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For A C∗-algebra and M(A) its multiplier algebra, the weak
topologies σ(M(A), A∗) and σ(A∗, M(A)) are shown to have
the Krein property, claiming the compactness of the closed
convex hull of every compact set. This has relevant conse-
quences concerning the analytic generator of strictly continu-
ous one-parameter groups of strictly continuous linear opera-
tors on M(A).

Furthermore, it is proved that there exists an one-to-one
correspondence between surjective linear isometries on A and
strictly bicontinuous, surjective linear isometries on M(A),
as well as between strongly continuous respectively strictly
continuous locally compact groups of them. In the case of
connected groups, they all arise from ∗-automorphism groups
by perturbation with a cocycle.

Introduction.

Recently the search for a sound C∗-algebraic framework for quantum groups
has renewed the attention for analysis on multiplier C∗-algebras: The present
setting requires a more precise understanding of groups of linear isometries
on multiplier C∗-algebras. Of particular relevance seems to be the structure
of the analytic generator in the one-parameter case (see e.g., [Kus]).

The multiplier algebra M(A) of C∗-algebra A is the non-commutative
generalization of the Stone-C̆ech compactification βΩ of a locally compact
topological space Ω. In the commutative setting the canonical pairing be-
tween the bounded continuous functions on Ω, identified with the continuous
functions on βΩ, and the bounded regular Borel measures on Ω has been in-
tensively investigated (see e.g., [Cnw] and [HJ]). In the non-commutative
frame the analogous pairing between M(A) and the dual A∗ is obtained
from the natural duality between A∗∗ and A∗ considering M(A) embedded
in A∗∗. There exists a natural topology on M(A), called the strict topology,
which is compatible with this duality between M(A) and A∗.

Our first goal is to prove in Section 1 that the corresponding weak topolo-
gies onM(A) andA∗ have the so-called Krein property (indicated in [C-Z] as
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axiom A1), claiming the compactness of the closed convex hull of every com-
pact set. This entails the Pettis integrability of the σ(M(A), A∗)-continuous
M(A)-valued respectively σ(A∗,M(A))-continuous A∗-valued functions and
allows to apply the results from [C-Z] and [Z1] to the one-parameter opera-
tor groups on M(A). We notice that for commutative A the Krein property
for σ(M(A), A∗) and σ(A∗,M(A)) is already known (see [HJ]).

Subsequently, in Section 2 we investigate the extendibility of bounded
linear maps Φ : A → B, A and B C∗-algebras, to strictly continuous
linear maps M(A) →M(B). We prove that for Φ Jordan ∗-homomorphism,
whose range generates B, this extension exists and it is the only Jordan ∗-
homomorphism M(Φ) : M(A) →M(B) extending Φ. A similar result holds
also for surjective linear isometries. Moreover, any strictly bicontinuous
surjective linear isometry M(A) → M(B) maps A onto B, hence it is an
extension of a surjective linear isometry A → B. For A and B separable,
making use of a result by L.G. Brown (see [Br]), we get the automatic strict
bicontinuity of all surjective linear isometries M(A) → M(B). The same
holds, for a different reason, if A and B are simple.

In Section 3 we study families (Φt)t of linear isometries depending on a
parameter t. We prove that continuous dependence in the strong operator
topology of (Φt)t goes in pointwise strictly continuous dependence ofM(Φt)t.
As a consequence, we get a one-to-one correspondence between the strongly
continuous representations of a locally compact group G by linear isometries
on a C∗-algebra A and the strictly continuous representations ofG by strictly
bicontinuous (automatic, if A separable or simple!) linear isometries on
M(A). In the one-parameter case the graph of the analytic generator of
the extension turns out to be the strict closure of the graph of the analytic
generator of the original group.

Using results due to R.V. Kadison (see [Kad2]) we prove also a structure
theorem for strongly continuous representations of connected topological
groups G by linear isometries on a C∗-algebra A. Namely, they all arise
from strongly continuous representations of G by ∗-automorphisms of A,
perturbing them with a cocycle. We notice that the W ∗-algebra counterpart
of this result holds only under additional assumptions, for example, assuming
that the centre of the algebra is atomic.

Finally we show that representations of locally compact groups by linear
isometries on separable C∗-algebras are strongly continuous under minimal
regularity assumptions and they induce strongly continuous representations
on separable, invariant C∗-subalgebras of the corona algebra.

1. The Krein Property.

A relevant property for a locally convex topological vector space X is the
following one:
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(K) the closed convex hull of every weakly compact subset of X is com-
pact.

According to a well known result of M.G. Krein, V.L. Smulian and A.
Grothendieck (see e.g., [Sch], Th. IV.11.4), the closed convex hull of a
weakly compact subset of X is weakly compact if (and only if) it is complete
with respect to the associated Mackey topology. Therefore let us call (K)
the “Krein property”.

We notice two consequences of the Krein property:
If X has the Krein property then every weakly continuous map Ω → X,Ω

compact topological space, is Pettis integrable with respect to any Radon
measure on Ω (see e.g., [Rud], Th. 3.27, [Sch], Exercise IV.39 (a), [Ar],
Prop. 1.2, [C-Z], Prop. 1.4).

A second consequence concerns “dual pairs of Banach spaces”, that is
pairs (X,F) of Banach spaces together with a bilinear functional

X ×F 3 (x, ϕ) 7→ 〈x, ϕ〉
satisfying

‖x‖ = sup{|〈x, ϕ〉|; ϕ ∈ F , ‖ϕ‖ ≤ 1}, x ∈ X,
‖x‖ = sup{|〈x, ϕ〉|; x ∈ F , ‖x‖ ≤ 1}, ϕ ∈ F .

If X, endowed with the weak topology σ(X,F), and F , endowed with
σ(F , X), have the Krein property then, for any σ(X,F)-continuous one-
parameter group t 7→ Ut of σ(X,F)-continuous linear maps on X, the an-
alytic extension operators Uz, z ∈ C, are (besides being σ(X,F)-densely
defined, a consequence of the Pettis integrability of U) σ(X,F)-closed (see
[C-Z], Th. 2.4). Moreover, denoting by UF the adjoint group on F , UFz is
the adjoint of Uz in F (see [Z1], Th. 1.1).

If F = X∗ then, according to the Krein theorem, the principle of uniform
boundedness and the Alaoglu theorem, σ(X,F) and σ(F , X) have the Krein
property. We shall prove this for an other kind of dual pair of Banach spaces,
in general not of the above form: We shall deal with dual pairs consisting
of the multiplier algebra M(A) and the dual space A∗ of a C∗-algebra A.

The multiplier algebra M(A), first considered in [Buc] (for commuta-
tive A) and [Bus] (for general C∗-algebra A), is (∗-isomorphic to) the C∗-
subalgebra

{x ∈ A∗∗; xa, ax ∈ A for all a ∈ A}
of the second dual A∗∗. For its basic theory we send to [Ped1], 3.12 and
[WO], Chapter 2.

The canonical duality between A∗∗ and A∗ induces a pairing

M(A)×A∗ 3 (x, ϕ) 7→ 〈x, ϕ〉
which makes (M(A), A∗) a dual pair of Banach spaces. We recall that the
strict topology β onM(A) is the locally convex vector space topology defined
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by the seminorms

x 7→ ‖xa‖ and x 7→ ‖ax‖, a ∈ A.

It is complete and compatible with the duality between M(A) and A∗ (see
[T1], Cor. 2.3). Hence the strict topology is weaker that the norm-topology
on M(A), but stronger than the restriction to M(A) of the weak * topology
of A∗∗. A is a strictly dense, norm-closed two-sided ideal of M(A). More
precisely, if (uι)ι is any two-sided approximate unit for A then uι → 1A∗∗ ∈
M(A) strictly.

The goal of this section is to prove:

Theorem 1.1 (on the Krein property for multipliers). Let A be an arbit-
rary C∗-algebra. Then M(A) with σ(M(A), A∗) and A∗ with σ(A∗,M(A))
have the Krein property.

Since the strict topology is complete, also the Mackey topology
τ(M(A), A∗) is complete (see e.g., [B], IV.5, Remark 2). Therefore the
Krein property of σ(M(A), A∗) follows directly from the Krein theorem.

