Pacific Journal of Mathematics

 L^2 SPECTRAL DECOMPOSITION ON THE HEISENBERG GROUP ASSOCIATED TO THE ACTION OF U(p,q)

T. Godoy and L. Saal

Volume 193 No. 2 April 2000

L^2 SPECTRAL DECOMPOSITION ON THE HEISENBERG GROUP ASSOCIATED TO THE ACTION OF U(p,q)

T. Godoy and L. Saal

Here we consider the Heisenberg group $H_n = C^n \times \Re$. U(p,q), p+q=n, acts by automorphism on H_n by $g \cdot (z,t) = (gz,t)$.

Let $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n, T\}$ be the standard basis of the Lie algebra of H_n and let

$$L = \sum_{j=1}^{p} \left(X_{j}^{2} + Y_{j}^{2}
ight) - \sum_{j=n+1}^{n} \left(X_{j}^{2} + Y_{j}^{2}
ight).$$

Via the Plancherel inversion formula, we obtain the joint spectral decomposition of $L^{2}\left(H_{n}\right)$ with respect to L and T

$$f = \sum_{k \in \mathbb{Z}} \int_{-\infty}^{+\infty} f * S_{\lambda,k} \left| \lambda
ight|^n d\lambda, \quad f \in S\left(H_n
ight)$$

where each $S_{\lambda,k}$ is a tempered distribution U(p,q) invariant satisfying $iTS_{\lambda,k}=\lambda S_{\lambda,k}, LS_{\lambda,k}=-|\lambda|\,(2k+p-q)\,S_{\lambda,k}$. We compute explicitly the distributions $S_{\lambda,k}$ and the integral $\mu_k=\int_{-\infty}^{+\infty}f*S_{\lambda,k}\,|\lambda|^n\,d\lambda$.

1. Introduction.

Let $H_n = C^n \times \Re$ with law group (z,t) $(z',t') = (z+z',t+t'-\frac{1}{2}\text{Im}B(z,z'))$, where $B(z,w) = \sum_{j=1}^p z_j \overline{w_j} - \sum_{j=p+1}^n z_j \overline{w_j}$. Then H_n can be viewed as the 2n+1 dimensional Heisenberg group. Indeed, if n=p+q, Q(z,w)=-ImB(z,w) is the standard symplectic form on $\Re^{2(p+q)}$ via the identification $\Psi:\Re^{2(p+q)}\to C^n$ given by

$$(1.1) \quad \Psi(x', x'', y', y'') = (x' + iy', x'' - iy''), \quad x', y' \in \Re^p; x'', y'' \in \Re^q.$$

Moreover, Ψ provides a global coordinate system (x, y, t) with x = (x', x''), y = (y', y''). The vector fields $X_j = -\frac{1}{2}y_j\frac{\partial}{\partial t} + \frac{\partial}{\partial x_j}$, $Y_j = \frac{1}{2}x_j\frac{\partial}{\partial t} + \frac{\partial}{\partial y_j}$, $j = 1, \ldots, n$ and $T = \frac{\partial}{\partial t}$ form a basis for the Lie algebra h_n of H_n . As usual, $\mathcal{U}(h_n)$ will denote its universal enveloping algebra, which can be identified with the algebra of left invariant differential operators on H_n .

 $U\left(p,q\right)=\left\{ g\in GL\left(n,\mathbb{C}\right):B\left(gz,gw\right)=B\left(z,w\right)\right\}$ acts by automorphism on H_{n} by

$$(1.2) g \cdot (z,t) = (gz,t), g \in U(p,q), (z,t) \in H_n.$$

It is well known that the subalgebra $\mathcal{U}(h_n)^{U(n)}$ of the elements which commute with the action of U(n) = U(n,0) given by (1.2), is generated by T and the Heisenberg Laplacian $\sum_{j=1}^{n} \left(X_j^2 + Y_j^2\right)$. The spherical functions asso-

ciated with the Gelfand pair $(U(n), H_n)$ have been obtained independently by many authors (see e.g., [H-R], [Ko], [St]). Moreover in [B-J-R] it is developed a general calculus to provide the bounded K- spherical functions for a Gelfand pair $(K, H_n), K \subset U(n)$.

For general p, q, p + q = n, let

$$L = \sum_{j=1}^{p} (X_j^2 + Y_j^2) - \sum_{j=p+1}^{n} (X_j^2 + Y_j^2).$$

Then

$$(1.3) \quad L = \left(\sum_{j=1}^{p} \left(x_j^2 + y_j^2\right) - \sum_{j=p+1}^{n} \left(x_j^2 + y_j^2\right)\right) \frac{\partial^2}{\partial t^2} + \sum_{j=1}^{p} \left(\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2}\right) - \sum_{j=p+1}^{n} \left(\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2}\right) + \frac{\partial}{\partial t} \sum_{j=1}^{n} \left(x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j}\right).$$

It is easy to see, reasoning as in the case p=n,q=0, (see Lemma 2.1 below), that the subalgebra $\mathcal{U}(h_n)^{U(p,q)}$, of the left invariant differential operators which commute with the action of U(p,q) is generated by T and L. So, it is natural to ask for the joint eigendistributions of L and T and the associated decomposition of $L^2(H_n)$. In order to do this, we will use, following [St], the Plancherel inversion formula to decompose $f \in S(H_n)$ as

$$f = \sum_{k \in \mathbb{Z}} \int_{-\infty}^{+\infty} f * S_{\lambda,k} |\lambda|^n d\lambda$$

where each $S_{\lambda,k}$ is a tempered and $U\left(p,q\right)$ invariant distribution satisfying $iTS_{\lambda,k}=\lambda S_{\lambda,k},\ LS_{\lambda,k}=-\left|\lambda\right|\left(2k+p-q\right)S_{\lambda,k}.$

Next we will study the confluent hypergeometric equation in a suitable distribution space in order to obtain that, for $k \ge q$

$$\langle S_{\lambda,k}, f \rangle = c \sum_{j=0}^{n-2} c_j(\lambda) \int_{\Re} e^{-i\lambda t} \delta_B^j(f(.,t)) dt$$

$$+ c \int_{C^n \times \Re} e^{-i\lambda t} e^{-\frac{|\lambda|}{4}B(z)} L_{k-q}^{n-1}\left(\frac{|\lambda|}{2}B(z)\right) H(|\lambda|B(z)) f(z,t) dz dt$$

where B(z) = B(z, z), H is the Heaviside function, δ_B^j are canonical distributions associated to the quadratic form B defined as in [G-Sh], supported on $\{z \in C^n : B(z) = 0\}$ and where L_{k-q}^{n-1} denotes, as usual, a Laguerre polynomial. The various constants $c, c_j(\lambda)$ are explicitly computed. Similar formulas are obtained if $k \leq -p$. If -p < k < q, $S_{\lambda,k}$ is written as a finite sum in terms of the distributions δ_B^j , j = 1, ..., n-2. Finally, we compute $\mu_k = \int_{\Re} S_{\lambda,k} |\lambda|^n d\lambda$ and so the projections $\wp_k f = f * \mu_k, k \in \mathbb{Z}$. In particular we recover the projections ento the learned of L + i(2k + n - q)T extending

we recover the projections onto the kernel of L + i(2k + p - q)T, extending the formula given in [M-R,2] for n = 2, p = q = 1, to arbitrary n, p, q.

Acknowledgments. We express our thanks to Fulvio Ricci who introduced and guides us in this beautiful subject and to Jorge Vargas for many useful conversations.

2. Some preliminaries.

As in the case p = n, q = 0 we have that $\mathcal{U}(h_n)^{U(p,q)}$ is generated by T and L and the proof follows the same lines but we add it for the sake of completeness.

Lemma 2.1. $\mathcal{U}(h_n)^{U(p,q)}$ is generated by T and L.

