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Let X be a compact complex manifold of dimension n ≥ 2
and E an ample vector bundle of rank r < n on X. As the con-
tinuation of Part I, we further study the properties of g(X, E)
that is an invariant for pairs (X, E) and is equal to curve genus
when r = n − 1. Main results are the classifications of (X, E)
with g(X, E) = 2 (resp. 3) when E has a regular section (resp.
E is ample and spanned) and 1 < r < n − 1.

Introduction.

The present paper is a continuation of [I]. For a pair (X, E) which consists
of a compact complex manifold X of dimension n ≥ 2 and an ample vector
bundle E of rank r < n on X, we defined in [I] an invariant g(X, E) by the
formula

2g(X, E)− 2 := (KX + (n− r)c1(E))c1(E)n−r−1cr(E).

We note that g(X, E) is a nonnegative integer, and g(X, E) is equal to the
curve genus of (X, E) when r = n− 1. As in the case of curve genus, above
(X, E) with g(X, E) ≤ 1 have been classified in [I]; moreover, it is shown
that g(X, E) ≥ q(X) for spanned E and its equality condition is given in [I].
(q(X) is the irregularity of X.)

After we recall some preliminary results in Section 1, we consider the cases
g(X, E) = 2 and g(X, E) = 3 when 1 < r < n−1 in Section 2. Corresponding
results for c1-sectional genus are given in [Fj2] and [BiLL] respectively. In
Section 3 we consider the cases g(X, E) = q(X) + 1 and g(X, E) = q(X) + 2
when 1 < r < n− 1. Related results for c1-sectional genus are given in [R].
In Section 4 we give another relation between g(X, E) and q(X), namely
g(X, E) ≥ 2q(X) − 1 for 1 < r < n − 1. When r = 1, this inequality
is satisfied except one case. In Section 5 we show that g(X, E) ≥ g(C)
when there exists a fibration f : X → C over a curve. We also give its
equality condition. Finally in Appendix we give a classification of (X,L)
with g(X,L) = q(X) + 2 and n = 2 for ample and spanned line bundles L
on X.
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1. Preliminaries.

We use a notation similar to that in [I]. For example, we denote by H(E) the
tautological line bundle on PX(E), the projective space bundle associated to
a vector bundle E on a variety X. We say that a vector bundle E is spanned
if H(E) is spanned. A polarized manifold (X,L) is said to be a scroll over a
variety W if (X,L) ' (PW (F),H(F)) for some ample vector bundle F on
W . We denote by Fe the Hirzebruch surfaces PP1(OP1 ⊕OP1(−e)) (e > 0),
by σ a minimal section, and by f a fiber of the ruling Fe → P1. Numerical
equivalence is denoted by ≡.

Definition 1.1. Let X be a compact complex manifold of dimension n ≥ 2
and E an ample vector bundle of rank r < n on X. We define a rational
number g(X, E) for the pair (X, E) by the formula

2g(X, E)− 2 := (KX + (n− r)c1(E))c1(E)n−r−1cr(E).

It turns out that g(X, E) is a nonnegative integer (see [I]). When r = 1
(resp. r = n − 1), g(X, E) is nothing but the sectional genus (resp. curve
genus) of (X, E).

Remark 1.2. Let (X, E) be as above. Suppose that (X, E) satisfies the
condition

(∗) There exists a section s ∈ H0(X, E) whose zero locus Z := (s)0 is a
smooth submanifold of X of the expected dimension n− r.

Then we have g(X, E) = g(Z,det EZ) (see [I]). If E is spanned, then E
satisfies (∗) by Bertini’s theorem.

The following facts are used in the subsequent sections.

Proposition 1.3. Let X be an n-dimensional compact complex manifold
and E an ample vector bundle of rank r < n on X with the property (∗) in
(1.2). Let ι : Z ↪→ X be the embedding. Then

(1) H i(ι) : H i(X,Z) → H i(Z,Z) is an isomorphism for i < n− r.
(2) H i(ι) is injective and its cokernel is torsion free for i = n− r.
(3) Pic(ι) : Pic(X) → Pic(Z) is an isomorphism for n− r > 2.
(4) Pic(ι) is injective and its cokernel is torsion free for n− r = 2.

Proof. See Theorem 1.3 in [LM1] and see also Theorem 1.1 in [LM2]. �

Proposition 1.4. Let X be an n-dimensional compact complex manifold
and E an ample vector bundle of rank r ≥ 2 on X with the property (∗).

If Z ' Pn−r(n− r ≥ 1), then (X, E) is one of the following:
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(P1) (Pn,OPn(1)⊕r);
(P2) (Pn,OPn(2)⊕OPn(1)⊕(n−2));
(P3) (Qn,OQn(1)⊕(n−1));
(P4) X ' PP1(F) for some vector bundle F of rank n on P1 and E =

⊕n−1
j=1 (H(F) + π∗OP1(bj)), where π : X → P1 is the bundle projection.

If Z ' Qn−r(n− r ≥ 2), then (X, E) is one of the following:
(Q1) (Pn,OPn(2)⊕OPn(1)⊕(r−1));
(Q2) (Qn,OQn(1)⊕r);
(Q3) X ' PP1(F) and E = ⊕n−2

j=1 (H(F) + π∗OP1(bj)), where F is the same
as that in (P4).

Proof. See Theorem A and Theorem B in [LM1]. �

Proposition 1.5. Let X be a complex projective manifold of dimension n
and let E be an ample vector bundle of rank n− 2 ≥ 2 on X satisfying (∗).

(1) If Z is a geometrically ruled surface over a smooth curve B such that
Z 6= F0,F1, then X is a Pn−1-bundle over B and EF = OPn−1(1)⊕(n−2)

for every fiber F of the bundle map X → B.
(2) If Z = F0, then (X, E) is either the type in (1) with B = P1 or

(Pn,OPn(2)⊕OPn(1)⊕(n−3)) or (Qn,OQn(1)⊕(n−2)).
(3) If Z = F1, then (X, E) is either the type in (1) with B = P1 or possibly

X ' PP2(F) for some ample vector bundle F on P2 with c1(F) =
k(n− 2) + 3 for some positive integer k and EF = OPn−2(1)⊕(n−2) for
every fiber F of the bundle map X → P2.

