now let d be an inner derivation induced by an element A ∈ Q. By
localizing R at Z(R) it follows that ([A, [x, y]]2)n ∈ Z(RZ), for all x, y ∈ RZ .

Since R and RZ satisfy the same polynomial identities, in order to prove
that R satisfies S4(x1, x2, x3, x4), we may assume that R is simple with 1
and [R,R] ⊆ L.

In this case, ([A, [x, y]]2)n ∈ Z(R), for all x, y ∈ R. Therefore R satisfies
a generalized polynomial identity and it is simple with 1, which implies
that Q = RC = R and R has a minimal right ideal. Thus A ∈ R = Q
and R is simple artinian that is R = Dk, where D is a division ring finite
dimensional over Z(R) [13]. From Lemma 2 in [10] it follows that there
exists a suitable field F such that R ⊆ Mk(F ), the ring of all k× k matrices
over F , and moreover Mk(F ) satisfies the generalized polynomial identity
[([A, [x, y]]2)n, z] = 0. By Lemma 1.2, if n ≥ 2 then k ≤ 2 and R satisfies
s4, also if n = 1 then k = 1 and R must be commutative. �

2. The case: R semiprime ring.

In all that follows R will be a 2-torsion free semiprime ring. We cannot
expect the same conclusion of previous section to hold, as the following
example shows:

Example 2. Let R1 be any prime ring not satisfying s4 and R2 = M2(F ),
the ring of 2 × 2 matrices over the field F . Let R = R1 ⊕ R2, d a nonzero
derivation of R such that d = 0 in R1. Consider L = [R, R]. It is a non-
central Lie ideal of R. Let r1, s1 ∈ R1, r2, s2 ∈ R2, u = [(r1, r2), (s1, s2)].
Therefore d(u) = (0, d([r2, s2])) and [d(u), u] = (0, [d([r2, s2]), [r2, s2]]). Since
[d([r2, s2]), [r2, s2]]2 ∈ Z(R2), then

[d(u), u]2 = (0, [d([r2, s2]), [r2, s2]])2 = (0, [d([r2, s2]), [r2, s2]]2) ∈ Z(R)

but R does not satisfy s4.

The related object we need to mention is the left Utumi quotient ring U
of R. For basic definitions and preliminary results we refer the reader to [1],
[5], [9].

In order to prove the main result of this section we will make use of the
following facts:

Claim 1 ([1, Proposition 2.5.1]). Any derivation of a semiprime ring R
can be uniquely extended to a derivation of its left Utumi quotient ring U ,
and so any derivation of R can be defined on the whole U .
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Claim 2 ([3, p. 38]). If R is semiprime then so is its left Utumi quotient
ring. The extended centroid C of a semiprime ring coincides with the center
of its left Utumi quotient ring.

Claim 3 ([3, p. 42]). Let B be the set of all the idempotents in C, the
extended centroid of R. Assume R is a B-algebra orthogonal complete. For
any maximal ideal P of B, PR forms a minimal prime ideal of R, which is
invariant under any derivation of R.

We will prove the following:

Theorem 2.1. Let R be a 2-torsion free semiprime ring, d a nonzero deri-
vation of R, n a fixed positive integer, U the left Utumi quotient ring of
R and [d([x, y]), [x, y]]n = 0, for any x, y ∈ R. Then there exists a central
idempotent element e of U such that on the direct sum decomposition eU ⊕
(1−e)U , d vanishes identically on eU and the ring (1−e)U is commutative.

Proof. Since R is semiprime, by Claim 2, Z(U) = C, the extended cen-
troid of R, and, by Claim 1, the derivation d can be uniquely extended on
U . Since U and R satisfy the same differential identities (see [12]), then
[d([x, y]), [x, y]]n = 0, for all x, y ∈ U . Let B be the complete boolean
algebra of idempotents in C and M be any maximal ideal of B.

Since U is a B-algebra orthogonal complete (see [3, p. 42, (2) of Fact
1]), by Claim 3, MU is a prime ideal of U , which is d-invariant. Denote
U = U/MU and d the derivation induced by d on U . For any x, y ∈ U ,
[d([x, y]), [x, y]]n = 0. In particular U is a prime ring and so, by Lemma 1.1,
d = 0 in U or U is commutative. This implies that, for any maximal ideal
M of B, d(U) ⊆ MU or [U,U ] ⊆ MU . In any case d(U)[U,U ] ⊆ MU , for
all M . Therefore d(U)[U,U ] ⊆

⋂
M MU = 0.

By using the theory of orthogonal completion for semiprime rings (see
[1, Chapter 3]), it follows that there exists a central idempotent element e
in U such that on the direct sum decomposition eU ⊕ (1− e)U , d vanishes
identically on eU and the ring (1− e)U is commutative. �

We come now to our last result:

Theorem 2.2. Let R be a 2-torsion free semiprime ring, d a nonzero deri-
vation of R, n a fixed positive integer, U the left Utumi quotient ring of
R and [d([x, y]), [x, y]]n ∈ Z(R), for any x, y ∈ R. Then there exists a
central idempotent e of U such that, on the direct sum decomposition U =
eU ⊕ (1 − e)U , the derivation d vanishes identically on eU and the ring
(1− e)U satisfies s4.
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Proof. By Claim 2, Z(U) = C, and by Claim 1 d can be uniquely defined
on the whole U . Since U and R satisfy the same differential identities, then
[d([x, y]), [x, y]]n ∈ C, for all x, y ∈ U . Let B be the complete boolean alge-
bra of idempotents in C and M any maximal ideal of B. As already pointed
out in the proof of Theorem 2.1, U is a B-algebra orthogonal complete and
by Claim 3, MU is a prime ideal of U , which is d-invariant. Let d the deriva-
tion induced by d on U = U/MU . Since Z(U) = (C +MU)/MU = C/MU ,
then [d([x, y]), [x, y]]n ∈ (C + MU)/MU , for any x, y ∈ U . Moreover U
is a prime ring, hence we may conclude, by Theorem 1.1, that d = 0 in
U or U satisfies s4. This implies that, for any maximal ideal M of B,
d(U) ⊆ MU or s4(x1, x2, x3, x4) ⊆ MU , for all x1, x2, x3, x4 ∈ U . In any
case d(U)s4(x1, x2, x3, x4) ⊆

⋂
M MU = 0. From [1, Chapter 3], there ex-

ists a central idempotent element e of U , the left Utumi quotient ring of R,
such that there exists a central idempotent e of U such that d(eU) = 0 and
(1− e)U satisfies s4. �
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