Proof. Let $S(h_n)$ be the symmetric algebra generated by the set

$$\{X_1,\ldots,X_n,Y_1,\ldots,Y_n,T\}$$

and let $\Lambda: S(h_n) \to \mathcal{U}(h_n)$ be the symmetrizer map. Since U(p,q) acts on $S(h_n)$ and on $\mathcal{U}(h_n)$ by automorphism, the following diagram is commutative (see $[\mathbf{V}]$, Th. 3.3.4)

$$S(h_n) \xrightarrow{\Lambda} \mathcal{U}(h_n)$$

$$\downarrow g \qquad \qquad \downarrow g , \qquad g \in U(p,q).$$

$$S(h_n) \xrightarrow{\Lambda} \mathcal{U}(h_n)$$

 Λ is a linear isomorphism, thus Λ maps $S(h_n)^{U(p,q)}$ onto $\mathcal{U}(h_n)^{U(p,q)}$. Since the action of U(p,q) preserves degree on $S(h_n)$, the lines of Theorem 3.3.8 in $[\mathbf{V}]$ say that if $\{1,u_1,\ldots,u_m\}$ is a set of generators of $S(h_n)^{U(p,q)}$, then $\{1,\Lambda(u_1),\ldots,\Lambda(u_m)\}$ generates $\mathcal{U}(h_n)^{U(p,q)}$. If $u\in S(h_n)^{U(p,q)}$ then $u=\sum P_j(X_1,\ldots,X_n,Y_1,\ldots,Y_n,)T^j$ where the sum is finite and each P_j is a polynomial U(p,q) invariant. Decomposing P_j as a sum of homogeneous polynomials, the same is true for all of them. Since SU(p,q) acts transitively on

$$S_1 = \left\{ (x, y) \in \Re^{2n} : \sum_{j=1}^{p} (x_j^2 + y_j^2) - \sum_{j=p+1}^{n} (x_j^2 + y_j^2) = 1 \right\}$$

each P_j must be a polynomial in $\sum_{j=1}^{p} \left(x_j^2 + y_j^2\right) - \sum_{j=p+1}^{n} \left(x_j^2 + y_j^2\right)$. This ends the proof.

We recall that for $\lambda \in \Re \lambda \neq 0$, the Schrödinger's representation π_{λ} of the Heisenberg group $\Re^n \times \Re^n \times \Re$ is defined on $L^2(\Re^n)$ by

(2.1)
$$\pi_{\lambda}(x,y,t) h(\zeta) = e^{-i\left(\lambda t + sg(\lambda)\sqrt{|\lambda|}x \cdot \zeta + \frac{1}{2}\lambda x \cdot y\right)} h\left(\zeta + \sqrt{|\lambda|}y\right).$$

We denote by $E_{\lambda}(h_1, h_2)$ the matrix entry associated to π_{λ} and the vectors h_1, h_2 , given by

$$E_{\lambda}(h_1, h_2)(x, y, t) = \langle \pi_{\lambda}(x, y, t) h_1, h_2 \rangle.$$

We also denote by $d\pi_{\lambda}$ the infinitesimal representation defined on the space of C^{∞} vectors for π_{λ} , which is, in this case, the space of the rapidly decreasing functions

$$d\pi_{\lambda}(X) h = \frac{d}{dt}_{|t=0} \pi_{\lambda}(\exp tX) h.$$

We still denote by π_{λ} the corresponding representation of $H_n = C^n \times \Re$ and by $E_{\lambda}(h_1, h_2), d\pi_{\lambda}$ its associated matrix entries and infinitesimal representation respectively.

It is remarked in [St] that

$$XE_{\lambda}(h_1, h_2) = E_{\lambda}(d\pi_{\lambda}(X)h_1, h_2), \quad X \in \mathcal{U}(h_n).$$

It follows that $iTE_{\lambda} = \lambda E_{\lambda}$ and that, in order to obtain matrix entries eigenfuntions of L, we must look for eigenvectors of $d\pi_{\lambda}(L)$ in $L^{2}(\Re^{n})$.

Thus we pick the orthonormal basis of $L^2(\Re^n)$ given by the Hermite functions: For $\alpha = (\alpha_1, \dots, \alpha_n) \in (N \cup \{0\})^n$, let

$$h_{\alpha}\left(\zeta\right) = \left(2^{|\alpha|} \alpha! \sqrt{\pi}\right)^{-\frac{n}{2}} e^{-\frac{|\zeta|^2}{2}} \prod_{j=1}^{n} H_{\alpha_j}\left(\zeta_j\right)$$

with $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\alpha! = \alpha_1! \dots \alpha_n!$ and where

$$H_k(s) = (-1)^k e^{s^2} \frac{d^k}{ds^k} \left(e^{-s^2} \right)$$

is the k - th Hermite polynomial.

It follows from (2.1) that

$$d\pi_{\lambda}(L) = -|\lambda| \left(B(\zeta) - \left(\sum_{j=1}^{p} \frac{\partial^{2}}{\partial \zeta_{j}^{2}} - \sum_{j=p+1}^{n} \frac{\partial^{2}}{\partial \zeta_{j}^{2}} \right) \right)$$

where
$$B(\zeta) = \sum_{j=1}^{p} \zeta_{j}^{2} - \sum_{j=p+1}^{n} \zeta_{j}^{2}$$
.

For
$$\alpha = (\alpha_1, \dots, \alpha_n)$$
 we set $\|\alpha\| = \sum_{j=1}^p \alpha_j - \sum_{j=p+1}^n \alpha_j$. Since $\left(\zeta_j^2 - \frac{\partial^2}{\partial \zeta_j^2}\right) h_{\alpha_j}$
= $(2\alpha_j + 1) h_{\alpha_j}$, we have that $d\pi_{\lambda}(L) h_{\alpha} = -|\lambda| (2 \|\alpha\| + p - q) h_{\alpha}$. Thus (2.2) $d\pi_{\lambda}(L) E_{\lambda}(h_{\alpha}, h_{\alpha}) = -|\lambda| (2 \|\alpha\| + p - q) E_{\lambda}(h_{\alpha}, h_{\alpha})$.

(2.2) and the Plancherel inversion formula lead us to the joint spectral resolution of iT and L.

The inversion formula asserts that, for $f \in S(H_n)$

$$f(x, y, t) = \frac{1}{(2\pi)^{n+1}} \int_{-\infty}^{+\infty} tr(\pi_{\lambda}(f) \pi_{\lambda}(x, y, t)) |\lambda|^{n} d\lambda$$

where $\pi_{\lambda}(f) = \int_{H_n} f(x, y, t) \, \pi_{\lambda}(x, y, t)^{-1} \, dx dy dt$. Moreover, for $f \in S(H_n)$, $(x, y, t) \in H_n$, we have that

(2.3)
$$\sum_{\alpha} \int_{-\infty}^{+\infty} \left| \left\langle \pi_{\lambda} \left(x, y, t \right) \pi_{\lambda} \left(f \right) h_{\alpha}, h_{\alpha} \right\rangle \right| \left| \lambda \right|^{n} d\lambda \leq M < \infty$$

with M independent of (x, y, t) (see [R], Th. 10.1).

Taking account of that

$$\langle \pi_{\lambda}(x, y, t) \pi_{\lambda}(f) h_{\alpha}, h_{\alpha} \rangle = (E_{\lambda}(h_{\alpha}, h_{\alpha}) * f) (x, y, t)$$

and that

$$E_{\lambda}(h_{\alpha}, h_{\alpha})\left((x, y, t)^{-1}\right) = \overline{E_{\lambda}(h_{\alpha}, h_{\alpha})(x, y, t)}$$

we have

$$f(x,y,t) = \frac{1}{(2\pi)^{n+1}} \int_{-\infty}^{+\infty} \sum_{\alpha} \langle \pi_{\lambda}(x,y,t) \pi_{\lambda}(f) h_{\alpha}, h_{\alpha} \rangle |\lambda|^{n} d\lambda$$

$$= \frac{1}{(2\pi)^{n+1}} \sum_{\alpha} \int_{-\infty}^{+\infty} (f * E_{\lambda}(h_{\alpha}, h_{\alpha})) (x, y, t) |\lambda|^{n} d\lambda$$

$$= \frac{1}{(2\pi)^{n+1}} \sum_{k \in \mathbb{Z}} \int_{-\infty}^{+\infty} \sum_{\|\alpha\| = k} (f * E_{\lambda}(h_{\alpha}, h_{\alpha})) (x, y, t) |\lambda|^{n} d\lambda.$$

Lemma 2.2. Let $\mu_k : S(H_n) \to C$ be defined by

$$\mu_{k}(f) = \int_{-\infty}^{+\infty} \sum_{\|\alpha\|=k} \langle f, E_{\lambda}(h_{\alpha}, h_{\alpha}) \rangle |\lambda|^{n} d\lambda, \qquad f \in S(H_{n}).$$

Then $\mu_k \in S'(H_n)$.