Proof. See [LM3]. �

Proposition 1.6. Let X be a complex projective manifold of dimension n
and let E be an ample vector bundle of rank r ≥ 2 on X. If g(X, det E) = 2,
then n = 2 and (X, E) is one of the following:

(1) X is the Jacobian variety of a smooth curve B of genus 2 and E '
Er(B, o) ⊗ N for some N ∈ PicX with N ≡ 0, where Er(B, o) is the
Jacobian bundle for some point o on B;

(2) X ' PB(F) for some stable vector bundle F of rank 2 on an elliptic
curve B with c1(F) = 1. There is an exact sequence

0 → OX [2H(F) + ρ∗G] → E → OX [H(F) + ρ∗T ] → 0,

where G,T ∈ PicB and ρ is the projection X → B. We have (degG,
deg T ) = (−2, 1) or (−1, 0);

(2]) X,F , B and ρ are as in (2) and E ' ρ∗G⊗H(F) for some stable vector
bundle G of rank 3 on B with c1(G) = −1;

(3) X ' PB(F) and E ' ρ∗G ⊗H(F) for some semistable vector bundles
F and G of rank 2 on an elliptic curve B with (c1(F), c1(G)) = (1, 0)
or (0, 1);
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(4) −KX is ample, K2
X = 1 and det E = −2KX . We have E ' [−KX ]⊕2,

or c2(E) = 3 and r = 2;
(50) X ' P1 × P1 and E ' O(1, 1)⊕O(1, 2);
(51) X is the blowing-up of P2 at a point and E ' [2L − E]⊕2, where L is

the pull-back of OP2(1) and E is the exceptional curve.

Proof. See (2.25) Theorem in [Fj2]. �

Proposition 1.7. Let X be a complex projective manifold of dimension n
and let E be an ample and spanned vector bundle of rank r ≥ 2 on X. If
g(X, det E) = 3, then n = 2 and (X, E) is one of the following:
(1a) X = P2, E = OP2(1)⊕4;
(1b) X = P2, and either E = OP2(1)⊕2 ⊕OP2(2) or E = TP2 ⊕OP2(1);
(1c) X = P2, rank E = 2 and det E = OP2(4);
(2a) X = F0, and either E = [σ + f ]⊕ [σ + 3f ] or E = [σ + 2f ]⊕2;
(2b) X = F1, E = [σ + 2f ]⊕ [σ + 3f ];
(2c) X = F2, E = [σ + 3f ]⊕2;
(3) X is a Del Pezzo surface with K2

X = 2 and either E = [−KX ]⊕2, or
E = ψ∗(Q|Y ), where ψ is a birational morphism from X to a surface
Y of bidegree (4, 4) in the Grassmannian of lines of P3, and Q is the
universal rank 2 quotient bundle;

(4) X = P(F), where F is a rank 2 vector bundle on an elliptic curve
B with c1(F) = 1 and E = H(F) ⊗ ρ∗G, where ρ : X → B is the
bundle projection and G is any rank 2 vector bundle on B defined by a
nonsplitting exact sequence 0 → OB → G → OB(x) → 0, where x ∈ B.

Proof. See (1.10) Theorem in [BiLL]. �

2. The cases g(X, E) = 2 and g(X, E) = 3.

Theorem 2.1. Let X be a compact complex manifold of dimension n and E
an ample vector bundle of rank r on X with 1 < r < n− 1 and the property
(∗) in (1.2). If g(X, E) = 2, then (X, E) is one of the following:

(i) There exists an ample line bundle A on X such that (X,A) is a Del
Pezzo 4-fold of degree 1 and E = A⊕2 (see also (2.2.1));

(ii) X ' PB(F) and E = H(F)⊗π∗G, where F and G are vector bundles on
an elliptic curve B such that rankF = 4, rankG = 2, c1(F)+2c1(G) =
1, and π : X → B is the bundle projection;

(iii) X ' PB(F) and E = H(F)⊗ π∗G, where F and G are vector bundles
on an elliptic curve B such that rankF = 5, rankG = 3, 3c1(F) +
5c1(G) = 1, and π : X → B is the bundle projection.

Proof. Suppose that g(X, E) = 2. Since E satisfies (∗), there exists a nonzero
section s ∈ H0(X, E) whose zero locus Z := (s)0 is a smooth submanifold
of X of dimension n− r and 2 = g(X, E) = g(Z,det EZ). From (1.6) we see
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that n − r = 2 and (Z, EZ) is one of the cases in (1.6). We make a case by
case analysis in the following.

(2.1.1) If (Z, EZ) is in case (1.6;1), then KZ = OZ . We have KX +det E =
OX since [KX + det E ]Z = KZ and Pic(ι) : Pic(X) → Pic(Z) is injective by
(1.3). We get also that H1(ι) : H1(X,Z) → H1(Z,Z) is an isomorphism by
(1.3), but this is impossible since X is a Fano manifold and Z is an abelian
surface.

(2.1.2) If (Z, EZ) is in case (1.6;50), we have r = 2 and n = 4. By (1.4),
(X, E) is one of the cases (Q1),(Q2) and (Q3). We easily see that g(X, E) 6= 2
in cases (Q1) and (Q2). In case (Q3), we can write F = ⊕4

i=1OP1(ai). Since
E is ample, H(F)+π∗OP1(bj) is ample and so is F ⊗OP1(bj). Hence we get
ai + bj > 0 for every i and j. Then it follows that

2 = 2g(X, E)− 2 = (KX + 2c1(E))c1(E)c2(E)

= 2

(
−2 +

4∑
i=1

ai + 2(b1 + b2)

)
≥ 4,

a contradiction.
(2.1.3) If (Z, EZ) is in case (1.6;51), we have r = 2 and n = 4. Since

Z = F1, we see that (X, E) is in case (1.5;3). If (X, E) is the type (1.5;1)
with B = P1, then we come to a contradiction by the argument of (2.1.2).
Hence we have X ' PP2(F) for some ample vector bundle F on P2 with
c1(F) = 2k + 3 (k > 0), and EF = OP2(1)⊕2 for every fiber F of the bundle
map π : X → P2. We set H := H(F); we can write E = H ⊗ π∗G for
some vector bundle G of rank 2 on P2. Since EZ = [2L − E]⊕2, we can
write HZ = aL − E (2 ≤ a ∈ Z). Then we get G = OP2(2 − a)⊕2, hence
E = [H + π∗OP2(2− a)]⊕2 by (π|Z)∗G = EZ ⊗ [−HZ ] = [(2− a)L]⊕2. Since
E is ample, H + π∗OP2(a) is ample and so is F ⊗ OP2(a). Then we get
c1(F ⊗OP2(2− a)) ≥ 3, hence 2k − 3a+ 6 ≥ 0. We note that

3 = (2L− E)2 = c2(EZ) = c2(E)2 = s2(F) + 4c1(F) · (2− a) + 6(2− a)2.

On the other hand, we have

a2− 1 = (aL−E)2 = H2
Z = H2 · c2(E) = s2(F) + 2c1(F) · (2− a) + (2− a)2.