The proof of the Krein property of σ(A∗,M(A)) is more involved. Let us
shortly comment the already known results concerning it. We notice that the
Krein property for σ(A∗,M(A)) is equivalent to saying that all seminorms

M(A) ∈ x 7→ sup{|〈x, ϕ〉|; ϕ ∈ K}

with K ⊂ A∗ σ(A∗,M(A))-compact are τ(M(A), A∗)-continuous, that is to
the τ(M(A), A∗)-equicontinuity of any σ(A∗,M(A))-compact subset of A∗.

If τ is a locally convex vector space topology on M(A), compatible with
the duality between M(A) and A∗, then M(A), τ is usually called strong
Mackey space whenever any σ(A∗,M(A))-compact subset of A∗ is τ -equi-
continuous. In other words, M(A), τ is strong Mackey if and only if τ =
τ(M(A), A∗) and σ(A∗,M(A)) has the Krein property.

There are criteria in order that the strict topology β on M(A) be strong
Mackey: This happens for commutative A whenever the Gelfand spectrum
of A is paracompact ([Cnw], Th. 2.6) and, more generally, for arbitrary
A, whenever A has a “well behaved” approximate unit ([T2], Cor. 3.4). In
particular, in this case σ(A∗,M(A)) has the Krein property. However, even
for commutative A, β is not always equal to τ(M(A)A∗), so M(A), β is not
always strong Mackey space (see [Cnw], Remarks on p. 481). Nevertheless,
it was proved that σ(A∗,M(A)) has the Krein property for any commutative
A (see [HJ], Th. 2). Actually this proof inspired our proof of the Krein
property of σ(A∗,M(A)) for general A.

The main ingredient in proving the Krein property of σ(A∗,M(A)) is the
following convergence result:
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Lemma 1.2. Let be A a C∗-algebra, K a σ(A∗,M(A))-compact subset of
A∗h = {ϕ ∈ A∗; ϕ = ϕ∗}, and µ a positive Radon measure on the com-
pact topological space K, σ(A∗,M(A)). Then, for any (increasing, positive)
approximate unit (uι)ι of A and any x ∈M(A),∫

K
〈x∗uιx, ϕ〉dµ(ϕ) ι→

∫
K
〈x∗x, ϕ〉dµ(ϕ).

We notice that if K would be contained in A∗+ then, according to the Dini
theorem, we would have 〈x∗uιx, ϕ〉

ι→ 〈x∗x, ϕ〉 uniformly for ϕ ∈ K and the
statement of the Lemma would follow trivially.

Proof. First we consider the case x = 1A∗∗ .
Let us define the lower σ(A∗,M(A))-semicontinuous functions gι : K → R

by
gι(ϕ) = sup{|〈a, ϕ〉|; a∗ = a ∈ A, −uι ≤ a ≤ uι} ≤ ‖ϕ‖.

Then (gι)ι is upward directed and pointwise convergent to K ∈ ϕ 7→ ‖ϕ‖, so

(1.1)
∫
K
gι(ϕ)dµ(ϕ) ι→

∫
K
‖ϕ‖dµ(ϕ).

For let ϕ ∈ K and ε > 0 be arbitrary. Choosing a∗ = a ∈ A, ‖a‖ ≤ 1,
with

|〈a, ϕ〉| ≥ ‖ϕ‖ − ε

2
,

we have
(u1/2

ι au1/2
ι )∗ = u1/2

ι au1/2
ι ∈ A,

so

gι(ϕ) ≥ |〈u1/2
ι au1/2

ι , ϕ〉|

≥ |〈a, ϕ〉| − |〈a− u1/2
ι au1/2

ι , ϕ〉|

≥ ‖ϕ‖ − ε

2
− ‖ϕ‖ · ‖a− u1/2

ι au1/2
ι ‖.

Since

‖a− u1/2
ι au1/2

ι ‖ ≤ ‖(1A∗∗ − u1/2
ι )a‖+ ‖u1/2

ι a(1A∗∗ − u1/2
ι )‖

≤ 2 · ‖a(1A∗∗ − u1/2
ι )2a‖1/2

≤ 2 · ‖a(1A∗∗ − uι)a‖1/2

≤ 2 · ‖a− uιa‖1/2

and (uι)ι is an approximate unit for A, it follows the existence of some ιε
such that

gι(ϕ) ≥ ‖ϕ‖ − ε for all ι ≥ ιε.
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On the other hand,

|〈1A∗∗ − uι, ϕ〉| ≤ ‖ϕ‖ − gι(ϕ) for all ϕ ∈ K and ι.

Indeed, for every a∗ = a ∈ A with −uι ≤ a ≤ uι,

|〈a, ϕ〉| ≤ |〈a, ϕ+〉|+ |〈a, ϕ−〉|
≤ 〈uι, ϕ+〉+ 〈uι, ϕ−〉
= 〈uι, |ϕ|〉,

|〈1A∗∗ − uι, ϕ〉|+ |〈a, ϕ〉| ≤ 〈1A∗∗ − uι, |ϕ|〉+ 〈uι, |ϕ|〉
= 〈1A∗∗ , |ϕ|〉
= ‖ϕ‖,

hence
|〈1A∗∗ − uι, ϕ〉|+ gι(ϕ) ≤ ‖ϕ‖.

Therefore ∣∣∣∣∫
K
〈1A∗∗ , ϕ〉dµ(ϕ)−

∫
K
〈uι, ϕ〉dµ(ϕ)

∣∣∣∣
≤
∫
K
|〈1A∗∗ − uι, ϕ〉|dµ(ϕ)

≤
∫
K
(‖ϕ‖ − gι(ϕ))dµ(ϕ)

and (1.1) yields ∫
K
〈uι, ϕ〉dµ(ϕ) ι→

∫
K
〈1A∗∗ , ϕ〉dµ(ϕ).

Now let x ∈M(A) be arbitrary.
The map

Φx : A∗h 3 ϕ 7→ ϕ(x∗ · x) ∈ A∗h
is σ(A∗,M(A))-continuous, so Kx = Φx(K) is a σ(A∗,M(A))-compact sub-
set of A∗h. Denoting by µx the image of µ under Φ, µx is a positive Radon
measure on Kx, σ(A∗,M(A)) and∫

Kx

f(ψ)dµx(ψ) =
∫
K
f(Φx(ϕ))dµ(ϕ)

for all σ(A∗,M(A))-continuous f : Kx → R. Using the above equality with
f(ψ) = 〈uι, ψ〉 respectively f(ψ) = 〈1A∗∗ , ψ〉 and applying the first part of
the proof to Kx, µx, we get∫

K
〈x∗uιx, ϕ〉dµ(ϕ)

=
∫
K
〈uι, ψ〉dµx(ψ) ι→

∫
Kx

〈1A∗∗ , ψ〉dµx(ψ)
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=
∫
K
〈x∗x, ϕ〉dµ(ϕ).

�

Proof of the theorem. We have already seen that the completeness of the
strict topology on M(A) implies the Krein property for σ(M(A), A∗).

The Krein property for σ(A∗,M(A)) means that every σ(A∗,M(A))-
compact K ⊂ A∗ is contained in a σ(A∗,M(A))-compact convex subset
of A∗. Let us first consider the case of a σ(A∗,M(A))-compact K ⊂ A∗h.

Let P (K) denote the weak* compact convex set of all probability Radon
measures on K, endowed with σ(A∗,M(A)). For every µ ∈ P (K) we can
define Φ(µ) ∈ A∗ by putting

〈a,Φ(µ)〉 =
∫
K
〈a, ϕ〉dµ(ϕ), a ∈ A.

Then actually holds:

(1.2) 〈x,Φ(µ)〉 =
∫
K
〈x, ϕ〉dµ(ϕ), x ∈M(A)

(in other words there exists the Pettis integral σ(A∗,M(A))−
∫
K ϕdµ(ϕ) ∈

A∗). Indeed, choosing an approximate unit (uι)ι of A and applying the above
lemma, we have for every 0 ≤ x ∈M(A)

〈x1/2uιx
1/2,Φ(µ)〉 =

∫
K
〈x1/2uιx

1/2, ϕ〉dµ(ϕ) ι→
∫
K
〈x, ϕ〉dµ(ϕ).