Proof. For $k \in \mathbb{Z}$, let H_k be the closed subspace of $L^2(\Re^n)$ generated by $\{h_\alpha : \|\alpha\| = k\}$, thus $L^2(\Re^n) = \bigoplus_{k \in \mathbb{Z}} H_k$. Let P_k be the orthogonal projection

from $L^{2}(\Re^{n})$ onto H_{k} . Now, for $f \in S(H_{n})$, we define $\wp_{k}f$ by

(2.4)
$$\pi_{\lambda}\left(\wp_{k}f\right) = P_{k}\pi_{\lambda}\left(f\right).$$

It follows from (2.3) that

$$\int_{-\infty}^{+\infty} \sum_{\alpha} \left| \left\langle \pi_{\lambda} \left(\wp_{k} f \right) \pi_{\lambda} \left(x, y, t \right) h_{\alpha}, h_{\alpha} \right\rangle \right| \left| \lambda \right|^{n} d\lambda < \infty$$

and so

$$\wp_k f\left(x, y, t\right) = \frac{1}{\left(2\pi\right)^{n+1}} \int_{-\infty}^{+\infty} \sum_{\|\alpha\| = k} \left(f * E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)\right) \left(x, y, t\right) |\lambda|^n d\lambda.$$

 $\wp_k f$ commutes with left translations and by (2.4) and the Plancherel formula it extends to a bounded operator on $L^2(H_n)$. So, there exists a unique tempered distribution, which is μ_k such that $\wp_k f = f * \mu_k$.

We set, for $\lambda \in \Re - \{0\}$ and $f \in S(H_n)$

(2.5)
$$S_{\lambda,k}(f) = \sum_{\|\alpha\|=k} \langle f, E_{\lambda}(h_{\alpha}, h_{\alpha}) \rangle.$$

We claim that $S_{\lambda,k}$ is well defined and belongs to $S'(H_n)$. In order to see this, we consider $\overline{H_n} = H_n/N$ where $N = \{0\} \times \{0\} \times 2\pi Z$. Then $\overline{H_n} = \Re^n \times \Re^n \times S^1$, where $S^1 = \{e^{i\theta} : \theta \in \Re\}$. Each irreducible unitary representation of $\overline{H_n}$ is unitarily equivalent to one and only one of the following representations: The representations π_m acting on $L^2(\Re^n)$ corresponding to $\lambda = 2\pi m, m \in Z$ and the one dimensional representations $\sigma_{a,b}(x,y,t) = e^{i(ax+by)}, \ (a,b) \in \Re^n \times \Re^n$. For f nice enough, $\pi_m(f)$ is a Hilbert Schmidt operator. We have also $\sigma_{a,b}(f) = \int_{\Re^n \times \Re^n \times S^1} f(x,y,t) \, e^{-i(ax+by)} dx dy dt = \hat{f}(a,b,\overline{0})$, where \hat{f} denotes the euclidean Fourier transform and $\overline{0}$ is the identity in N. The Plancherel identity asserts that

$$||f||_{L^{2}(\overline{H_{n}})}^{2} = \sum_{m \neq 0} ||\pi_{m}(f)||_{HS}^{2} |m|^{n} + \int_{\Re^{n} \times \Re^{n}} |\sigma_{a,b}(f)|^{2} dadb.$$

Also, setting $\phi(a,b) = \sigma_{a,b}(f)$, the inversion formula is in this case

$$f(x, y, t) = \sum_{m \neq 0} tr \left(\pi_m(f) \pi_m(x, y, t)^{-1} \right) |m|^n + \widehat{\phi}(-x, -y).$$

So we can consider $L,T=\frac{\partial}{\partial \theta}$ and \wp_k as above, and repeat all the arguments for $\overline{H_n}$ instead of H_n to obtain that $\nu_k\left(f\right)=\sum\limits_{m\neq 0}|m|^n\sum\limits_{\|\alpha\|=k}\langle f,E_m\left(h_\alpha,h_\alpha\right)\rangle$

defines a tempered distribution on $S\left(\Re^n \times \Re^n \times S^1\right)$. Furthermore, the analogous of (2.3) says that the last double series converges absolutely. Now, for $\lambda \in \Re - \{0\}$, $(z,t) \in C^n \times \Re$, we can write (see, for example [Fo]), $E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z,t)$ in terms of Laguerre polynomials as

$$(2.6) E_{\lambda}\left(h_{\alpha}, h_{\alpha}\right)(z, t) = e^{-i\lambda t} e^{-\frac{1}{4}|\lambda||z|^{2}} \prod_{j=1}^{n} L_{\alpha_{j}}^{0}\left(\frac{1}{2}|\lambda||z_{j}|^{2}\right).$$

For $f \in S\left(\Re^{2n}\right)$, we set $\nu_{k,l}\left(f\right) = \nu_{k}\left(g_{l}\left(f\right)\right)$, where $g_{l}\left(f\right)\left(z,t\right) = e^{ilt}f\left(z\right)$, $(z,t) \in C^{n} \times \Re$ and where we use the identification of C^{n} with \Re^{2n} given by (1.1). Then $\nu_{k,l} \in S'\left(\Re^{2n}\right)$ if $l \in Z - \{0\}$. In particular, we have that the series

(2.7)
$$e^{-\frac{1}{4}|z|^2} \sum_{\|\alpha\|=k} \prod_{j=1}^n L_{\alpha_j}^0 \left(\frac{1}{2}|z_j|^2\right)$$

defines an element in $S'\left(\Re^{2n}\right)$ and so $S_{1,k}\in S'\left(H_n\right)$.

We set, for $\mu \in S'(H_n)$, $\lambda \in \Re - \{0\}$

(2.8)
$$\langle \delta_{\lambda} \mu, f \rangle = |\lambda|^{-n-1} \langle \mu, \delta_{\lambda^{-1}} f \rangle$$

where $\delta_{\lambda} f(z,t) = f\left(\sqrt{|\lambda|}z, \lambda t\right)$.

Lemma 2.3. $S_{\lambda,k} \in S'(H_n)$ for all $\lambda \in \Re - \{0\}$, $k \in \mathbb{Z}$.

Proof.
$$S_{\lambda,k} = \delta_{\lambda}(S_{1,k})$$
 and $S_{1,k} \in S'(H_n)$.

Remark 2.4. Since the series (2.7) belongs to $S'(\Re^{2n})$, the same dilation argument shows that the series $e^{-\frac{1}{4}|\lambda||z|^2} \sum_{\|\alpha\|=k} \prod_{j=1}^n L^0_{\alpha_j} \left(\frac{1}{2}|\lambda||z_j|^2\right)$ defines a tempered distribution $F_{\lambda,k}$ on \Re^{2n} for $\lambda \in \Re - \{0\}$, $k \in \mathbb{Z}$.

For $g \in U(p,q)$, let $S_{\lambda,k}^g$ be defined by $S_{\lambda,k}^g(f) = S_{\lambda,k}(f^g)$, where $f^g(z,t) = f(gz,t)$. We have

Lemma 2.5. $S_{\lambda,k}$ is a U(p,q) invariant distribution for all $\lambda \in \Re -\{0\}$, $k \in \mathbb{Z}$.

Proof. Let w be the metaplectic representation of SU(p,q) on $L^{2}(\mathbb{R}^{n})$. Then, for $g \in SU(p,q)$, $(z,t) \in H_{n}$, we have that

(2.9)
$$\pi_{\lambda}\left(gz,t\right) = w\left(g\right)\pi_{\lambda}\left(z,t\right)w\left(g^{-1}\right).$$

Furthermore, $L^2(\Re^n) = \bigoplus_{k \in \mathbb{Z}} H_k$, where H_k is, as in Lemma 2.2, the closed subspace generated by $\{h_\alpha : \|\alpha\| = k\}$. It is known that (w, H_k) is SU(p, q) irreducible (see 1.12, 2.7 and 2.8, Ch.VIII in [**B-W**]).