From these two equalities we get (2−a)(2k−3a+7) = 0. Since 2k−3a+6 ≥ 0,
we have a = 2 and then c2(F) = 3 and E = H⊕2. It follows that

2 = 2g(X, E)− 2 = (KX + 2c1(E))c1(E)c2(E) = 2s2(F) + 4k ≥ 10,

a contradiction.
(2.1.4) If (Z, EZ) is in case (1.6;4), then r = 2 and n = 4. We have

2KX+3 det E = OX since, by adjunction, [2KX+3 det E ]Z = 2KZ+det EZ =
OZ and the restriction map Pic(X) → Pic(Z) is injective. By setting A :=
KX + 2det E , we get det E = 2A and KX + 3A = OX , hence (X,A) is a
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Del Pezzo 4-fold. Then we set E ′ := E ⊕ A; we get KX + det E ′ = OX and
E ′ ' A⊕3 by using Proposition 7.4 in [PSW]. It follows that E ' A⊕2 and

2 = 2g(X, E)− 2 = (KX + 2c1(E))c1(E)c2(E) = 2A4,

hence A4 = 1. Thus we obtain that (X, E) is the case (i) of our theorem.
(2.1.5) If (Z, EZ) is in case (1.6;2), then r = 2 and n = 4. Since Z is

a geometrically ruled surface over an elliptic curve B, by (1.5), X is a P3-
bundle over B and E| eF = OP3(1)⊕2 for every fiber F̃ of the ruling π : X → B.
On the other hand, we have EZ |F = OP1(1) ⊕ OP1(2) for every fiber F of
the ruling ρ : Z → B. This is a contradiction since π|Z = ρ. If (Z, EZ) is in
case (1.6;2]) or (1.6;3), by using (1.5), we obtain that (X, E) is the case (ii)
or (iii) of our theorem respectively. This completes the proof. �

Remark 2.2. We make some comments on (2.1).

(2.2.1) In case (2.1; i), Del Pezzo 4-folds of degree 1 have been classified
in [Fj1], Part III. In particular, they are weighted hypersurfaces of degree 6
in the weighted projective space P(3, 2, 1, 1, 1, 1).

(2.2.2) We give an example of (X, E) in case (2.1; ii) in the following. Let
L1 and L2 be line bundles on an elliptic curve B such that degL1 = degL2

and L1 6= L2 in PicB. Let F be an indecomposable vector bundle of rank 4
on B with c1(F) = 1−2 degL1−2 degL2. We setX := PB(F), G := L1⊕L2,
and E := H(F)⊗π∗G = ⊕2

i=1[H(F)+π∗Li], where π : X → B is the bundle
projection. Since c1(F ⊗ Li) = 1, F ⊗ Li is ample and h0(B,F ⊗ Li) = 1.
Then there exists an exact sequence

0 → OB → F ⊗ Li → Qi → 0,

where Qi is a locally free sheaf of rank 3 on B. Since Qi is ample and
c1(Qi) = 1, we see that Qi is indecomposable. We set Di := PB(Qi) and
Z := D1 ∩D2. Since c1(Q2 ⊗ [L1 − L2]) = 1, there exists an exact sequence

0 → OB → Q2 ⊗ [L1 − L2] → Q→ 0,

where Q is a locally free sheaf of rank 2 on B. Then we have Z = PB(Q) in
|H(Q2) + (π|D2)

∗(L1 −L2)|. Thus we see that (X, E) satisfies the condition
(∗) and (X, E) is an example of (2.1; ii).

(2.2.3) The authors have no example for case (2.1; iii). We note that
without the condition (∗) we have examples for the case. Indeed, we can take
semistable vector bundles F and G on an elliptic curve B with the property
that rankF = 5, rankG = 3, and 3c1(F) + 5c1(G) = 1. Let π : P(F) → B
and π′ : P(G) → B be the bundle projections. Then 5H(F) − π∗ detF is
nef on P(F) and 3H(G)− (π′)∗ detG is nef on P(G) by Theorem 3.1 in [Mi].
We set E := H(F) ⊗ π∗G and let p : P(E) → B be the composition of the
projection P(E) → P(F) and π. Then 15H(E)− F is nef on P(E) for a fiber
F of p, hence E is ample. But it is uncertain that such E satisfies (∗).



AMPLE VECTOR BUNDLES 313

(2.2.4) We see that every vector bundle E appeared in (2.1) is not spanned.
Indeed, it is clear for case (2.1; i). For cases (2.1; ii) and (2.1; iii), we use
the following:

Lemma 2.2.5. Let F be a vector bundle of rank r on an elliptic curve.
Then there exists a line sub-bundle L of F such that degL ≥ [c1(F)/r],
where [c1(F)/r] is the largest integer that is not greater than c1(F)/r.

This is a consequence of the Mukai-Sakai theorem [MuS], hence proof is
omitted.

Suppose that E is spanned in case (2.1; ii). Applying the lemma to F∨

and G∨, we get quotient line bundles L1 and L2 of F and G respectively, with
the property that degL1 ≤ −[−c1(F)/4] and degL2 ≤ −[−c1(G)/2]. The
surjection F → L1 gives a section C := P(L1) of the projection π : PB(F) →
B. Since H(F)|C = (π|C)∗L1, we see that (π|C)∗(L1⊗L2) is a quotient line
bundle of EC , hence L1⊗L2 is ample and spanned. From c1(F)+2c1(G) = 1
we get degL1 + degL2 ≤ −[(2c1(G) − 1)/4] − [−c1(G)/2] = 1; this leads to
a contradiction since B is an elliptic curve. Similarly we can show that E is
not spanned in case (2.1; iii).

Theorem 2.3. Let X be a compact complex manifold of dimension n and
E an ample and spanned vector bundle of rank r on X with 1 < r < n− 1.
If g(X, E) = 3, then (X, E) is one of the following:

(i) (P6,OP6(1)⊕4);
(ii) (P1 × P3,OP1×P3(1, 1)⊕2);
(iii) There exists a double covering f : X → P4 with branch locus B ∈

|OP4(4)| and E = f∗OP4(1)⊕2.

Proof. Suppose that g(X, E) = 3. We argue as in the proof of (2.1). Since
E is spanned, there exists a nonzero section s ∈ H0(X, E) whose zero locus
Z := (s)0 is a smooth submanifold ofX of dimension n−r and 3 = g(X, E) =
g(Z,det EZ). From (1.7) we see that n − r = 2 and (Z, EZ) is one of the
cases in (1.7).

(2.3.1) If (Z, EZ) is in case (1a), (1b), or (1c) of (1.7), then Z = P2 and
(X, E) is the case (P1) of (1.4) since n− r = 2. We obtain that (X, E) is the
case (i) of our theorem by g(X, E) = 3.