But on the other hand, since x1/2uιx
1/2 → x in the weak* topology of A∗∗,

we have also
〈x1/2uιx

1/2,Φ(µ)〉 ι→ 〈x,Φ(µ)〉.
By (1.2) the affine map Φ : P (K) → A∗ is continuous with respect to the
weak* topology on P (K) and σ(A∗,M(A)) on A∗. Consequently ΦP (K) is
a σ(A∗,M(A))-compact convex subset of A∗ containing

{Φ(δϕ); δϕ the Dirac measure in ϕ ∈ K} = K.

Now let the σ(A∗,M(A))-compact set K ⊂ A∗ be arbitrary. Since A∗ 3
ϕ 7→ ϕ∗ ∈ A∗ is σ(A∗,M(A))-continuous, ReK, ImK ⊂ Ah are also
σ(A∗,M(A))-compact. According to the above part of the proof, there are
σ(A∗,M(A))-compact convex sets ReK ⊂ K1 ⊂ A∗ and ImK ⊂ K2 ⊂ A∗.
Then K1 + iK2 is a σ(A∗,M(A))-compact convex subset of A∗ containing
K. �

By the above theorem the results from [C-Z] and [Z1] are available for
σ(M(A), A∗)-continuous one-parameter groups of σ(M(A), A∗)-continuous
linear operators on M(A). In particular, [C-Z], Th. 2.4 and [Z1], Th. 1.1
yield:
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Corollary. Let A be a C∗-algebra, t → αt a σ(M(A), A∗)-continuous one-
parameter group of σ(M(A), A∗)-continuous linear operators on M(A), t 7→
α∗t the adjoint group on A∗, and z ∈ C. Define the linear operator αz in
M(A) by putting (x, y) ∈ graph (αz) whenever R 3 t 7→ αt(x) ∈ M(A) has
a σ(M(A), A∗)-continuous extension on the closed horizontal strip between
0 and Im z, which is analytic in the interior and takes the value y in z. The
linear operator α∗z in A∗ is defined similarly. Then αz is strictly densely
defined, its graph is closed with respect to the product of the strict topologies
on M(A)×M(A), and its adjoint in A∗ is α∗z.

2. Jordan ∗-homomorphisms and linear isometries between
multiplier algebras.

In this section we investigate the extendibility of Jordan ∗-homomorphisms
and linear isometries between C∗-algebras to similar maps between the re-
spective multiplier algebras. We also describe those linear isometries be-
tween multiplier algebras, which arise as extensions.

Let A,B be C∗-algebras. π : A→ B is called Jordan ∗-homomorphism if
it is a linear ∗-map satisfying

π(x2) = π(x)2, x ∈ A.
It is well known that then (see e.g., [S-Z], 6.6)

π(xy + yx) = π(x)π(y) + π(y)π(x),

π(xyx) = π(x)π(y)π(x),
xy = yx⇒ π(xy) = π(x)π(y)

with x, y elements of A. The last statement implies immediately that if A is
unital then π(1A) is unit for the hereditary C∗-subalgebra HerB(π(A)) ⊂ B
generated by π(A). In particular, π being positive, ‖π‖ = ‖π(1A)‖ = 1 or
0. For arbitrary A, the positive map π being bounded, we can consider the
Jordan ∗-homomorphism π∗∗ : A∗∗ → B∗∗ and the above remarks yields
‖π‖ = ‖π∗∗‖ = 1 or 0.

Let π : A→ B be a Jordan ∗-homomorphism. Then

(2.1) ‖π(x)π(y)‖ ≤ ‖xy‖, x, y ∈ Ah,

where Ah denotes the Hermitian part {a ∈ A; a = a∗} of A. Indeed,

‖π(x)π(y)‖2 = ‖π(y)π(x)2π(y)‖ = ‖π(yx2y)‖
≤ ‖yx2y‖ = ‖xy‖2.

Furthermore,

(2.2) π(x)∗π(x) ≤ π(x∗x+ xx∗), x ∈ A.
For we just have to notice that

π(x)∗π(x) ≤ π(x)∗π(x) + π(x)π(x)∗ = π(x∗x+ xx∗).
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It follows that

(2.3)

{
J ⊂ B norm closed two-sided ideal ⇒
π−1(J) ⊂ A norm closed two-sided ideal.

Indeed, for any a∗ = a ∈ π−1(J) and x∗ = x ∈ A we have by (2.2)

π(ax)∗π(ax) ≤ π((ax)∗ax+ ax(ax)∗)

= π(xa2x+ ax2a)

= π(x)π(a)2π(x) + π(a)π(x)2π(a) ∈ J,

so, according to [Ped1], Prop. 1.4.5,

π(ax) ∈ J, i.e., ax ∈ π−1(J).

In particular, Kerπ = π−1({0}) is a norm closed two-sided ideal in A. Thus
π factorizes in

A→ A/Kerπ π̃→ B

where the first arrow denotes the quotient ∗-homomorphism and π̃ is an
injective Jordan*-homomorphism. If π is surjective then π̃ is Jordan ∗-
isomorphism, hence isometrical. Therefore in this case

‖π(x)‖2 = ‖π(x∗x)‖, x ∈ A.

The next result extends [P-S], Th. 2 and [Ped2], Th. 10 to Jordan
*-homomorphisms between C∗-algebras. We recall that a C∗-algebra is
called σ−unital whenever it contains a strictly positive element or, equiva-
lently, it has a countable approximate unit (see [Ped1], 3.10.4, 3.10.5).

Proposition 2.1. Let A,B be C∗-algebras, and π : A → B a Jordan ∗-
homomorphism with HerB(π(A)) = B. Then

(i) there exists a unique extension of π to a Jordan ∗-homomorphism
M(π) : M(A) → M(B), namely M(π) = π∗∗|M(A), which is strictly
continuous and unital, hence carrying two-sided approximate units of
A in two-sided approximate units of B;

(ii) assuming that A is σ-unital, M(π) is surjective whenever π is surjec-
tive.

Proof. (i) Let us first prove that if A ⊂ A0 ⊂ A∗∗ is a C∗-algebra, ρ : A0 →
B∗∗ is a Jordan ∗-homomorphism extending π and (xι)ι is a norm bounded
net in (A0)h with ‖xιa‖

ι→ 0 for all a ∈ A, then ‖ρ(xι)b‖
ι→ 0 for all b ∈ B.

Indeed, applying (2.1) to ρ, we have for every a ∈ Ah

‖ρ(xι)π(a)‖ = ‖ρ(xι)ρ(a)‖ ≤ ‖xιa‖
ι→ 0.

Therefore the hereditary C∗-subalgebra

{b ∈ B; ‖ρ(xι)b‖
ι→ 0 and ‖bρ(xι)‖

ι→ 0} ⊂ B contains π(A).
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Now let x∗ = x ∈ M(A) be arbitrary. Choosing a norm bounded net
(aι)ι in Ah such that aι

ι→→ x strictly, by the above proved statement
π∗∗(x)b = norm− lim

ι
π(aι)b ∈ B for all b ∈ B, hence π∗∗(x) ∈M(B). Thus

π∗∗M(A) ⊂M(B).
Again by the first part of the proof, any Jordan ∗-homomorphism ρ :

M(A) → M(B) extending π, in particular M(π) = π∗∗|M(A), is strictly
continuous on every norm bounded subset of M(A). It follows that M(π)
is the only such ρ. Moreover, since the strict topology β on M(A) is the
finest locally convex vector space topology on M(A) that agrees with β on
the norm bounded subsets of M(A) (see [T1], Cor. 2.7), M(π) is actually
strictly continuous.

On the other hand, π∗∗(1A∗∗) is unit for HerB∗∗(π∗∗(A∗∗)) ⊃ HerB(π(A))
= B, hence also for its weak* closure in B∗∗:

π∗∗(1A∗∗) = 1B∗∗ .