We denote by $I_k: H_k \to L^2(\Re^n)$ the inclusion map and by $P_k: L^2(\Re^n) \to H_k$ the orthogonal projection. We also set $T_{z,t} = P_k \pi_\lambda(z,t) I_k$. Then, for $f \in S(H_n)$, the operator $T = \int_{H_n} f(z,t) T_{z,t} dz dt$ is a trace class operator. Now, by (2.9)

$$\left\langle S_{\lambda,k}^{g}, f \right\rangle = \sum_{\|\alpha\| = k} \int_{H_n} f(z,t) \left\langle \pi_{\lambda} (gz,t) h_{\alpha}, h_{\alpha} \right\rangle dz dt$$

$$= \sum_{\|\alpha\| = k} \int_{H_n} f(z,t) \left\langle \pi_{\lambda} (z,t) w \left(g^{-1} \right) h_{\alpha}, w \left(g^{-1} \right) h_{\alpha} \right\rangle dz dt$$

$$= \sum_{\beta} \langle T\theta_{\beta}, \theta_{\beta} \rangle = \langle S_{\lambda, k}, f \rangle$$

with $\theta_{\beta} = w\left(g^{-1}\right)h_{\beta}$ and where we use that $\{\theta_{\beta}\}_{\beta}$ is another orthonormal basis of H_k . Then $S_{\lambda,k}$ is $SU\left(p,q\right)$ invariant. Finally, we note also that if $g = z_0 I$, $|z_0| = 1$, I the $n \times n$ identity matrix, it is clear from (2.6) that $S_{\lambda,k}^g = S_{\lambda,k}$ and so $S_{\lambda,k}$ is a $U\left(p,q\right)$ invariant distribution.

Remark 2.6. By the inversion Plancherel formula and Lemmas (2.2), (2.3) and (2.5) we have $f = \sum_{k \in \mathbb{Z}} \int_{-\infty}^{+\infty} f * S_{\lambda,k} |\lambda|^n d\lambda$, $f \in S(H_n)$.

Let $F_{\lambda,k} \in S'(\Re^{2n})$ be the distribution defined in Remark 2.4. Since $F_{\lambda,k} \bigotimes 1 = e^{i\lambda t} S_{\lambda,k}$ we have that $F_{\lambda,k}$ is U(p,q) invariant. Then

$$\sum_{j=1}^{n} \left(x_j \frac{\partial}{\partial y_j} - y_j \frac{\partial}{\partial x_j} \right) F_{\lambda,k} = 0.$$

From $LS_{\lambda,k} = -|\lambda| (2k + p - q) S_{\lambda,k}$ and (1.3) we have that

(2.10)
$$\left(-\frac{1}{4}\lambda^{2}B\left(z\right)+\Box\right)F_{\lambda,k}=-\left|\lambda\right|\left(2k+p-q\right)F_{\lambda,k}$$

where
$$\Box = \sum_{j=1}^{p} \left(\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} \right) - \sum_{j=p+1}^{n} \left(\frac{\partial^2}{\partial x_j^2} + \frac{\partial^2}{\partial y_j^2} \right)$$
 and $B(z) = B(z, z)$ for $z = x + iy$, $x, y \in \Re^n$.

Now, according with [T], the space of the U(p,q) invariant tempered distributions can be described as the dual of the space of the functions in $C^{\infty}(\Re - \{0\})$ with some kind of singularity at the origin. In order to describe them, we introduce polar coordinates on \Re^{2n} as follows. For $x, y \in \mathbb{R}^n$

$$\Re^n$$
 we set $\sigma = \sum_{j=1}^p \left(x_j^2 + y_j^2 \right) - \sum_{j=p+1}^n \left(x_j^2 + y_j^2 \right), \ \rho = \sum_{j=1}^n \left(x_j^2 + y_j^2 \right), \ u = 0$

 $\left(\frac{\rho+\sigma}{2}\right)^{\frac{1}{2}}w_u$, $v=\left(\frac{\rho-\sigma}{2}\right)^{\frac{1}{2}}w_v$ where w_u belongs to the 2p-1 dimensional sphere S^{2p-1} and $w_v \in S^{2q-1}$.

For $f \in S(\Re^{2n})$ and for $\rho, \sigma \in \Re$, $\rho \geq \sigma$, $\rho \geq 0$, let

$$(Mf)\left(\rho,\sigma\right) = \int_{S^{2p-1} \times S^{2q-1}} f\left(\left(\frac{\rho+\sigma}{2}\right)^{\frac{1}{2}} w_u, \left(\frac{\rho-\sigma}{2}\right)^{\frac{1}{2}} w_v\right) dw_u dw_v$$

and let, for $\tau \in \Re$,

(2.11)
$$(Nf)(\tau) = \int_{\rho > |\tau|} (Mf)(\rho, \tau) (\rho + \tau)^{p-1} (\rho - \tau)^{q-1} d\rho.$$

We note that

(2.12)
$$\int_{\Re^{2n}} f(x) dx = \frac{1}{2^n} \int_{\Re} Nf(\sigma) d\sigma.$$

Let H be the Heaviside function, defined by $H(\tau) = 1$ if $\tau \geq 0$ and $H(\tau) = 0$ if $\tau < 0$. Let \mathcal{H}_0 the space of the functions $\varphi : \Re \to C$ such that $\varphi(\tau) = \varphi_1(\tau) + H(\tau)\varphi_2(\tau)\tau^{n-1}$, $\varphi_1, \varphi_2 \in D(\Re)$, where $D(\Re)$ denotes the space of the functions in $C^{\infty}(\Re)$ with compact support and let \mathcal{H} be the space defined analogously, but where now we require $\varphi_1, \varphi_2 \in S(\Re)$.

If $\varphi \in \mathcal{H}$, then it is regular out of the origin and $\varphi \in C^{n-2}(\Re)$. Moreover, for each $m \geq n-1$, there exists $P_m(\varphi)$, polynomial of degree m, such that $\varphi - HP_m(\varphi) \in C^m(\Re)$. So, for $m \in N$, φ admits an expansion

(2.13)
$$\varphi(\tau) = \sum_{j=0}^{m} B_j(\varphi) \tau^j + H(\tau) \sum_{j=0}^{m} A_j(\varphi) \tau^j + o(\tau^m)$$

with $A_j(\varphi) = 0$ for j < n - 1.

Remark 2.7. \mathcal{H}_0 and \mathcal{H} , with the topology given in $[\mathbf{T}]$, are Frechet spaces and $N: S\left(\Re^{2n}\right) \to \mathcal{H}$, $N: D\left(\Re^{2n}\right) \to \mathcal{H}_0$ are linear, continuous and surjective maps. Moreover, their adjoints $N': \mathcal{H}' \to S'\left(\Re^{2n}\right)^{U(p,q)}$, $N': \mathcal{H}'_0 \to D'\left(\Re^{2n}\right)^{U(p,q)}$ are linear homeomorphisms. (see 2.1, 4.3, 5.1 and some remarks at the beginning of §7 in $[\mathbf{T}]$). (We also remark that 5.1 in $[\mathbf{T}]$ holds for U(p,q) instead of SO(p,q) with the obvious changes.)

It is also proved in [T] that

$$(2.14) N(\Box f) = D(Nf), f \in S(\Re^{2n})$$

where the differential operator D is defined by

(2.15)
$$D = 4\left(\tau \frac{\partial^2}{\partial \tau^2} + (2-n)\frac{\partial}{\partial \tau}\right)$$

so the adjoint of D is given by $D'T = 4(\tau T'' + nT'), T \in \mathcal{H}'$.

We say that $T \in \mathcal{H}'$ is a solution of D'T = 0 if $\langle D'T, \varphi \rangle = 0$ for all $\varphi \in \mathcal{H}$. It is easy to see that $T \in \mathcal{H}'$ is a solution of

(2.16)
$$\frac{\lambda^2}{4}\tau T + 4\left(\tau T'' + nT'\right) = -|\lambda| (2k + p - q) T$$

if and only if N'T is a solution of (2.10). The same assertion is true for solutions in \mathcal{H}'_0 .