(2.3.2) If (Z, EZ) is in case (3) of (1.7), then r = 2 and n = 4. By setting
A := KX +2 det E , we infer that (X,A) is a Del Pezzo manifold and E = A⊕2

from the same argument as that in (2.1.4). Then we find that A4 = 2 since
g(X, E) = 3. Hence we obtain that (X, E) is the case (iii) of our theorem by
[Fj1], Part I.

(2.3.3) If (Z, EZ) is in case (2a), (2b), (2c), or (4) of (1.7), then r = 2 and
n = 4. Since Z is a geometrically ruled surface, by (1.5), (X, E) is one of
the following:
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(R1) (P4,OP4(1)⊕OP4(2));
(R2) (Q4,OQ4(1)⊕2);
(R3) X is a P3-bundle over a smooth curve B and E eF = OP3(1)⊕2 for every

fiber F̃ of the bundle map π : X → B;
(R4) Z = F1, X ' PP2(F) for some ample vector bundle F on P2 with

c1(F) = 2k + 3 (k > 0), and E eF = OP2(1)⊕2 for every fiber F̃ of the
bundle map π : X → P2.

Cases (R1) and (R2) are ruled out by g(X, E) = 3. Case (R4) comes from
(2b) of (1.7), hence π|Z is the blowing-up F1 → P2 and EZ = [σ+2f ]⊕ [σ+
3f ]. We can write E = H(F)⊗ π∗G for some vector bundle G of rank 2 on
P2 and H(F)Z = aσ + bf for some a, b ∈ Z. Then

2σ + 5f = det EZ = 2H(F)Z + (π|Z)∗ detG
= (2a+ c1(G))σ + (2b+ c1(G))f,

hence 2a − 2b = −3, a contradiction. In case (R3), we have X ' PB(F)
and E = H(F) ⊗ π∗G for some vector bundles F and G on B such that
rankF = 4 and rankG = 2. Then

4 = 2g(X, E)− 2 = (KX + 2c1(E))c1(E)c2(E)

= 2(2g(B)− 2 + c1(F) + 2c1(G)),

where g(B) is the genus of B. Since E is ample, we find that c1(F)+2c1(G) >
0 from (det E)4 > 0. It follows that g(B) ≤ 1. In case g(B) = 0, we have
B ' P1 and c1(F) + 2c1(G) = 4. Then we can write F =

∑4
i=1O(ai) and

G =
∑2

j=1O(bj). By the same argument as that in (2.1.2), we infer that
ai + bj = 1 for every i and j. It follows that a1 = · · · = a4 and b1 = b2,
hence PB(F) ' P1 × P3 and E = OP1×P3(1, 1)⊕2, which is the case (ii) of
our theorem. In case g(B) = 1, we have c1(F) + 2c1(G) = 2. Then we
get a contradiction by the same argument as that in (2.2.4). We have thus
completed the proof. �

3. The cases g(X, E) = q(X) + 1 and g(X, E) = q(X) + 2.

Theorem 3.1. Let X be a compact complex manifold of dimension n and
let E be an ample and spanned vector bundle of rank r with 1 < r < n − 1.
Then g(X, E) = q(X) + 1 if and only if (X, E) is one of the following:

(1) (P5,OP5(1)⊕2);
(2) (P5,OP5(1)⊕3);
(3) (Q4,OQ4(1)⊕2).

Proof. First we note that if (X, E) is one of the cases (1),(2) and (3) of our
theorem, then we easily see that g(X, E) = 1 = q(X) + 1. Suppose that
g(X, E) = q(X) + 1 on the contrary. Let Z be a smooth submanifold of
X with dimZ = n − r defined as the zero locus of some s ∈ H0(X, E).
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Then g(X, E) = g(Z,det EZ). We put A := det EZ ; then A is ample and
spanned. If n− r ≥ 3, we take general members D1, . . . , Dn−r−2 ∈ |A| with
the property that S := D1 ∩ · · · ∩Dn−r−2 is a smooth surface. If n− r = 2,
we set S = Z. Hence there exists a polarized surface (S,AS) such that
g(Z,A) = g(S,AS). We get q(X) = q(Z) = q(S) by using (1.3). Thus we
get g(S,AS) = q(S) + 1.

We show that h0(KS) = 0. Indeed, it is obvious if κ(S) = −∞, where
κ(S) is the Kodaira dimension of S. When κ(S) ≥ 0, by Riemann-Roch
Theorem and Vanishing Theorem, we get

h0(KS +AS)− h0(KS) = g(S,AS)− q(S) = 1.

If h0(KS) > 0, then

h0(KS +AS) ≥ h0(KS) + h0(AS)− 1.

But this is impossible since h0(AS) ≥ 3. Hence h0(KS) = 0. Thus we get
g(S,AS) ≥ 2q(S) by Lemma 1.4 in [Ma1] since (S,AS) is not a scroll over
a smooth curve. Then q(S) ≤ 1 and g(X, E) ≤ 2 by the above argument.
So we obtain that (X, E) is the case (1),(2), or (3) of our theorem by using
(2.1), (2.2.4) and [I]. �

Remark 3.2. Let L be an ample and spanned line bundle on a compact
complex manifold X of dimension n ≥ 2. When n ≥ 3, we have g(X,L) =
q(X) + 1 if and only if (X,L) is a Del Pezzo manifold (see [Fk3]). When
n = 2, we have g(X,L) = q(X) + 1 if and only if (X,L) is a Del Pezzo
surface (i.e., L = −KX) or X ' PB(F) and L ≡ 2H(F) for some ample
vector bundle F of rank 2 on an elliptic curve B with c1(F) = 1. We can
prove this by the argument in (3.1) and Theorem 3.1 in [LP].

Proposition 3.3. Let X be a compact complex manifold of dimension n
and let E be an ample and spanned vector bundle of rank r with 1 < r < n−1.
Then we have g(X, E) 6= q(X) + 2.

Proof. The following argument is similar to the proof of (3.1). Suppose that
g(X, E) = q(X)+2. Let Z be a smooth submanifold of X with dimZ = n−r
defined as the zero locus of some s ∈ H0(X, E). Then g(X, E) = g(Z,det EZ)
and det EZ is ample and spanned. As in the proof of (3.1), we get a smooth
surface S such that g(Z,det EZ) = g(S,det ES). We have q(X) = q(Z) =
q(S), thus we get g(S,det ES) = q(S) + 2. Then we find that q(S) ≤ 1 by
Theorem 3.4 in [R]. It follows that g(X, E) ≤ 3 and we infer that (X, E)
does not exist from (2.1), (2.2.4) and (2.3). This completes the proof. �

Remark 3.4. We see that the pairs (X, E) in (2.3) satisfy g(X, E) = q(X)+
3. In Appendix we give a classification of polarized surfaces (X,L) such that
g(X,L) = q(X) + 2 and L is spanned.
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4. Another Lower bound for g(X, E).