In other words, M(π) is unital.
(ii) Let

A
π0→ A/Kerπ π̃→ B

be the canonical factorization of π. By Pedersen’s Tietze type extension the-
orem (see [Ped2], Th. 10 or [WO], Th. 2.3.9), M(π0) is surjective. On the
other hand, π̃ being Jordan ∗-isomorphism, M(π̃) is Jordan ∗-isomorphism.
We conclude that M(π) = M(π̃)M(π0) is surjective. �

Now we prove a partial converse to Proposition 2.1:

Proposition 2.2. Let A,B be C∗-algebras. Then any strictly bicontinuous
Jordan ∗-isomorphism ρ : M(A) →M(B) maps A onto B, so ρ = M(ρ|A :
A → B). If A and B are both separable or both (topologically) simple, then
we have this for any Jordan ∗-isomorphism ρ : M(A) →M(B), whose strict
bicontinuity is hence automatical.

Proof. Let (uι)ι and (vk)k be increasing, positive approximate units for A
respectively B. Since A is two-sided ideal in M(A) and ρ−1 is strictly con-
tinuous,

A 3 wι,k = uιρ
−1(vk)uι

ι,k→ 1A∗∗ strictly.
In other words (wι,k)ι,k is a two-sided approximate unit for A. It follows for
every 0 ≤ a ∈ A

‖a− a1/2wι,ka
1/2‖ ι,k→ 0,

‖ρ(a)− ρ(a1/2wι,ka
1/2)‖ ι,k→ 0,

so, having

ρ(a1/2wι,ka
1/2) = ρ(a1/2)ρ(uι)vkρ(uι)ρ(a1/2) ∈ B



GROUPS OF LINEAR ISOMETRIES ON MULTIPLIER C*-ALGEBRAS 289

for all ι and k, ρ(a) ∈ B. Consequently

ρ(A) ⊂ B.

We get similarly also

ρ−1(B) ⊂ A, i.e., ρ(A) ⊃ B.

Now let us assume that A and B are separable and ρ : M(A) →M(B) is
an arbitrary Jordan ∗-isomorphism. By [Br], Cor. 6 (see also the remarks
after Corollary 1.4 in [D-Z]) A is the largest separable, norm closed, two-
sided ideal of M(A), so (2.3) implies that ρ(A) is the largest separable, norm
closed, two-sided ideal of M(B). Using again [Br], Cor. 6, we conclude that
ρ(A) = B.

Assuming finally that A and B are simple and nonzero, we can argue as
above, using the fact that A is the smallest nonzero, closed, two-sided ideal
of M(A), and similarly for B. Indeed, is J is any nonzero, closed, two-sided
ideal of M(A), then the essentialness of A yields

A ∩ J ⊃ AJ 6= {0}

and it follows by the simplicity of A that A ∩ J = A. �

Now let Φ : A→ B be an isometrical linear bijection between C∗-algebras.
Then there exist π : A → B Jordan ∗-isomorphism and u ∈ M(B) unitary
such that

(2.4) Φ(x) = uπ(x), x ∈ A

(see [Kad1] for the case of unital C∗-algebras and [P-S], Th. 1 for the
general case). We notice that u, hence also π, is uniquely determined by Φ :
according to Proposition 2.1., for any two-sided approximate unit (uι)ι of A
we have

π(uι) → 1B∗∗ strictly,

so
Φ(uι) → u strictly.

We call (2.4) the Kadison decomposition of Φ.
The following theorem is the main result of this section (cf. with [P-S],

Th. 2):

Theorem 2.3 (on extension of linear isometries). Let A,B be C∗-algebras.
Then every isometric linear bijection Φ : A → B has a unique extension to
an isometric linear bijection M(Φ) : M(A) →M(B), which is strictly bicon-
tinuous. Conversely, every strictly bicontinuous, isometrical linear bijection
between M(A) and M(B) is of the above form. Moreover, if A and B are
both separable or both (topologically) simple then the strict bicontinuity of
any isometric linear bijection between M(A) and M(B) is automatical.
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Proof. Let Φ : A → B be an isometric linear bijection, and Φ = uπ
its Kadison decomposition. Proposition 2.1 entails that, letting M(Φ) =
uM(π),M(Φ) is a strictly bicontinuous, isometrical linear map of M(A)
onto M(B). If Ψ : M(A) → M(B) is any isometric linear bijection extend-
ing Φ and Ψ = vρ is its Kadison decomposition, then Ψ(A) = Φ(A) = B
implies ρ(A) = v∗Ψ(A) = B, so ρ|A : A → B is a Jordan ∗-isomorphism.
The uniqueness of the Kadison decomposition of Φ = Ψ|A yields

π = ρ|A, u = v.

But, again by Proposition 2.1, we have then M(π) = ρ and it follows

M(Φ) = uM(π) = vρ = Ψ.

The second and the third statement of the theorem follow by taking the
Kadison decomposition and applying Proposition 2.2 to the Jordan ∗-iso-
morphism in the decomposition. �

We notice that every isometric linear bijection Φ : A → B between C∗-
algebras induces also an isometric linear bijection C(Φ) : C(A) → C(B)
between the corresponding corona algebras C(A) = M(A)/A and C(B) =
M(B)/B : C(Φ) carries the canonical image of x ∈ M(A) in C(A) in the
canoncal image of M(Φ)(x) in C(B).

3. Groups of linear isometries on multiplier algebras.

After having established in the preceeding section that surjective linear
isometries between C∗-algebras and strictly bicontinuous surjective linear
isometries between multiplier C∗-algebras are in one-to-one correspondence,
let us now investigate the interplay of the continuity and analyticity prop-
erties of groups of such maps. We also investigate the structure of strongly
continuous representations of connected groups by linear isometries on C∗-
algebras.

Let A,B be C∗-algebras, and π : A → B a Jordan ∗-homomorphism.
Then the following variant of (2.1) holds:

(3.1)

{
‖π(x)π(y)‖ ≤ (‖xy‖2 + ‖yx‖2)1/2 ≤ ‖xy‖+ ‖yx‖
for all x, y ∈ A, one of which is self-adjoint.

Indeed, let us assume, for example, that y ∈ Ah. By (2.2) we have π(x)∗π(x)
≤ π(x∗x+ xx∗), so

‖π(x)π(y)‖2 = ‖π(y)π(x)∗π(x)π(y)‖
≤ ‖π(y)π(x∗x+ xx∗)π(y)‖
= ‖π(y(x∗x+ xx∗)y)‖
≤ ‖yx∗xy + yxx∗y‖
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≤ ‖xy‖2 + ‖yx‖2.

First we prove:

Lemma 3.1 (on the continuity of the Kadison decomposition). Let be Ω a
topological space, A,B C∗-algebras, and Φt : A→ B, t ∈ Ω, surjective linear
isometries such that Ω 3 t 7→ Φt(a) is norm continuous for every a ∈ A. Let
us denote by Φt = utπt the Kadison decomposition of Φt, t ∈ Ω. Then

(1)

{
Ω 3 t 7→ πt(a) is norm continuous for every a ∈ A
Ω 3 t 7→ π−1

t (b) is norm continuous for every b ∈ B;

(2) Ω 3 t 7→M(πt)(x) is strictly continuous for every x ∈M(A)

(3) Ω 3 t 7→ ut is strictly continuous.

Proof. The first statement in (1) follows by noticing that, for every 0 ≤ a ∈
A,

πt(a) = πt(a1/2)2 = πt(a1/2)u∗tutπt(a1/2) = Φt(a1/2)∗Φt(a1/2).
The second statement is implied by the first one: For every b ∈ B,

‖π−1
t (b)− π−1

s (b)‖ = ‖πs(π−1
t (b))− b‖ s→t→ ‖πt(π−1

t (b))− b‖ = 0.

For (2) let x∗ = x ∈M(A), tι → t in Ω, b∗ = b ∈ B and ε > 0 be arbitrary.
Let us also consider an (increasing, positive) approximate unit (ak)k for A.
Then, for some k,

‖(1A∗∗ − ak)xπ−1
t (b)‖‖π−1

t (b)(1A∗∗ − ak)‖ ≤
ε

8‖x‖
.

By the just proved (1) there exists ιε such that, for every ι ≥ ιε,

‖π−1
tι (b)− π−1

t (b)‖ ≤ ε

8‖x‖
, ‖πtι(akx)− πt(akx)‖ ≤

ε

4‖b‖
.