Setting $b = -|\lambda| (2k + p - q)$, (2.16) becomes $16\tau T'' + 16nT' - (\lambda^2 \tau + 4b) T = 0$. As in [**Ko**], we note that if $\beta = \pm \frac{\lambda}{4}$, $\frac{\beta}{\alpha} = -\frac{1}{2}$ and $l = \frac{4n\beta - b}{4\alpha}$ and if $w(t) = e^{\beta t}v(\alpha t)$, then w is a solution of $16\tau w'' + 16nw' - 16v'' + 16v'$

 $(\lambda^2 \tau + 4b) w = 0$ if and only if v is a solution of the confluent hypergeometric equation (C.H.E) tv'' + (n-t)v' + lv = 0.

For $T \in \mathcal{H}'$ and for $k \in \mathbb{Z}$, $\lambda \in \Re - \{0\}$ we set

(2.17)
$$\langle T_{\lambda,k}, \varphi \rangle = \left\langle \delta_{\frac{|\lambda|}{2}} T, \psi_{\lambda} \left(\varphi \right) \right\rangle, \psi_{\lambda} \left(\varphi \right) (t) = e^{-\frac{|\lambda|}{4} t} \varphi \left(t \right)$$

for $k \geq 0$, where $\delta_{\lambda} \varphi(t) = \varphi(\lambda t)$ and $\langle \delta_{\lambda} T, \varphi \rangle = |\lambda|^{-1} \langle T, \delta_{\lambda^{-1}} \varphi \rangle$. We also set

(2.18)
$$\langle T_{\lambda,k}, \varphi \rangle = \left\langle \delta_{-\frac{|\lambda|}{2}} T, \psi_{\lambda} \left(\varphi \right) \right\rangle, \psi_{\lambda} \left(\varphi \right) (t) = e^{\frac{|\lambda|}{4} t} \varphi \left(t \right)$$

if k < 0.

We note that if $k \geq 0$ then $T \in \mathcal{H}'_0$ is a solution of the C.H.E. with parameter l = k - q if and only if $T_{\lambda,k}$ is a solution in \mathcal{H}'_0 of (2.16). If k < 0 then $T \in \mathcal{H}'_0$ solves the C.H.E. with parameter l = -k - p if and only if $T_{\lambda,k}$ solves (2.16).

Our aim is to find all the solutions in \mathcal{H}' of (2.16). We note that if S is such a solution, then $S = T_{\lambda,k}$ for some solution $T \in \mathcal{H}'_0$ of the C.H.E. with parameter l = k - q if $k \geq 0$ and l = -k - p if k < 0. This leads us to determine all the solutions in \mathcal{H}'_0 of C.H.E. with parameter $l \geq -n+1$ such that the corresponding $T_{\lambda,k} \in \mathcal{H}'$.

3. About the confluent hypergeometric equation.

As in $[\mathbf{Sz}]$, if m, β are non negative integers, we denote by $\{L_m^{\beta}\}$, the Laguerre polynomials. Then $L_m^{\beta}(x)$ is defined as the only polynomial solution of

$$tv'' + (\beta + 1 - t)v' + mv = 0$$

and normalized by the condition

(3.1)
$$\int_0^\infty e^{-x} x^{\beta} L_m^{\beta}(x) L_{m'}^{\beta}(x) dx = \Gamma(\beta+1) {m+\beta \choose m} \delta_{m,m'}.$$

We have that

(3.2)
$$L_m^0(t) = \sum_{j=0}^m {m \choose j} (-1)^j \frac{x^j}{j!}$$

and that $\frac{d}{dt}L_m^{\beta} = -L_{m-1}^{\beta+1}$.

Let D_l be the differential operator on \mathcal{H} given by

(3.3)
$$D_l \varphi(\tau) = \tau \varphi'' + (2 - n)\varphi' + \tau \varphi' + (l + 1)\varphi.$$

Then its adjoint D'_l is $D'_lT = tT'' + (n-t)T' + lT$. We recall that $A_j(\varphi) = 0$ for $\varphi \in \mathcal{H}, j \leq n-2$. It is easy to see that if φ admits an asymptotic development

$$\sum_{j>0} B_j(\varphi) \tau^j + H \sum_{j>0} A_j(\varphi) \tau^j$$

then the expansion around $\tau = 0$ of $D_l \varphi$ is

(3.4)
$$\sum_{j\geq 0} \left[(l+1+j)B_{j}(\varphi) + (j+1)(j+2-n)B_{j+1}(\varphi) \right] \tau^{j} + H \sum_{j\geq 0} \left[(l+1+j)A_{j}(\varphi) + (j+1)(j+2-n)A_{j+1}(\varphi) \right] \tau^{j}.$$

With the natural restrictions on f, integration by parts gives

(3.5)
$$\int_{a}^{b} f(t) \left(D_{l} \varphi \right) (t) dt = \int_{a}^{b} \left(D'_{l} f \right) (t) \varphi(t) dt + R(b, \varphi) - R(a, \varphi)$$

where $-\infty \le a < b \le +\infty$ and

$$(3.6) R(b,\varphi) = (1-n+b)f(b)\varphi(b) + bf(b)\varphi'(b) - bf'(b)\varphi(b).$$

Proposition 3.1. For $l \geq 0$, $T = (L_{l+n-1}^0 H)^{(n-1)}$ is a solution in \mathcal{H}'_0 of $D'_l T = 0$.

Proof. Let $c_{j,l} = \left(L_{l+n-1}^0\right)^{(n-2-j)}(0)$, $0 \le j \le n-2$. Then a computation shows that

$$T = \left(L_{l+n-1}^{0}\right)^{(n-1)} H + \sum_{j=0}^{n-2} c_{j,l} \delta^{(j)}$$

and so $T \in \mathcal{H}'$ since every $\varphi \in \mathcal{H}$ is in $C^{n-2}(\Re)$. Also

$$\langle D_{l}'T, \varphi \rangle = \langle T, D_{l}\varphi \rangle$$

$$= \int_{0}^{\infty} \left(L_{l+n-1}^{0} \right)^{(n-1)} (t) \left(D_{l}\varphi \right) (t) dt + \left\langle \sum_{i=0}^{n-2} c_{j,l} \delta^{(j)}, D_{l}\varphi \right\rangle.$$

By (3.4), (3.5) and (3.6) we have

$$\int_{0}^{\infty} \left(L_{l+n-1}^{0} \right)^{(n-1)} (t) \left(D_{l} \varphi \right) (t) dt = (n-1) \left(L_{l+n-1}^{0} \right)^{(n-1)} (0) B_{0} (\varphi)$$
 and by (3.4)

$$\left\langle \sum_{j=0}^{n-2} c_{j,l} \delta^{(j)}, D_{l} \varphi \right\rangle$$

$$= \sum_{j=0}^{n-2} c_{j,l} (-1)^{j} j! B_{j} (D_{l} \varphi)$$

$$= \sum_{j=0}^{n-2} c_{j,l} (-1)^{j} j! ((l+1+j) B_{j} \varphi + (j+1) (j+2-n) B_{j+1} (\varphi))$$

$$= \sum_{j=0}^{n-2} d_{j,l} B_{j} (\varphi)$$

where $d_{0,l} = (l+1) c_{0,l}$ and $d_{j,l} = (-1)^j j! ((l+1+j) c_{j,l} + (n-j-1) c_{j-1,l})$ if $1 \le j \le n-2$. Since $c_{j,l} = (-1)^{n-j} \binom{l+n-1}{n-j-2}$ the lemma follows. \square

Now, it is proved in [T] that if $S \in \mathcal{H}'$ and $\operatorname{supp}(S) = \{0\}$ then there exists $m_1, m_2 \in N \cup \{0\}$ $\alpha_0, \ldots, \alpha_{m_1}, \alpha'_0, \ldots, \alpha'_{m_2} \in C$ such that

$$S(\varphi) = \sum_{j=0}^{m_1} \alpha_j B_j(\varphi) + \sum_{j=0}^{m_2} \alpha'_j A_j(\varphi), \quad \varphi \in \mathcal{H}.$$

We will need the following:

Lemma 3.2. Assume $l \ge -n + 1$. If $S \in \mathcal{H}'$, supp $S = \{0\}$ and if

$$D_l'S = c_{n-1}B_{n-1} + d_{n-1}A_{n-1} + \sum_{j=0}^{n-2} c_j B_j$$

with $c_0, \ldots, c_{n-1}, d_{n-1} \in C$, then $c_{n-1} = d_{n-1} = 0$.