Proposition 4.1. Let L be an ample and spanned line bundle on a compact
complex manifold X with dimX = n ≥ 2. Then g(X,L) ≥ 2q(X)− 1 unless
(X,L) is a scroll over a smooth curve B of genus g(B) ≥ 2.

Proof. Since L is ample and spanned, if n ≥ 3, we can take general members
D1, . . . , Dn−2 ∈ |L| such that S := D1 ∩ · · · ∩Dn−2 is a smooth surface. If
n = 2, we set S = X. Then we get g(X,L) = g(S,LS) and q(X) = q(S).

If κ(S) ≥ 0, then g(X,L) = g(S,LS) ≥ 2q(S)−1 = 2q(X)−1 by Corollary
3.2 in [Fk1].

If κ(S) = −∞ and (S,LS) is not a scroll over a smooth curve, then
g(X,L) = g(S,LS) ≥ 2q(S) = 2q(X) by Lemma 1.4 in [Ma1].

If κ(S) = −∞ and (S,LS) is a scroll over a smooth curve, then g(X,L) =
g(S,LS) = q(S) = q(X). Hence we get g(X,L) ≥ 2q(X)− 1 if q(S) ≤ 1. So
we may assume that q(S) ≥ 2. Then we obtain that (X,L) is a scroll over
a smooth curve B of genus g(B) ≥ 2 by using Theorem 3 in [Bǎ]. �

Theorem 4.2. Let X be a compact complex manifold with dimX = n and
let E be an ample and spanned vector bundle of rank r with 1 < r < n − 1.
Then g(X, E) ≥ 2q(X)− 1.

Proof. Let Z be the zero locus of some s ∈ H0(X, E) such that Z is a
smooth submanifold of X with dimZ = n− r. Then g(X, E) = g(Z,det EZ)
and q(X) = q(Z). We put A := det EZ ; then A is ample and spanned.
Since (Z,A) is not a scroll, by (4.1), we obtain that g(X, E) = g(Z,A) ≥
2q(Z)− 1 = 2q(X)− 1. �

5. The case of a fiber space over a curve.

Definition 5.1. Here we say that a quartet (f,X,C, E) is a generalized
polarized fiber space over a curve if:

(1) X and C are compact complex manifolds with 1 = dimC < dimX =
n,

(2) f : X → C is a surjective morphism with connected fibers, and
(3) E is an ample vector bundle of rank r on X.

Theorem 5.2. Let (f,X,C, E) be a generalized polarized fiber space over a
curve with r ≤ n− 1. Then g(X, E) ≥ g(C).

Proof. First we remark that the following equality holds:

g(X, E) = g(C) +
1
2
(KX/C + (n− r)c1(E))c1(E)n−r−1cr(E)(5.2.1)

+ (g(C)− 1)(c1(E)n−r−1cr(E)F − 1),

where KX/C := KX − f∗(KC) and F is a general fiber of f .
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If g(C) = 0, then Theorem 5.2 is true by [I]. So we may assume that
g(C) ≥ 1.

(I) The case in which KX/C + (n− r)c1(E) is f -nef.
Then there exists a surjective map

f∗ ◦ f∗(O(m(KX/C + (n− r)c1(E)))) → O(m(KX/C + (n− r)c1(E)))

for any large m by base point free theorem.
By Theorem A in Appendix in [Fk2], f∗(O(m(KX/C + (n− r)c1(E)))) is

semipositive. Hence KX/C + (n− r)c1(E) is nef. So we get

(KX/C + (n− r)c1(E))c1(E)n−r−1cr(E) ≥ 0.

Hence we obtain g(X, E) ≥ g(C) because of (5.2.1) and c1(E)n−r−1cr(E)F ≥
1.

(II) The case in which KX/C + (n− r)c1(E) is not f -nef.
Then KX + (n − r)c1(E) is not nef. So by Mori Theory, there exists an

extremal rational curve l such that (KX + (n− r)c1(E))l < 0. Hence

n+ 1 ≥ −KX l > (n− r)c1(E)l ≥ (n− r)r ≥ n− 1.

If (n− r)r = n, then (n, r) = (4, 2).
If (n− r)r = n− 1, then r = 1 or r = n− 1.

(II-1) The case where (n, r) = (4, 2).
Then −KX l = 5 = n + 1. So we have PicX ∼= Z by [W]. But this is

impossible because X has a nontrivial fibration.

(II-2) The case in which r = 1.
Then Theorem 5.2 is true by Theorem 1.2.1 in [Fk2].

(II-3) The case in which r = n− 1.
If n = 2, then r = 1 and so we may assume that n ≥ 3. Since X has

a nontrivial fibration, (X, E) is the following type by [YZ]: There exists
a surjective morphism π : X → B such that any fiber of π is Pn−1 and
E|Fπ

∼= O(1)⊕n−1, where B is a smooth curve and Fπ is a fiber of π.
Since any fiber of π is Pn−1, there exists a morphism δ : B → C such

that f = δ ◦ π. Because f has connected fibers, δ is an isomorphism. In
particular, g(B) = g(C). On the other hand, by [Ma2], g(X, E) = g(B).
Hence g(X, E) = g(C). This completes the proof of Theorem 5.2. �

Theorem 5.3. Let (f,X,C, E) be a generalized polarized fiber space over a
curve with 2 ≤ r ≤ n− 1. If g(X, E) = g(C), then r = n− 1, any fiber F of
f is isomorphic to Pn−1 and E|F ∼= ⊕n−1

i=1 OPn−1(1).

Proof. (I) The case in which g(C) ≤ 1.
Then g(X, E) = g(C) ≤ 1, and by the classification results of [I] and

[Ma2], we get the following: X is a Pn−1-bundle over P1 or a smooth elliptic
curve and E|Fπ

∼= OPn−1(1)⊕n−1, where Fπ is a fiber of its bundle map
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π : X → B and B is P1 or a smooth elliptic curve. Since any fiber of π is
Pn−1, there exists a morphism δ : B → C such that f = δ ◦ π. Because f
has connected fibers, δ is an isomorphism. Therefore we get the assertion.

(II) The case in which g(C) ≥ 2.