Then we have for every ι ≥ ιε

‖(M(πtι)(x)−M(πt)(x))b‖
≤ ‖M(πtι)(x− akx)b‖+ ‖(πtι(akx)− πt(akx))b‖

+ ‖M(πt)(akx− x)b‖
= ‖M(πtι)(x− akx) ·M(πtι)(π

−1
tι (b))‖

+ ‖M(πt)(x− akx) ·M(πt)(π−1
t (b))‖

+ ‖(πtι(akx)− πt(akx))b‖ by (3.1)

≤ ‖(x− akx)π−1
tι (b)‖+ ‖π−1

tι (b)(x− akx)‖
+ ‖(x− akx)π−1

t (b)‖+ ‖π−1
t (b)(x− akx)‖

+ ‖πtι(akx)− πt(akx))b‖
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≤ ‖(x− akx)(π−1
tι (b)− π−1

t (b))‖+ ‖(π−1
tι (b)− π−1

t (b))(x− akx)‖
+ 2‖(1A∗∗ − ak)xπ−1

t (b)‖+ 2‖π−1
t (b)(1A∗∗ − ak)x‖

+ ‖(πtι(akx)− πt(akx))b‖ and ιε

≤ ‖x‖ ε

8‖x‖
+

ε

8‖x‖
‖x‖+ 2

ε

8
+ 2

ε

8‖x‖
‖x‖+

ε

4‖b‖
‖b‖ = ε.

For (3) let b ∈ B be arbitrary. Since

‖utb− usb‖
= ‖utπt(π−1

t (b))− usπs(π−1
s (b))‖

= ‖Φt(π−1
t (b))− Φs(π−1

s (b))‖
≤ ‖Φt(π−1

t (b))− Φs(π−1
t (b))‖+ ‖π−1

t (b)− π−1
s (b)‖,

by the continuity assumption on t 7→ Φt and by (1), ‖utb − usb‖
s→t→ 0.

Applying the above to b replaced by u∗t b
∗, it follows also that

‖but − bus‖ = ‖u∗t b∗ − u∗sb
∗‖ = ‖usu

∗
t b
∗ − b∗‖

converges to ‖utu
∗
t b
∗ − b∗‖ = 0 for s→ t. �

It follows in a straightforward way the following:

Theorem 3.2 (on extension of groups of linear isometries). Let A be a
C∗-algebra, and G a topological group. For every strongly continuous group
(Φt)t∈G of linear isometries on A, the group (M(Φt))t∈G is strictly contin-
uous. If G is locally compact, then also conversely, every σ(M(A), A∗)-
continuous group (Φ̃t)t∈G of σ(M(A), A∗)-continuous (automatic, if A sepa-
rable or simple!) linear isometries on M(A) leaves A invariant and induces
on A a strongly continuous group (Φ̃|A)t∈G of linear isometries. In parti-
cular, (Φ̃t = M(Φ̃|A))t∈G is strictly continuous.

Proof. Denoting by Φt = utπt the Kadison decomposition of Φt, the above
lemma yields the strict continuity of

G 3 t 7→M(Φt)(x) = ut ·M(πt)(x)

for all x ∈M(A).
The converse statement follows from the theorem in the preceeding section

and from the well known fact, according to which all σ(A,A∗)-continuous
locally compact groups of bounded linear operators on A are strongly con-
tinuous. �

For (Φt)t∈G as above it is convenient to denote the extension (M(Φt))t∈G

also by (M(Φ)t)t∈G, underlining in this way that not only the individual
Φt’s are extended by strict continuity, but the whole strongly continuous
group Φ is extended to a strictly continuous group M(Φ).
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Next we look for connection between the analytic generator Φ−i of a
strongly continuous one-parameter group (Φt)t∈R of linear isometries on a
C∗-algebra and the analytic generator M(Φ)−i of the strictly continuous
one-parameter group (M(Φ)t)t∈R (compare with [Kus], Th. 2.41):

Theorem 3.3 (on extension of analytic generators). Let A be a C∗-algebra,
(Φt)t∈R a strongly continuous one-parameter group of linear isometries on
A, and z ∈ C. Then the graph of M(Φ)z is the closure of the graph of Φz

with respect to the product of the strict topologies on M(A)×M(A).

Proof. First of all, the graph of M(Φ)z is closed with respect to the product
of the strict topologies on M(A) ×M(A) according to the corollary in the
first section. Since the strict dual of M(A) is A∗, it is enough to show that
the graph of Φz is σ(M(A), A∗)×σ(M(A), A∗)-dense in the graph of M(Φ)z.

By Theorem 1.1 both σ(M(A), A∗) and σ(A∗,M(A)) have the Krein prop-
erty, so the formula

〈Tn(x), ϕ〉 =
√
n

π

∫ +∞

−∞
e−nt2〈M(Φ)t(x), ϕ〉dt,

〈Tn,z(x), ϕ〉 =
√
n

π

∫ +∞

−∞
e−n(t−z)2〈M(Φ)t(x), ϕ〉dt, x ∈M(A), ϕ ∈ A∗

define σ(M(A), A∗)-continuous linear maps

Tn, Tn,z : M(A) →M(A)

(see e.g., [C-Z], Prop. 1.4). In particular,

Γn = {(Tn(a), Tn,z(a)); a ∈ A} is σ(M(A), A∗)× σ(M(A), A∗)-dense

in {(Tn(x), Tn,z(x)); x ∈M(A)}.

According to [C-Z], Cor 2.5 and the proof of Lemma 2.2,

TnM(Φ)z ⊂M(Φ)zTn = Tn,z, n ≥ 1,

σ(M(A), A∗)− lim
n→∞

Tn(x) = x, x ∈M(A).

It follows that⋃
n≥1

{(Tn(x), Tn,z(x));x ∈M(A)} = {(Tn(x),M(Φ)zTn(x));x ∈M(A)}

⊃
⋃
n≥1

{(Tn(x), TnM(Φ)z(x)); x ∈ DM(Φ)z
},

hence also ⋃
n≥1

Γn

is σ(M(A), A∗) × σ(M(A), A∗)-dense in the graph of M(Φ)z.
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But
⋃

n≥1
Γn is contained in the graph of Φz. Indeed, since also σ(A,A∗)

and σ(A∗, A) have the Krein property, applying the above quoted results
from [C-Z] to (Φt)t∈R instead of (M(Φ)t)t∈R, we get

TnA ⊂ A, Tn,zA ⊂ A and ΦzTn|A = Tn,z|A, n ≥ 1.

Therefore

(Tn(a), Tn,z(a)) = (Tn(a),ΦzTn(a)) ∈ graph of Φz for all n ≥ 1 and a ∈ A.

�

Now let A,B be C∗-algebras, and π : A → B a Jordan ∗-isomorphism.
According to the properties of Jordan ∗-homomorphisms, listed at the be-
ginning of the second section,

π∗∗(xz) = π∗∗(x)π∗∗(z)

for every x ∈ A∗∗ and z in the centre Z(A∗∗) of A∗∗. Thus, denoting by
p0(A) the greatest projection in Z(A∗∗) with p0(A)A∗∗ ⊂ Z(A∗∗), and by
p0(B) the similar projection in Z(B∗∗), we have

π∗∗(p0(A)) = p0(B).

By a well known result due to N. Jacobson, C. Rickart and R.V. Kadison
([Kad1], Th. 10, see also [Kad2], [Stm], [Th]), there exists a unique
projection p = p(π) ∈ Z(B∗∗) such that

(3.2)


p ≤ 1B∗∗ − p0(B),
(π(a1a2)− π(a1)π(a2))p = 0, a1, a2 ∈ A,
(π(a1a2)− π(a2)π(a1))(1B∗∗ − p0(B)− p) = 0, a1, a2 ∈ A.

We call p(π) the strict homomorphic carrier of π (compare with [Kad2],
Remark (2.7), where the maximal homomorphic carrier p0(B)+p(π) is con-
sidered).