Proof. We write $S = \sum_{j=0}^{m_1} \alpha_j B_j + \sum_{j=0}^{m_2} \alpha'_j A_j$. Suppose $c_{n-1} \neq 0$. By (3.4) the coefficient of $B_j(\varphi)$ in the expansion of $D_l(\varphi)$ is $(l+1+j)\alpha_j + j(j+1-n)\alpha_{j-1}$ and so $c_{n-1} = (l+n)\alpha_{n-1}$ and $\alpha_j = -\frac{j(j+1-n)}{l+1+j}\alpha_{j-1}$ for $j \geq -l$. Then $\alpha_j \neq 0$ if $j \geq n$. Contradiction. Analogously $d_{n-1} \neq 0$ would imply $\alpha'_j \neq 0$ for $j \geq n$.

If $l \ge 0$, a solution of the C.H.E. is the function $f_1(t) = L_l^{n-1}(t)$. Another solution $f_2 \in C^2((-\infty,0))$ of the C.H.E., linearly independent with f_1 , is obtained setting $f_2(t) = c(t)f_1(t)$ where c(t) satisfy

$$tf_1(t)c''(t) + [2tf_1'(t) + (n-t)f_1(t)]c'(t) = 0.$$

Then for t < 0,

(3.7)
$$f_2(t) = f_1(t) \int_{-\infty}^t f_1(s)^{-2} s^{-n} e^s ds$$

is well defined since the zeros of the Laguerre's polynomials are in $(0, +\infty)$. Also

(3.8)
$$f_{2}(t) = o(e^{t}),$$

$$t \to -\infty$$

$$f'_{2}(t) = o(e^{t}),$$

$$t \to -\infty$$

$$f_{2}(t) \backsim -\frac{1}{f_{1}(0)(n-1)}t^{-n+1} \text{ as } t \to 0.$$

Lemma 3.3. Let for $\varphi \in \mathcal{H}$,

$$\langle Pf(f_2), \varphi \rangle = \lim_{\epsilon \to 0^+} \int_{-\infty}^{-\epsilon} f_2(t) \left(\varphi(t) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} t^j \right) dt.$$

Then $Pf(f_2) \in \mathcal{H}'$ and $D'_l Pf(f_2) = -\frac{1}{f_1(0)} B_{n-1}(\varphi)$.

Proof. $Pf(f_2) \in \mathcal{H}'$ by Lemma 3.3 in [T]. On the other hand, from (3.4) it follows that if $\psi(t) = \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} t^j$ then $D_l \psi = \sum_{j=0}^{n-2} \frac{(D_l \varphi)^{(j)}(0)}{j!} t^j$. Thus

$$\langle D_{l}'Pf(f_{2}),\varphi\rangle = \langle Pf(f_{2}),D_{l}'\varphi\rangle$$

$$= \lim_{\epsilon \to 0^{+}} \int_{-\infty}^{-\epsilon} f_{2}(t) \left((D_{l}\varphi)(t) - \sum_{j=0}^{n-2} \frac{(D_{l}\varphi)^{(j)}(0)}{j!} t^{j} \right) dt$$

$$= \lim_{\epsilon \to 0^{+}} \int_{-\infty}^{-\epsilon} f_{2}(t) D_{l}(\varphi - \psi)(t) dt = \lim_{\epsilon \to 0^{+}} R(-\epsilon,\varphi_{1})$$

where $\varphi_1 = \varphi - \psi$ and $R(-\epsilon, \varphi_1)$ is given by (3.6). As by (3.8)

$$\lim_{s \to 0^{-}} (1 - n + s) f_{2}(s) \varphi_{1}(s) = (1 - n) \frac{1}{f_{1}(0)(1 - n)} B_{n-1}(\varphi),$$

$$\lim_{s \to 0^{-}} s f_{2}(s) \varphi'_{1}(s) = \frac{1}{f_{1}(0)} \lim_{s \to 0^{-}} \frac{s^{-n+2}}{1 - n} ((n - 1) B_{n-1} s^{n-2} +)$$

$$= -\frac{1}{f_{1}(0)} B_{n-1}$$

and

$$\lim_{s \to 0^{-}} s f_2'(s) \varphi_1(s) = \frac{1}{f_1(0)} B_{n-1}$$

the lemma follows.

Proposition 3.4. Let T be in \mathcal{H}'_0 . Suppose that either $k \geq q$ or $k \leq -p$ and $\lambda \in \Re - \{0\}$, let $T_{\lambda,k}$ be defined as in (2.17) and (2.18). If $T_{\lambda,k}$ is a tempered solution (i.e., $T_{\lambda,k} \in \mathcal{H}'$) of (2.16) then T is a multiple of $(L^0_{l+n-1}H)^{(n-1)}$ where l = k - q if $k \geq q$ and l = -k - p if $k \leq -p$.

Proof. We know that there exists a basis of the solution space in $C^2(0, +\infty)$ given by $f_1(t)$ and a certain function g(t) where $g(t) \backsim e^t$ as $t \to +\infty$ [Se]. In particular when we write T restricted to $(0, +\infty)$, as a linear combination $af_1 + bg$, the condition $T_{\lambda,k} \in \mathcal{H}'$ implies b = 0.

We now consider $S = T - a \left(L_{l+n-1}^0 H \right)^{(n-1)}$. Then $\text{supp} S \subset (-\infty, 0]$, $D_l'S = 0$ and the corresponding $S_{\lambda,k} \in \mathcal{H}'$.

Writing S restricted to $(-\infty, 0)$ as a linear combination $\alpha f_1 + \beta f_2$ we obtain that $\alpha = 0$. Thus $S - \beta Pf(f_2)$ has support at t = 0 and by Lemma 3.3

$$D'_{l}(S - \beta P f(f_{2})) = -\beta \frac{1}{f_{1}(0)} B_{n-1}.$$

If $\beta \neq 0$, this contradicts Lemma 3.2. Thus $\operatorname{supp} S = \{0\}$. But, from (3.4), it is easy to see that there is not nontrivial solution S supported at the origin of $D_l'S = 0$ if $l \geq 0$. So S = 0 and the proof is complete.

To state a similar result for -p < k < q we will need some facts about the equation

$$(3.9) tv'' + (n-t)v' - lv, l = 1, ..., n-1.$$

Lemma 3.5. For l = 1, ..., n-1 there exists a polynomial P_{l-1} of degree l-1 with $P_{l-1}(0) = 1$ such that for all open interval $I \subset \Re -\{0\}$ (not necessarily finite) two linearly independent solutions in $C^2(I)$ are given by $g_1(t) = t^{1-n}P_{l-1}(t)e^t$ and $g_2(t) = t^{1-n}T_{n-2}(P_{l-1}(t)e^t)$ where $T_{n-2}(g)$ denotes the Taylor polynomial of degree n-2 around the origin for the function g.

Proof. Following the notation of [Se], we can write every solution of (3.9) belonging to $C^{2}(I)$ as $\alpha \cdot {}_{1}F_{1}(l,n,t) + \beta t^{1-n} \cdot {}_{1}F_{1}(1+l-n,2-n,t)$ where

(3.10)
$${}_{1}F_{1}\left(a,c,t\right) = \sum_{j=0}^{\infty} \frac{(a)_{j}}{(c)_{j}} \frac{t^{j}}{j!}$$

and $(a)_j = a(a+1)...(a+j-1)$.

By (3.10)
$$_{1}F_{1}(1+l-n,2-n,t) = \sum_{j=0}^{\infty} p_{l-1}(j) \frac{t^{j}}{j!}$$
 where $p_{l-1}(j) =$

 $\sum_{k=0}^{l-1} a_k j^k \text{ for some } a_1, \dots, a_{k-1} \in \Re \text{ and } a_0 = 1. \text{ Induction on } k \text{ shows that } \sum_{j=0}^{\infty} j^k \frac{t^j}{j!} = q_k(t) e^t \text{ with } q_k \text{ a polynomial of degree } k \text{ such that } q_k(0) = 0 \text{ for } k$

k>0. So $g_1(t)=t^{1-n}._1F_1(1+l-n,2-n,t)$ is a solution of the desired form.