(II-1) n− r ≥ 2 case.
If KX/C + (n− r− 1)c1(E) is f -nef, then by the same argument as in the

proof of Theorem 5.2 we get

(KX/C + (n− r − 1)c1(E))c1(E)n−r−1cr(E) ≥ 0

and
(KX/C + (n− r)c1(E))c1(E)n−r−1cr(E) ≥ 1.

Hence we obtain that g(X, E) > g(C) by (5.2.1). So we may assume that
KX/C + (n− r− 1)c1(E) is not f -nef. Then by Mori Theory, there exists an
extremal rational curve l such that (KX + (n− r− 1)c1(E))l < 0. Hence we
get

n+ 1 ≥ −KX l > (n− r − 1)c1(E)l ≥ (n− r − 1)r ≥ n− 2.
If (n− r− 1)r = n, then −KX l = n+ 1 and PicX ∼= Z by [W]. But this

is impossible.
If (n− r − 1)r = n− 1, then n = 5 and r = 2.
Here we prove the following Lemma.

Lemma 5.4. Let (f,X,C, E) be a generalized polarized fiber space over a
curve with 2 ≤ r ≤ n−1 and g(C) ≥ 1. If κ(KF +xc1(EF )) ≥ 0 for a rational
number x with x < n−r and a general fiber F of f , then g(X, E) ≥ g(C)+1.

Proof. By assumption, there exists a natural number N such that

f∗(O(N(KX/C + xc1(E)))) 6= 0.

By Remark 1.3.2 in [Fk2], N(KX/C +xc1(E)) is pseudo effective. Therefore

(KX/C + xc1(E))c1(E)n−r−1cr(E) ≥ 0

and we get
(KX/C + (n− r)c1(E))c1(E)n−r−1cr(E) ≥ 1.

Since g(C) ≥ 1, we get that g(X, E) ≥ g(C) + 1 by (5.2.1). �

We continue the proof of Theorem 5.3. IfKF +xc1(EF ) is nef for a rational
number x with x < 3, then we can prove that g(X, E) > g(C) by Lemma
5.4.

Assume that KF +xc1(EF ) is not nef for a rational number x with x < 3.
Then there exists an extremal rational curve l on F such that n ≥ −KF l >
xc1(EF )l ≥ rx. Since n = 5 and r = 2, we have x < 5/2. Therefore there
exists a rational number y < 3 such that KF + yc1(EF ) is nef, and we get
g(X, E) > g(C).
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If (n − r − 1)r = n − 2, then r = n − 2 by assumption. Assume that
KF + xc1(EF ) is not nef for a rational number x with x < 2. Then we
get n > rx by the same argument as above. Since r = n − 2, we get
x < n/(n − 2) = 1 + 2/(n − 2). By assumption, we get n ≥ 4. So we
have x < 2. Therefore there exists a rational number y < 2 such that
KF + yc1(EF ) is nef. Hence we have g(X, E) > g(C).

(II-2) n− r = 1 case.
First we assume that KF + c1(EF ) is nef for a general fiber F of f . If

KF + c1(EF ) is ample, then there exists a rational number t > 0 such that
κ(KF + (1− t)c1(EF )) ≥ 0 by Kodaira’s Lemma. So we get that g(X, E) >
g(C) by the same argument as above. Assume that KF + c1(EF ) is not
ample. Since dimF = rank EF , by [Fj3], we get that (F, EF ) is one of the
following:

(A) (Pn−1,OPn−1(2)⊕OPn−1(1)⊕n−2),
(B) (Pn−1, TPn−1),
(C) (Qn−1,OQn−1(1)⊕n−1),
(D) F is a Pn−2-bundle over a smooth curve B and EFπ = OP1(1)⊕n−1 for

every fiber Fπ of the projection π : F → B.

If (F, EF ) is one of the type (A), (B), or (C), then h0(KF + c1(EF )) > 0 by
easy calculation. Here we prove the following Lemma.

Lemma 5.5. Let (f,X,C, E) be a generalized polarized fiber space over a
curve with 2 ≤ r ≤ n − 1. If h0(KF + c1(EF )) > 0 for a general fiber F of
f , then (KX/C + c1(E))c1(E)n−r−1cr(E) > 0.

Proof. By hypothesis, f∗O(KX/C + c1(E)) 6= 0. By Theorem 2.4 and Corol-
lary 2.5 in [EV], we get that f∗O(KX/C + c1(E)) is ample. By the proof of
Lemma 1.4.1 in [Fk2], we get that m(KX/C + c1(E)) − f∗A is an effective
divisor for a large number m and an ample divisor A on C. Hence we obtain
(KX/C + c1(E))c1(E)n−r−1cr(E) > 0. �

By Lemma 5.5, we get that g(X, E) > g(C) if (F, EF ) is one of the type
(A), (B), or (C).

Assume that (F, EF ) is the type (D). Then there exist vector bundles
F and G on B with rankF = rankG = n − 1 such that EF

∼= H(F) ⊗
π∗(G), where H(F) is the tautological line bundle of P(F). Then KF +
c1(EF ) = π∗(KB +detF +detG). Since KF + c1(EF ) is nef, we get (KX/C +
c1(E))cr(E) ≥ 0 by the proof of Lemma 5.4. We have g(X, E) = g(C), then
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cr(E)F = 1 by (5.2.1). Since 1 = cr(EF ) = c1(F) + c1(G), we obtain that

h0(KB + detF + detG)

≥ 1− g(B) + deg(KB + detF + detG)

= g(B)− 1 + c1(F) + c1(G)

= g(B).

Because KF + c1(EF ) is nef, we obtain that deg(KB + detF + detG) ≥ 0.
Hence g(B) ≥ 1. Therefore h0(KF + c1(EF )) ≥ 1. By Lemma 5.5 we obtain
that g(X, E) > g(C) and this is a contradiction.

Next we assume that KF + c1(EF ) is not nef. Then KX + c1(E) is not nef
and the same argument as in the proof of Theorem 5.2, case (II-3), shows
that (f,X,C, E) is as required. This completes the proof of Theorem 5.3. �

Remark 5.6. Let (f,X,C, E) be as in Theorem 5.2. Suppose that g(X, E)
= g(C) and r = 1. Then by Theorem 1.4.2 and Proposition 1.4.3 in
[Fk2], (f,X,C, E) is a scroll (in the sense of [Fk2], §0) unless n = 2 and
(f,X,C, E) ∼= (π,P1×P1,P1, L), where π is one projection such that LFπ ≥ 2
for a fiber Fπ of π. By the other projection ρ, however, (ρ,P1 × P1,P1, L)
becomes a scroll.

Appendix.