We notice that actually p(π) is the unique element 0 ≤ p ∈ Z(B∗∗)
satisfying (3.2). Indeed, for any such element p, denoting by p1 and p2 the
supports of p respectively 1B∗∗ − p0(B)− p, we have for all a1, a2 ∈ A

(π(a1a2)− π(a1)π(a2))p1 = 0,

(π(a1a2)− π(a2)π(a1))p2 = 0,

hence

(π(a1)π(a2))− π(a2)π(a1))p1p2 = 0.
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It follows successively
p1p2 ≤ p0(B),

p1p2 = p1p2(1B∗∗ − p0(B)) = 0,
p1 − p = p1(1B∗∗ − p0(B)− p) = p1p2(1B∗∗ − p0(B)− p) = 0,

p = p1 is a projection.
The next result is covered by [Kad2], Lemmas (4.8) and (4.10), but we

give a proof for the convenience of the reader:

Lemma 3.4 (on the continuous dependence of the homomorphic carrier).
Let be Ω a topological space, A,B C∗-algebras, and πt : A→ B, t ∈ Ω, Jor-
dan ∗-isomorphisms such that

Ω 3 t 7→ πt(a) ∈ B∗∗ is weak*-continuous for every a ∈ A.
Then

Ω 3 t 7→ πt(a) ∈ B∗∗ is s*-continuous for every a ∈ A,
Ω 3 t 7→ p(πt) ∈ Z(B∗∗) is s-continuous.

Proof. Clearly, it is enough to prove the s*-continuity of Ω 3 t 7→ πt(a) ∈
B∗∗ for all self-adjoint a ∈ A. But in this case

(πt(a)− πs(a))2 = πt(a2) + πs(a2)− πt(a)πs(a)− πs(a)πt(a)

is weak*-convergent to

2πt(a2)− 2πt(a)πt(a) = 0

for s→ t.
Let be tι → t in Ω. If p is any weak*-limit point of (p(πtι))ι then

p(πtι) ≤ 1B∗∗ − p0(B),

(πtι(a1a2)− πtι(a1)πtι(a2))p(πtι) = 0

(πtι(a1a2)− πtι(a2)πtι(a1))(1B∗∗ − p0(B)− p(πtι)) = 0,

true for all ι and a1, a2 ∈ A, together with

πtι(a)
s∗→ πt(a), a ∈ A,

implies

p ≤ 1B∗∗ − p0(B),

(πt(a1a2)− πt(a1)πt(a2))p = 0

(πt(a1a2)− πt(a2)πt(a1))(1B∗∗ − p0(B)− p) = 0

for all a1, a2 ∈ A. By the remark before the statement of the lemma it follows
that p = p(πt). Thus p(πtι) → p(πt) in the weak* topology.

But on the projections of B∗∗ the weak* topology coincides with the s-
topology: For e, f ∈ B∗∗ projections

(e− f)2 = e− f − f(e− f)− (e− f)f weak∗−→ 0
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whenever e weak∗−→ f. Consequently

p(πtι) → p(πt) in the s-topology.

�

The above lemmas on the continuity of the Kadison decomposition re-
spectively on the continuous dependence of the homomorphic carrier allow
us to prove the following:

Theorem 3.5 (on the structure of strongly continuous connected groups of
linear isometries). Let A be a C∗-algebra, G a connected topological group,
and (Φt)t∈G a strongly continuous group of linear isometries on A. Let

Φt = utπt, t ∈ G
denote the corresponding Kadison decompositions. Then (πt)t∈G is a strongly
continuous group of ∗-automorphisms of A, while G 3 t 7→ ut ∈ M(A) is a
strictly continuous unitary M(π)-cocycle:

uts = ut ·M(πt)(us), t, s ∈ G.

Proof. We recall that the strict continuity of G 3 t 7→ ut is exactly statement
(3) in Lemma 3.1. Also the M(π)-cocycle property follows easily:

uts = M(Φts)(1A∗∗) = M(Φt)(M(Φs)(1A∗∗)) = utM(πt)(us).

Using it, we get successively for every a ∈ A
utsπts(a) = Φts(a) = Φt(Φs(a)) = utπt(usπs(a)),

πts(a) = u∗tsutπt(usπs(a)) = M(πt)(u∗s) · πt(usπs(a)).
Consequently,

πt multiplicative ⇒ πts = πt · πs for all s ∈ G.
According to this and to statement (1) in Lemma 3.1, it remains only to
prove the multiplicativity of every πt.

For we shall use the arguments from the proof of [Kad2], Th. 3.4:
Let e denote the neutral element of G. By the two continuity lemmas in

this section, the map

G 3 t 7→ pt = p0(A) + p(πt) ∈ Z(A∗∗)

is s-continuous. Since πe = idA is multiplicative, we have pe = 1A∗∗ .
Now every pure state ϕ of A is multiplicative on Z(A∗∗), so

〈p, ϕ〉 = 1 or 0 for all projections p ∈ Z(A∗∗).

G being connected, the continuous function

G 3 t 7→ 〈pt, ϕ〉 ∈ {1.0}
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is constant, therefore

〈pt, ϕ〉 = 〈pe, ϕ〉 = 1 for every t ∈ G.

We conclude that, for every t ∈ G, every a1, a2 ∈ A and every pure state
ϕ of A,

〈|πt(a1a2)− πt(a1)πt(a2)|2, ϕ〉
= 〈(1A∗∗ − pt)|πt(a1a2)− πt(a1)πt(a2)|2(1A∗∗ − pt), ϕ〉
≤ 4‖a1‖2‖a2‖2〈(1A∗∗ − pt), ϕ〉 = 0,

hence
πt(a1a2)− πt(a1)πt(a2) = 0.

�

Let A be a C∗-algebra, and G a topological group. A strongly continuous
group (Φt)t∈G of linear isometries on A is called in [Kus], Section 2 semi-
multiplicative whenever there are strongly continuous groups (Φ(j)

t )t∈G, j =
1, 2, of linear isometries on A such that

(3.3) Φt(ab) = Φt(a)Φ
(1)
t (b) = Φ(2)

t (a)Φt(b), t ∈ G, a, b ∈ A.

But it is easy to see that, with Φt = utπt the Kadison decomposition of
Φt, for any maps Φ(j)

t : A → A, t ∈ G, j = 1, 2, satisfying (3.3), we have
necessarily

Φ(1)
t = πt and Φ(2)

t = utπtu
∗
t , t ∈ G.

Thus (Φt)t∈G is semi-multiplicative if and only if all πt’s are ∗-automorphisms
and the above theorem claims essentially that, assuming G connected, ev-
ery strongly continuous representation of G by linear isometries on A is
automatically semi-multiplicative.

We notice that our Theorem 3.3 on the extension of analytic generators
was proved in [Kus], Th. 2.41 under the additional assumption of semi-
multiplicativity of the one-parameter group, which turns out to be automatic
by the above remark. However, our approach is more natural for the pre-
vailingly linear character of the statement of the theorem. Indeed, our proof
works for any (even not bounded) strongly continuous one-parameter group
of bounded linear operators on A, which extends by strict continuity to a
σ(A∗,M(A))-continuous one-parameter group of bounded linear operators
on M(A).

Let us consider also the W ∗-algebra counterpart of the above theorem
(compare with [Kad2], Th. 3.4):

Theorem 3.6 (on the structure of weak* continuous connected groups of
linear isometries). Let M be a W ∗-algebra, whose centre is atomic, G a
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connected topological group, and (Φt)t∈G a weak* continuous group of linear
isometries on M. Let

Φt = utπt, t ∈ G
denote the corresponding Kadison decompositions. Then (πt)t∈G is an s*-
continuous group of ∗-automorphisms of M , while G 3 t 7→ ut ∈ M is an
s*-continuous unitary π-cocycle:

uts = utπt(us), t, s ∈ G.

Proof. First of all, G 3 t 7→ ut = Φt(1M ) is weak*-continuous, hence also
s∗-continuous. Indeed, on the unitaries of M the weak* topology coincides
with the s∗-topology: For u, v ∈M unitaries

(u− v)∗(u− v) + (u− v)(u− v)∗ = 4 · 1M − u∗v − v∗u− uv∗ − vu∗
weak∗−→ 0

whenever v weak∗−→ u.
Next, for every x ∈M,

G 3 t 7→ πt(x) = u∗t Φt(x) ∈M

is weak*-continuous according to the weak*-continuity of (Φt)t∈G and the
s-continuity of G 3 t 7→ ut. It follows by straightforward arguments that the
maps

G 3 t 7→ πt(x) ∈M, x ∈M
are even s∗-continuous (see [Kad2], Lemma 4.10 or the first paragraph of
the proof of Lemma 3.4).