Also

$$\begin{aligned}
& = \sum_{j=0}^{\infty} \frac{(l)_j}{(n)_j} \frac{t^j}{j!} = \frac{(n-1)!}{(l-1)!} \sum_{j=0}^{\infty} \frac{(j+1) \dots (j+l-1)}{(n+j-1)!} t^j \\
& = \frac{(n-1)!}{(l-1)!} \sum_{j=0}^{\infty} \frac{(j+(n-1)+(2-n)) \dots ((j+n-1)+(l-n))}{(n+j-1)!} t^j
\end{aligned}$$

$$= \frac{(n-1)!}{(l-1)!} \frac{1}{t^{n-1}} \sum_{j=n-1}^{\infty} (j+2-n) \dots (j+l-n) \frac{t^j}{j!}$$

$$= \frac{(n-1)!}{(l-1)!} (2-n) \dots (l-n)$$

$$\cdot \frac{1}{t^{n-1}} \left({}_1F_1 \left(1+l-n, 2-n, t \right) - T_{n-2} \left({}_1F_1 \left(1+l-n, 2-n, t \right) \right) \right).$$

So we can take $g_2(t) = t^{1-n} T_{n-2} ({}_1F_1(1+l-n,2-n,t))$.

Lemma 3.6. For $\varphi \in \mathcal{H}$, let $Pf^{-}(g_1)$ and $Pf^{+}(g_2)$ be defined by

$$\langle Pf^{-}(g_{1}), \varphi \rangle = \lim_{\epsilon \to 0^{+}} \int_{-\infty}^{-\epsilon} g_{1}(t) \left(\varphi(t) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} t^{j} \right) dt,$$

$$\langle Pf^{+}(g_{2}), \varphi \rangle = \lim_{\epsilon \to 0^{+}} \int_{\epsilon}^{1} g_{2}(t) \left(\varphi(t) - \sum_{j=0}^{n-2} \frac{\varphi^{(j)}(0)}{j!} t^{j} \right) dt$$

$$+ \int_{1}^{\infty} g_{2}(t) \varphi(t) dt.$$

Then $Pf^{-}(g_1)$ and $Pf^{+}(g_2)$ belong to \mathcal{H}' and they satisfy:

(i) $D'_{l}(Pf^{-}(g_{1})) = (n-1)B_{n-1},$

(ii)
$$D'_l(Pf^+(g_2)) = -(n-1)(B_{n-1} + A_{n-1}) + \sum_{j=0}^{n-2} \beta_j B_j$$
 for some constants $\beta_1, \ldots, \beta_{n-2}$.

Proof. The proof follows similar lines those of Lemma 3.3, but now, to prove (i) we take account of that $P_{l-1}(0) = 1$ where P_{l-1} is as in Lemma 3.5.

For (ii) we observe that if $\varphi \in \mathcal{H}$ and if $\psi(t) = \sum_{j=0}^{n-2} B_j(\varphi) t^j$, we have

$$R\left(1,\varphi-\psi\right)-R\left(1,\varphi\right)=-\left(2-n\right)\psi\left(1\right)-\psi'\left(1\right)f_{2}\left(1\right)+f_{2}'\left(1\right)\psi\left(1\right).$$
 The constants β_{j} are determined by $f_{2}\left(1\right)$ and $f_{2}'\left(1\right)$.

Lemma 3.7. For each l = -1, -2, ..., -n + 1, the space of the solutions $T \in \mathcal{H}'_0$ which are supported at the origin of the equation $D'_lT = 0$ is one dimensional.

Proof. For such a T we write $T = \sum_{j=0}^{m_1} \alpha_j B_j + \sum_{j=n-1}^{m_2} \alpha'_j A_j$. From $\langle T, D_l \varphi \rangle = 0$ and (3.4) we obtain that $\alpha_j (l+1+j) + \alpha_{j-1} (j+1-n) = 0$ for all j. If j = n-1, this implies that $\alpha_{n-1} (l+n) = 0$ and so $\alpha_j = 0$ for all $j \geq n-1$. The same argument says that $\alpha'_j = 0$, $j \geq n-1$ and thus $T = \sum_{j=0}^{n-2} \alpha_j B_j$. Let

 $j_0 = -l - 1$. Then $\alpha_{j_0 - 1} = 0$. Since

(3.11)
$$\alpha_j = -\frac{j+1-n}{l+1+j}\alpha_{j-1}$$

for $j \neq j_0$ we have $\alpha_0 = \alpha_1 = \cdots = \alpha_{j_0-1} = 0$. So T is completely determined by α_{j_0} . On the other hand, it is clear that for each α_{j_0} we obtain in this way a solution supported at $\{0\}$.

Remark 3.8. Let l, T be as in Lemma 3.7. If we write $T = \sum_{j=0}^{n-2} \gamma_{j,l} \delta^{(j)}$

instead of $\sum_{j=0}^{n-2} \alpha_j B_j$, by (3.11) we see that $\{\gamma_{j,l}\}$ satisfy

$$(l+1+j) \gamma_{j,l} + (n-j-1) \gamma_{j-1,l} = 0$$

for $0 \le j \le n-2$. But this is also the recurrence relation for the successive derivatives at the origin of the polynomial L_{l+n-1}^0 , so we can choose

a nontrivial solution as
$$T_0 = \sum_{j=0}^{n-2} \gamma_{j,l} \delta^{(j)}$$
 with $\gamma_{j,l} = \left(L_{l+n-1}^0\right)^{(n-j-2)}(0)$,

$$0 \le j \le n-2$$
. Now, a computation shows that $T_0 = \left(L_{l+n-1}^0 H\right)^{(n-1)}$.

Proposition 3.9. Let T be in \mathcal{H}'_0 . Suppose -p < k < q, $\lambda \in \Re - \{0\}$, let $T_{\lambda,k}$ be defined as in (2.17) and (2.18). If $T_{\lambda,k}$ is a tempered solution (i.e., $T_{\lambda,k} \in \mathcal{H}'$) of (2.16) then T is a multiple of the distribution T_0 defined in Remark 3.8.

Proof. We argue as in Proposition 3.4. Suppose $0 \le k < q$. So $T_{\lambda,k}$ is given by (2.17). Now, $T_{\lambda,k} \in \mathcal{H}'$ implies that T restricted to $(0, +\infty)$ agrees with αg_2 and T restricted to $(-\infty.0)$ agrees with βg_1 , for some $\alpha, \beta \in C$ and where g_1, g_2 are defined as in Lemma 3.5. So $S = T - \beta P f^-(g_1) - \alpha P f^+(g_2)$ has support at the origin and, by Lemma 3.6, it satisfies $D'_l(S) = C$

$$-\beta (n-1) B_{n-1} + \alpha (n-1) (B_{n-1} + A_{n-1}) + \sum_{j=0}^{n-2} \beta_j B_j$$
. But, by Lemma 3.2

 $\alpha = \beta = 0$ and so T has support at the origin and the lemma follows from Lemma 3.7. The case -p < k < 0 is analogous.