Proposition A. Let (X,L) be a quasi-polarized surface (i.e., L is a nef
and big line bundle on a smooth surface X) such that κ(X) = 2 and h0(L) ≥
2. Then KXL ≥ 2q(X)− 2. If equality holds and (X,L) is L-minimal (i.e.,
LE > 0 for any (−1)-curve E on X), then (X,L) is the following:
X ∼= F × C and L ≡ C + 2F , where F and C are smooth curves with

g(F ) = 2 and g(C) ≥ 2.

Proof. See [Fk4]. �

Proposition B. Let (X,L) be a polarized surface with κ(X) = 0 or 1.
Assume that L is spanned. Then g(L) := g(X,L) ≥ 2q(X). Furthermore if
g(L) = 2q(X), then (X,L) is one of the following:

(1) (X,L) is a polarized abelian surface with L2 = 6 such that (X,L) 6∼=
(E1 × E2, p

∗
1(D1) + p∗2(D2)), where Ei is a smooth elliptic curve, pi is

the i-th projection, and Di ∈ Pic(Ei) for i = 1, 2 with degD1 = 1 and
degD2 = 3.

(2) X is a one point blowing up of S, and L = µ∗A − 2E, where S is an
abelian surface, A is an ample line bundle with A2 = 8, µ : X → S is
its blowing up, and E is a (−1)-curve of µ.

(3) κ(X) = 1, L2 = 4, q(X) = 3, X has a locally trivial elliptic fibration
f : X → C, and LF = 3 for a fiber F of f , where C is a smooth curve
with g(C) = 2.
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Proof. See [Fk5]. �

Theorem. Let X be a smooth projective surface and let L be an ample
and spanned line bundle on X. If g(L) = q(X) + 2, then (X,L) is one of
the following:

(1) (X,L) is a relatively minimal conic bundle over a smooth curve B of
genus two (i.e., X is a P1-bundle over B and LF = OP1(2) for every
fiber F of the ruling).

(2) X is a P1-bundle X0 blown-up at s (0 ≤ s ≤ 4) points p1, . . . , ps on
distinct fibers and L = π∗L0 − E1 − · · · − Es, where π : X → X0 is
the blowing up, Ei = π−1(pi), X0 is an elliptic P1-bundle of invariant
e ≤ 0, and L0 ≡ 2σ + (e + 2)f (σ is a minimal section with σ2 = −e
and f is a fiber).

(3) X is an Fe (e ≤ 2) blown-up at s (0 ≤ s ≤ 9) points p1, . . . , ps on
distinct fibers and L = π∗L0 −E1 − · · · −Es, where π : X → Fe is the
blowing up, Ei = π−1(pi), and L0 ≡ 2σ + (e+ 3)f .

(4) X is a Del Pezzo surface of degree one and there exists a double cov-
ering π : X → Q ⊂ P3 of a quadric cone Q branched at the vertex
and along the transverse intersection of Q with a cubic surface and
L = π∗(OQ(1)).

(5) (X,L) is a polarized abelian surface with L2 = 6 such that (X,L) 6∼=
(E1 × E2, p

∗
1(D1) + p∗2(D2)), where Ei is a smooth elliptic curve, pi is

the i-th projection, and Di ∈ Pic(Ei) for i = 1, 2 with degD1 = 1 and
degD2 = 3.

(6) X is a blowing up of an abelian surface S at one point p and L =
π∗A− 2E, where π : X → S is the blowing up, E = π−1(p), and A is
an ample line bundle on S with A2 = 8.

(7) X is a K3 surface which is a double covering of P2 branched along a
smooth curve of degree six and L is the pull back of OP2(1).

Proof. (I) The case in which κ(X) = 0 or 1.
Then by Proposition B, we get that g(L) ≥ 2q(X). So we obtain q(X) ≤ 2

by assumption.
(I-1) If q(X) = 2, then g(L) = q(X) + 2 = 2q(X) and by Proposition B

we get the type (5) and (6) in Theorem.
(I-2) If q(X) ≤ 1, then g(L) ≤ 3 and L2 ≤ 4 by KXL ≥ 0.
(I-2-1) If L2 = 4, then κ(X) = 0 and X is minimal since KXL = 0.

So by Kodaira vanishing Theorem and Riemann-Roch Theorem, we get the
equality: h0(L) = L2/2 + χ(OX) = 2 + χ(OX). Because L is ample and
spanned, we obtain h0(L) ≥ 3 and χ(OX) ≥ 1. But then q(X) = 0 by the
classification theory of surfaces and this is impossible.

(I-2-2) If L2 = 3, then g(L) = 3, KXL = 1, and q(X) = 1. We have
h0(L) ≥ 3 since L is ample spanned.
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If h0(L) ≥ 4, then g(L) > ∆(L) and L2 ≥ 2∆(L) + 1, where ∆(L) :=
2 + L2 − h0(L) is the ∆-genus of L. But then q(X) = 0 (see e.g. (I.3.5) in
[Fj4]).

If h0(L) = 3, then there is a triple covering ϕ|L| : X → P2 which is defined
by |L|. Let E be a vector bundle of rank two on P2 such that π∗OX = OP2⊕E .
By Lemma 3.2 in [Be], we get the following two equalities:

(i) χ(OX) = (1/2)g(L)(g(L) + 1) + 2− c2,
(ii) K2

X = 2g(L)2 − 4g(L) + 11− 3c2,
where c2 := c2(E). Since g(L) = 3, we get that 3χ(OX) −K2

X = 7 by the
above equalities.

If κ(X) = 0, thenK2
X = −1 becauseKXL = 1. So we get χ(OX) = 2. But

by the classification theory of surfaces, this is impossible because q(X) = 1.
If κ(X) = 1, then X is minimal and K2

X = 0 because KXL = 1. But then
3χ(OX) = 7 and this is impossible.

(I-2-3) If L2 = 2, then KXL = 0 or 2. Since κ(X) ≥ 0, we get that
∆(L) ≥ 1 and h0(L) = 3. Then there exists a double covering ϕ|L| : X → P2

which is defined by |L|. We remark that KX = ϕ∗|L|(KP2 + D) for some
D ∈ Pic(P2). Since κ(X) = 0 or 1, we get that κ(X) = 0 and so X is
minimal. In particular KX = OX . Therefore KXL = 0 and g(L) = 2. Since
h0(L) = L2/2 + χ(OX) = 1 + χ(OX), we get χ(OX) = 2. Hence X is a
K3 surface by the Classification theory of surfaces. This is the type (7) in
Theorem.

(II) The case in which κ(X) = 2.
Then by Corollary 3.2 in [Fk1], we get g(L) ≥ 2q(X) − 1. So we obtain

q(X) ≤ 3 and g(L) ≤ 5 by assumption. Furthermore L2 ≤ 3 by Proposition
A because L is spanned. (We remark that L is L-minimal if L is ample.)