Similarly, as in the proof of the preceeding theorem, we get also

uts = utπt(us), t, s ∈ G,

and then
πt multiplicative ⇒ πts = πt · πs for all s ∈ G.

Thus it remains only to prove the multiplicativity of every πt.
Let p0 denote the greatest projection in the centre Z(M) of M satisfying

p0M ⊂ Z(M). Then

πt(p0) = p0 for all t ∈ G.

According to [Kad1], Th. 10, for every t ∈ G there exists a unique pro-
jection p(πt) ∈ Z(M) such that

p(πt) ≤ 1M − p0,

(πt(x1x2)− πt(x1)πt(x2))p(πt) = 0, x1, x2 ∈M,

(πt(x1x2)− πt(x2)πt(x1))(1M − p0 − p(πt)) = 0, x1, x2 ∈M.
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Moreover, arguing similarly as in the proof of Lemma 3.4, it is easy to verify
that the map

G 3 t 7→ p(πt) ∈ Z(M),
hence also

G 3 t 7→ pt = p0 + p(πt) ∈ Z(M)
is s-continuous. We notice that πe = idM implies pe = 1M , where e stands
for the neutral element of G.

Now, for every normal state ϕ on M , whose central support is a minimal
projection of Z(M), the continuous function

G 3 t 7→ 〈pt, ϕ〉
takes values in {1, 0}. G being connected, it follows that

〈pt, ϕ〉 = 〈pe, ϕ〉 = 1 for all t ∈ G.
Consequently, for every t ∈ G and x1, x2 ∈M,

〈|πt(x1x2)− πt(x1)πt(x2)|2, ϕ〉
= 〈(1M − pt)|πt(x1x2)− πt(x1)πt(x2)|2(1M − pt), ϕ〉
≤ 4‖x1‖2‖x2‖2〈1M − pt, ϕ〉 = 0.

Since Z(M) is atomic, the normal states on M with central supports
minimal in Z(M) separate the points of M and we conclude that

πt(x1x2)− πt(x1)πt(x2) = 0 for all t ∈ G and x1, x2 ∈M.

�

In particular, if M is a factor, G is a connected topological group and
(Φt)t∈G is a weak*-continuous group of linear isometries on M, then

Φt = utπt, t ∈ G
with (πt)t∈G an s∗-continuous group of ∗-automorphisms of M and G 3 t 7→
ut ∈M an s∗-continuous unitary π-cocycle.

However, the above theorem does not hold without the assumption on
the centre of M, even we assume M of type I2, G = R and all Φt Jordan
∗-automorphisms. Indeed, denoting by M the W ∗-algebra L∞(R; Mat2(C))
of all essentially bounded (equivalence classes of) 2× 2 matrix valued mea-
surable functions on R, choosing some ∗-anti-automorphism σ of Mat2(C)
(e.g., the transpose map) and putting for F ∈ L∞(R; Mat2(C))

Φt(F )(s) =

{
σ(F (s− t)) if 0 < s < t

F (s− t) otherwise,
t ≥ 0, s ∈ R,

Φt(F )(s) =

{
σ−1(F (s− t)) if t < s < 0
F (s− t) otherwise,

t ≤ 0, s ∈ R,



300 CLAUDIO D’ANTONI AND LÁSZLÓ ZSIDÓ

(Φt)t∈R is a weak*-continuous one-parameter group of Jordan ∗-automor-
phisms of M, but no Φt with t 6= 0 is multiplicative.

We finish the section (and the paper) with a continuity criterion for groups
of linear isometries on multiplier algebras of separable C∗-algebras and with
a result concerning continuity on corona algebras of separable C∗-algebras.

They will follow from the next two lemmas of general character:

Lemma 3.7 ([Z2]). Let (X,F) be a dual pair of Banach spaces, G a locally
compact group, and (Ut)t∈G a group of σ(X,F)-continuous linear operators
on X. If there exists a compact set K ⊂ G of nonzero Haar measure, such
that all functions

K 3 t 7→ 〈Ut(x), ϕ〉, x ∈ X,ϕ ∈ F
are continuous, then (Ut)t∈G is σ(X,F)-continuous.

Proof. Let m denote a left Haar measure on G. By [He-R], Cor. 20.17
there exists t0 ∈ G such that m(K ∩ t0K−1) > 0. Then the support of the
restriction of m to K ∩ t0K−1 is a compact subset K0 of K ∩ t0K−1 such
that

m(K0) = m(K ∩ t0K−1) > 0, in particular, K0 6= ∅,
V ⊂ G open, V ∩K0 6= ∅ ⇒ m(V ∩K0) > 0.

Now let x ∈ X,ϕ ∈ F and ε > 0 be arbitrary. Defining F : K0 ×K0 → C
by

F (t, s) = 〈Uts−1(x), ϕ〉 t, s ∈ K0,

F is separately continuous. Indeed, by the continuity assumption on U,

K0 ⊂ K 3 t 7→ 〈Uts−1(x), ϕ〉 = 〈Ut(Us−1(x)), ϕ〉
is continuous for every s ∈ G, and

K0 ⊂ t0K
−1 3 s 7→ 〈Uts−1(x), ϕ〉 = 〈Us−1t0(Ut−1

0
(x)), UFt (ϕ)〉

is continuous for every t ∈ G. According to a theorem of I. Namioka ([N],
Th. 1.2, see also [Chr], Th. 1) it follows the existence of a dense Gδ set D in
K0 such that F is jointly continuous in every point of D×K0. In particular,
choosing some t1 ∈ D, F is continuous in (t1, t1), so there exists some open
set t1 ∈ V1 ⊂ G such that

(t, s) ∈ (V1 ∩K0)× (V1 ∩K0) ⇒ |F (t, s)− F (t1, t1)| < ε,

that is
t ∈ (V1 ∩K0) · (V1 ∩K0)−1 ⇒ |〈Ut(x)− x, ϕ〉| < ε.

But V1 ∩ K0 3 t, being not empty, we have m(V1 ∩ K0) > 0 and [He-R],
Cor. 20.17 implies that (V1 ∩ K0) · (V1 ∩ K0)−1 is a neighborhood of the
neutral element of G.

We conclude that the mappings

G 3 t→ Ut(x) ∈ X, x ∈ X
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are σ(X,F)-continuous in the neutral element of G, hence everywhere. �

Lemma 3.8 ([Z2], compare with [Hi-P], Th. 3.5.3 and Th. 10.2.3). Let
X be a separable Banach space, F a linear subspace of the dual X∗, sat-
isfying

‖x‖ = sup{|〈x, ϕ〉|;ϕ ∈ F , ‖ϕ‖ ≤ 1}, x ∈ X,
G a locally compact group with left Haar measure m, and (Ut)t∈G a group
of bounded linear operators on X. If there exists a Haar-measurable B ⊂ G
with 0 < m(B) < +∞, such that all functions

B 3 t 7→ 〈Ut(x), ϕ〉, x ∈ X, ϕ ∈ F

are Haar-measurable, then (Ut)t∈G is strongly continuous.

Proof. Let (xk)k≥1 be a norm dense sequence in X\{0}. For every k, n ≥ 1
there exists ϕk,n ∈ F , ‖ϕk,n‖ ≤ 1, such that

|〈xk, ϕk,n〉| > ‖xk‖ −
1
n
.

Then
‖x‖ = sup{|〈x, ϕk,n〉|; k, n ≥ 1}, x ∈ X.

Let x ∈ X and δ, ε > 0 be arbitrary.
By the measurability assumption on U, the functions

B 3 t 7→ ‖Ut(x)− xk‖ = sup{|〈Ut(x)− xk, ϕp,q〉|; p, q ≥ 1}, k ≥ 1

are Haar measurable, so all sets

Sk = {t ∈ B; ‖Ut(x)− xk‖ < ε} ⊂ B, k ≥ 1

are also Haar-measurable. Since (xk)k≥1 is norm dense in X, we have⋃
k≥1

Sk = B.