If h0(L) ≥ 4, then g(L) > 1 ≥ ∆(L) and L2 ≥ 2∆(L) + 1. On the other
hand, since κ(X) ≥ 0, we obtain that ∆(L) = 1 and L2 = 3. So we get
q(X) = 0 and g(L) ≥ 3 and this is impossible. Therefore h0(L) = 3.

If L2 = 3, then there exists a triple covering ϕ|L| : X → P2 which is
defined by |L|. In this case, by the same argument as above, we get

2(K2
X − 3χ(OX)) = (g(L)− 1)(g(L)− 10).

Since 3 ≤ g(L) ≤ 5, we get the following:
(α) (g(L), q(X),KXL,K

2
X − 3χ(OX)) = (5, 3, 5,−10),

(β) (g(L), q(X),KXL,K
2
X − 3χ(OX)) = (4, 2, 3,−9),

(γ) (g(L), q(X),KXL,K
2
X − 3χ(OX)) = (3, 1, 1,−7).

Claim. The above three cases cannot occur.

Proof. (II-1) The case (γ).
In this case X is minimal because KXL = 1. But then this is impossible

by Hodge index Theorem.
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(II-2) The case (β).
If X is minimal, then K2

X ≥ 2q(X) = 4 by Théorème 6.1 in [D]. On the
other hand, K2

X ≤ 3 by Hodge index Theorem and this is a contradiction.
So we get that X is not minimal. Let µ := µr ◦ · · · ◦ µ1 : X := X0 →

X1 → · · · → Xr−1 → Xr =: X ′ be an admissible minimalization of X and
let m = (mr, . . . ,m1) be the weight sequence of this minimalization (see
(II.14.4) in [Fj4]). We remark that mr ≥ · · · ≥ m1.

If m1 = 1, then g(L1) = q(X1) + 1 and h0(L1) ≥ 2, where L1 := (µ1)∗(L)
in the sense of cycle theory. But then this is impossible by Proposition
A because 2 = KXL > KX1L1. So we get m1 ≥ 2. Then L2

1 ≥ 7 and
KX1L1 ≤ 1. Hence X1 is minimal and this is a contradiction by Hodge
index Theorem.

(II-3) The case (α).
If X is minimal, then χ(OX) ≥ 4 because 3χ(OX) = K2

X + 10. Further-
more pg(X) ≥ 6 since q(X) = 3. Hence K2

X ≥ 2pg(X) ≥ 12 by Théorème
6.1 in [D]. But this is impossible by Hodge index Theorem. So we get that
X is not minimal. By the same argument as in the case (II-2) we get a
contradiction. �

We continue the proof of Theorem.
If L2 = 2, then there exists a double covering ϕ|L| : X → P2 which is

defined by |L|. Let OP2(a) be a line bundle on P2 such that B ∈ |OP2(2a)|,
where B is the branch locus. Then (ϕ|L|)∗(OX) = OP2 ⊕OP2(−a). Hence

h1(OX) = h1((ϕ|L|)∗(OX)) = h1(OP2) + h1(OP2(−a)) = 0.

So we get g(L) = 2. But since KXL > 0 and L2 = 2, this is impossible.
(III) The case in which κ(X) = −∞.
Since (X,L) is not a scroll over a smooth curve, we get g(L) ≥ 2q(X) by

Lemma 1.4 in [Ma1]. So q(X) ≤ 2.
(III-1) The case in which q(X) = 2.
In this case, g(L) = q(X) + 2 = 2q(X). Since KX + L is nef, we get

0 ≤ (KX + L)2 = (KX)2 + 2(KX + L)L− L2

≤ 8(1− q(X)) + 4(g(L)− 1)− L2

= 4(g(L)− 2q(X) + 1)− L2.

Hence L2 ≤ 4 in this case.
If L2 = 4, then X is relatively minimal and (KX +L)2 = 0, that is, (X,L)

is a relatively minimal conic bundle over a smooth curve. This is the type
(1) in Theorem.

If L2 ≤ 3 and h0(L) ≥ 4, then we get a contradiction as in (I-2-2). So we
may assume that L2 ≤ 3 and h0(L) = 3.
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If L2 = 3, then KXL = 3 and there is a triple covering ϕ|L| : X → P2

which is defined by |L|. Since χ(OX) = −1, we get that K2
X = −12 by

Lemma 3.2 in [Be]. Here we calculate (KX + L)2;

(KX + L)2 = K2
X + 2KXL+ L2 = −12 + 6 + 3 < 0.

But this is a contradiction because KX + L is nef.
If L2 = 2, then there is a double covering ϕ|L| : X → P2 which is defined

by |L|. But then q(X) = 0 and this is a contradiction.
(III-2) The case in which q(X) = 1.
Then g(L) = 3. Here we use the classification of polarized surfaces with

sectional genus three by [LL].

Claim. The case in which L2 = 3 cannot occur.

Proof. If L2 = 3 and h0(L) ≥ 4, then g(L) > 1 ≥ ∆(L) and L2 ≥ 2∆(L)+1.
But this is impossible because q(X) = 1. So we may assume that h0(L) = 3.
Then there is a triple covering ϕ|L| : X → P2 which is defined by |L|. Since
χ(OX) = 0, we get K2

X = −7 by Lemma 3.2 in [Be]. But in the table II of
[LL], the case in which L2 = 3 cannot occur. �

Next we prove that the following case cannot occur (see (2.6) in [LL]):
X is an elliptic P1-bundle X] of invariant e = 0, blown up at a single point

p not lying on a curve D ∈ |mσ|, m ≤ 2 and L = η∗[4σ+(2e+1)f ]⊗ [E]−2.
(Here we use the same notations as in [LL].)

Let σ′ be the strict transform of σ under η. Since

0 < Lσ′ = (4σ + f)σ − 2Eσ′ = 1− 2Eσ′,

we see that Eσ′ = 0 and Lσ′ = 1. It follows that σ ∼= σ′ ∼= P1 since L is
spanned. This is a contradiction.

By the above argument, we obtain the type (2) in Theorem by the clas-
sification of polarized surfaces with sectional genus three (see [LL]).

(III-3) The case in which q(X) = 0.
Then g(L) = 2. So by Theorem 3.1 in [LP] we get the type (3) and (4)

in Theorem. �
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[PSW] T. Peternell, M. Szurek and J.A. Wísniewski, Fano manifolds and vector bundles,
Math. Ann., 294 (1992), 151-165.

[R] F. Russo, Some inequalities for ample and spanned vector bundles on algebraic
surfaces, Boll. Un. Mat. Ital. A (7), 8 (1994), 323-333.
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