Thus, putting

Rk = Sk\
⋃

1≤l<k

Sl, k ≥ 1,

we get a partition R1, R2, . . . of B in Haar-measurable sets such that

t ∈ Rk ⇒ ‖Ut(x)− xk‖ < ε, k ≥ 1.

By the countable additivity of m there exists k0 ≥ 1 with

m

(
B\

k0⋃
k=1

Rk

)
<
δ

3
m(B),
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and then, by the regularity of m, a compact set K0 ⊂
k0⋃

k=1

Rk with

m

(
k0⋃

k=1

Rk\K0

)
<
δ

3
m(B).

It follows that

m(B\K0) <
2δ
3
m(B)

and the Haar-measurable sets

Ek = Rk ∩K0, 1 ≤ k ≤ k0

yield a partition of K0 such that

t ∈ Ek ⇒ ‖Ut(x)− xk‖ < ε, 1 ≤ k ≤ k0.

Let χEk
denote the characteristic function of Ek. By the Lusin theorem

there are compact subsets K1, . . . ,Kk0 of K0 such that, for every 1 ≤ k ≤ k0,

m(K0\Kk) <
δ

3k0
m(B),

χEk
|Kk : Kk → [0, 1] is continuous.

Then

Kx,δ,ε =
k0⋂

k=1

Kk ⊂ K0

is a compact subset of B with

m(B\Kx,δ,ε) < δm(B)

and all functions
χEk

|Kx,δ,ε : Kx,δ,ε → [0, 1]

are continuous. Therefore

Kx,δ,ε 3 t 7→ Fx,δ,ε(t) =
k0∑

k=1

χEk
(t)xk ∈ X

is norm continuous. Moreover,

‖Ut(x)− Fx,δ,ε(t)‖ < ε for all t ∈ Kx,δ,ε.

Summing up the aboves: For every x ∈ X and every δ, ε > 0 there exists
a compact set Kx,δ,ε ⊂ B with

m(B\Kx,δ,ε) < δm(B)

and a norm continuous map Fx,δ,ε : Kx,δ,ε → X with

‖Ut(x)− Fx,δ,ε(t)‖ < ε for all t ∈ Kx,δ,ε.



GROUPS OF LINEAR ISOMETRIES ON MULTIPLIER C*-ALGEBRAS 303

Then, for every x ∈ X and δ > 0,

Kx,δ =
∞⋂

n=1

Kx,δ2−n,n−1 ⊂ B

is a compact set with
m(B\Kx,δ) < δm(B)

and
Kx,δ 3 t→ Ut(x) ∈ X

is norm continuous as the uniform limit of the norm continuous maps
Fx,δ2−n,n−1 |Kx,δ, n ≥ 1.

Denoting now

L1 =
∞⋂

k=1

Kxk, 1
3
2−k ,

L1 is compact subset of B with

m(B\L1) <
1
3
m(B)

and all mappings
L1 3 t 7→ Ut(xk) ∈ X, k ≥ 1

are norm continuous.
On the other hand, again by the measurability assumption on U, the

function

B 3 t 7→ ‖Ut‖ = sup{‖xk‖−1 · |〈Ut(xk), ϕp,q〉|; k, p, q ≥ 1}

is Haar-measurable. By the countable additivity of m there exists a suffi-
ciently large c > 0 with

m({t ∈ B; ‖Ut‖ ≤ c}) > 2
3
m(B),

and then, by the regularity of m, a compact set

L2 ⊂ {t ∈ B; ‖Ut‖ ≤ c} with m(L2) >
2
3
m(B).

We conclude that L = L1 ∩ L2 is a compact subset of B such that

m(L) = m(L2)−m(L2\L1)

≥ m(L2)−m(B\L1)

>
2
3
m(B)− 1

3
m(B) > 0,

‖Ut‖ ≤ c for all t ∈ L

and the mappings
L 3 t 7→ Ut(xk) ∈ X, k ≥ 1
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are norm continuous. Since (xk)k≥1 is dense in X, it follows the norm
continuity of all mappings

L 3 t 7→ Ut(x) ∈ X, x ∈ X.

Now Lemma 3.7 yields the σ(X,X∗)-continuity, hence the strong continuity
of (Ut)t∈G. �

By the above result, every representation of a locally compact group by
bounded linear operators on a separable Banach space, which has a “minimal
regularity property”, is automatically strongly continuous.

Theorem 3.9 (on characterizing continuity of linear isometry groups on
separable C∗-algebras and their multipliers algebras). Let be H a complex
Hilbert space, A ⊂ B(H) a non-degenerate, separable C∗-subalgebra, and

M(A) = {x ∈ B(H);xa, ax ∈ A for all a ∈ A}.

Then Φ 7→ Φ|A establishes an one-to-one correspondence between the sur-
jective linear isometries Φ on M(A) and those on A.

Let further be G a locally compact group and (Φt)t∈G a group of linear
isometries on M(A). If there are

- a linear subspace F ⊂ B(H)∗, satisfying ‖a‖ = sup{|〈a, ϕ〉|;ϕ ∈
F , ‖ϕ‖ ≤ 1} for all a ∈ A,

- a Haar-measurable B ⊂ G of nonzero, finite Haar measure,
such that all functions

B 3 t 7→ 〈Φt(a), ϕ〉, a ∈ A, ϕ ∈ F

are Haar-measurable, then (Φ|A)t∈G is strongly continuous and (Φt)t∈G is
strictly continuous, i.e., the maps

G 3 t 7→ Φt(x)a, G 3 t 7→ aΦt(x)

are norm-continuous for all x ∈M(A) and a ∈ A.

Proof. The first statement follows from Theorem 2.3, taking into account
the canonical identification of the here defined M(A) with the multiplier
algebra defined in the first section (see [Ped1], Prop. 3.12.3 or [WO], Prop.
2.2.11).

Now let (Φt)t∈G be as in the theorem. Then Lemma 3.8 implies the strong
continuity of (Φt|A)t∈G, and then the strict continuity of (Φt)t∈G is entailed
by Theorem 3.2. �

In general, for (Φt)t∈G strongly continuous group of linear isometries on
a separable C∗-algebra A, the group (C(Φt))t∈G is not strongly continuous.
However we have strong continuity on separable, invariant C∗-algebras of
C(A):
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Theorem 3.10 (on continuity properties of linear isometry groups on corona
algebras of separable C∗-algebras). Let be G a locally compact group,
(Φt)t∈G a strongly continuous group of linear isometries on a separable C∗-
algebra A, and D a separable C∗-subalgebra of C(A) = M(A)/A, left invari-
ant by (C(Φt))t∈G. Then the group (C(Φt)|D)t∈G of linear isometries on D
is strongly continuous.

Proof. Let us denote by π the quotient map M(A) → C(A) and let (xn)n≥1

be a sequence in M(A) such that (π(xn))n≥1 is dense in D. Then the C∗-
subalgebra B ⊂ M(A) generated by A ∪ {xn;n ≥ 1} is separable and it is
easy to see that

B = π−1(D).
It follows that B is left invariant by (M(Φt))t∈G. Since (M(Φt)|B)t∈G is
σ(B,A∗)-continuous, according to Lemma 3.8 it is strongly continuous and
the strong continuity of (C(Φt)|D)t∈G follows. �

Actually we have proved more: If G, (Φt)t∈G and π are as above, then

π−1

(
∪
{
D;D ⊂ C(A) separable C∗-subalgebra

C(Φt)D ⊂ D for all t ∈ G

})
is contained in

{x ∈M(A); G 3 t 7→M(Φt)(x) is norm-continuous}.
Clearly, the above two C∗-algebras of M(A) are equal whenever G is sepa-
rable.
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[S-Z] Ş. Strătilă and L. Zsidó, Operator algebras, INCREST Prepublication, (1977-
1979), 1-511.

[T1] D.C. Taylor, The strict topology for double centralizer algebras, Trans. Amer.
math. Soc., 150 (1970), 633-643.

[T2] , A general Phillips theorem for C∗-algebras and some applications, Pacific
J. Math., 40 (1970), 477-488.

[Th] K. Thomsen, Jordan-morphisms in *-algebras, Proc. Amer. Math. Soc., 86 (1982),
283-286.

[WO] N.E. Wegge-Olsen, K-theory and C∗-algebras, Oxford University Press, 1993.
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