4. Determination of $S_{\lambda,k}$ and \wp_k .

In this section we compute explicitly the distributions $S_{\lambda,k}$ and μ_k . Taking account of Remark 3.8 and Proposition 3.1, we consider the particular distribution T given by $T = \left(L_{l+n-1}^0H\right)^{(n-1)}$ where l = k-q if $k \geq 0$ and l = -k-p if k < 0. Let $F_{\lambda,k} \in S'\left(\Re^{2n}\right)$ be defined as in Remark 2.4. Since $F_{\lambda,k} \in S'\left(H_n\right)^{U(p,q)}$ and satisfies (2.10), the considerations in Remark 2.7 and Propositions 3.4 and 3.9 imply that $F_{\lambda,k} = c_{\lambda,k}N'\left(T_{\lambda,k}\right)$ for

some $c_{\lambda,k} \in C$. In order to compute $c_{\lambda,k}$ we apply both distributions to the function

(4.1)

$$f_{\lambda}(z) = f_{\lambda}(z_{1}, \dots z_{n}) = e^{-\frac{|\lambda|}{4}|z|^{2}} \sum_{\substack{\beta_{1} + \dots + \beta_{n} = |k|, \\ \beta_{1} > 0, \dots, \beta_{n} > 0}} \prod_{j=1}^{n} L_{\beta_{1}}^{0} \left(\frac{1}{2} |\lambda| |z_{j}|^{2}\right).$$

By (3.1) we have that, if $k \ge 0$

$$(4.2) \langle F_{\lambda,k}, f_{\lambda} \rangle = 2^{n} \pi^{n} |\lambda|^{-n} \sum_{\substack{\beta_{1} + \dots + \beta_{p} = |k|, \\ \beta_{1} > 0, \dots \beta_{n} > 0}} 1 = 2^{n} \pi^{n} |\lambda|^{-n} {p+k-1 \choose p-1}$$

and if k < 0 (4.3)

$$\langle F_{\lambda,k}, f_{\lambda} \rangle = 2^n \pi^n |\lambda|^{-n} \sum_{\substack{\beta_1 + \dots + \beta_q = |k|, \\ \beta_1 \ge 0, \dots, \beta_q \ge 0}} 1 = 2^n \pi^n |\lambda|^{-n} {q-k-1 \choose q-1}.$$

On the other hand, by well known properties of the Laguerre polynomials,

(4.4)
$$f_{\lambda}(z) = e^{-\frac{|\lambda|}{4}|z|^2} L_{|k|}^{n-1} \left(\frac{1}{2}|\lambda||z|^2\right).$$

So, for $t\geq 0$, and taking account of that the volume of the n dimensional sphere is $2\pi^{\frac{n+1}{2}}/\Gamma\left(\frac{n+1}{2}\right)$, we have

(4.5)

$$Nf_{\lambda}\left(2|\lambda|^{-1}t\right)$$

$$= \frac{4\pi^{p+q}}{(p-1)!(q-1)!} \int_{2|\lambda|^{-1}t}^{\infty} e^{-\frac{|\lambda|}{4}\rho} L_{|k|}^{n-1}\left(\frac{|\lambda|\rho}{2}\right)$$

$$\cdot \left(\rho + 2|\lambda|^{-1}t\right)^{p-1} \left(\rho - 2|\lambda|^{-1}t\right)^{q-1} d\rho$$

$$= \frac{4\pi^{p+q}}{(p-1)!(q-1)!} 2^{n-1} |\lambda|^{-(n-1)} \int_{t}^{\infty} e^{-\frac{s}{2}} L_{|k|}^{n-1}(s) (s+t)^{p-1} (s-t)^{q-1} ds.$$

Now,

$$\langle F_{\lambda,k}, f_{\lambda} \rangle = c_{\lambda,k} \langle N'(T_{\lambda,k}), f_{\lambda} \rangle = c_{\lambda,k} \langle T_{\lambda,k}, N(f_{\lambda}) \rangle.$$

From (4.5), the definition of $T_{\lambda,k}$ and (4.2) we obtain that $c_{\lambda,k}$ is independent of λ . In order to compute $c_{\lambda,k}$ we consider first the case $k \geq 0$. By (2.17)

$$\langle T_{\lambda,k}, N(f_{\lambda}) \rangle = \left\langle 2 \left| \lambda \right|^{-1} \delta_{\frac{|\lambda|}{2}} T, t \to e^{-\frac{|\lambda|}{4} t} N(f_{\lambda})(t) \right\rangle$$

$$=2\left|\lambda\right|^{-1}\left\langle T,t\rightarrow e^{-\frac{t}{2}}N\left(f_{\lambda}\right)\left(2\left|\lambda\right|^{-1}t\right)\right\rangle$$

thus, by (4.5), we need to evaluate $T(\psi_0)$ where $T = \left(L_{k-q+n-1}^0 H\right)^{(n-1)}$ and $\psi_0(t) = e^{-\frac{t}{2}} \varphi_0(t)$ with

$$\varphi_0(t) = e^{-\frac{t}{2}} \int_0^\infty e^{-\frac{\rho}{2}} L_k^{n-1} (\rho + t) (\rho + 2t)^{p-1} \rho^{q-1} d\rho.$$

Since k-q+n-1=k+p-1 and $L_k^{n-1}(\rho+t)(\rho+2t)^{p-1}$ is a polynomial in t of degree k+p-1 we can use the Leibnitz formula for the derivatives of a product, the fact that every polynomial can be written as a linear combination of the Laguerre polynomials and the orthogonality relations (3.1) to obtain that

 $T(\psi_0)$

$$= (-1)^{n-1} \int_0^\infty L_{k+p-1}^0\left(t\right) \int_0^\infty e^{-\frac{\rho}{2}} \rho^{q-1} e^{-t} L_k^{n-1} \left(\rho + t\right) \left(\rho + 2t\right)^{p-1} d\rho dt.$$

Since $L_k^{n-1}\left(\rho+t\right)=\sum_{m+j=k}L_m^{n-2}\left(\rho\right)L_j^0\left(t\right)$, we repeat the same argument to obtain that

 $T(\psi_0)$

$$\begin{split} &=2^{p-1}\left(-1\right)^{n-1}\int_{0}^{\infty}L_{k+p-1}^{0}\left(t\right)\left[\int_{0}^{\infty}e^{-\frac{\rho}{2}}\rho^{q-1}L_{0}^{n-2}\left(0\right)d\rho\right]e^{-t}L_{k}^{0}\left(t\right)t^{p-1}dt\\ &=\left(-1\right)^{n-1}2^{p-1}\left(-1\right)^{q}2^{q}\left(q-1\right)!\int_{0}^{\infty}e^{-t}L_{k+p-1}^{0}\left(t\right)\frac{\left(-1\right)^{k}}{k!}t^{k+p-1}dt\\ &=\left(-1\right)^{n+q-1}2^{n-1}\left(q-1\right)!\frac{\left(-1\right)^{k}}{k!}\left(-1\right)^{k+p-1}\left(k+p-1\right)! \end{split}$$

where we have used (3.1) and (3.2).

Finally, by (4.2), we find that

$$2^{n} \pi^{n} \frac{(p+k-1)!}{k! (p-1)!} = c_{\lambda,k} 2^{n} \frac{4\pi^{n}}{(p-1)! (q-1)!} 2^{n-1} \frac{(k+p-1)!}{k!} (q-1)!$$

and so

$$c_{\lambda,k} = \frac{1}{2^{n+1}}.$$

If k < 0, we can repeat the above computation, using (2.18) instead of (2.17) and replacing $L_{k-q+n-1}^0$ by $L_{-k-p+n-1}^0$. In this case we also find $c_{\lambda,k} = \frac{1}{2^{n+1}}$.

Theorem 4.1. If $k \geq q$, $\lambda \in \Re - \{0\}$, $f \in S(\mathbb{C}^n)$, then

$$\langle F_{\lambda,k}, f \rangle = \frac{1}{2} \int_{B(z) \ge 0} e^{-\frac{|\lambda|}{4}B(z)} L_{k-q}^{n-1} \left(\frac{|\lambda|}{2}B(z)\right) f(z) dz$$

$$+ \frac{1}{2^n} \sum_{l=0}^{n-2} 4^l |\lambda|^{-(l+1)} \sum_{j=l}^{n-2} \frac{1}{2^j} {j \choose l} (-1)^{n-j} {n+k-q-1 \choose k-q+j+1} \left\langle \delta_B^l, f \right\rangle$$

where $\delta_{B}^{l}=N'\left(\delta^{\left(l\right)}\right)$.

Proof.

$$\langle F_{\lambda,k}, f \rangle = \frac{1}{2^{n+1}} \left\langle N' T_{\lambda,k}, f \right\rangle = \frac{1}{2^{n+1}} \left\langle T_{\lambda,k}, N f \right\rangle$$
$$= \frac{1}{2^{n+1}} \left\langle T, t \to 2 \left| \lambda \right|^{-1} e^{-\frac{t}{2}} N f \left(2 \left| \lambda \right|^{-1} t \right) \right\rangle.$$

Now, as at the beginning of the proof of Proposition 3.1,

$$T = L_{k-q}^{n-1}H + \sum_{j=0}^{n-2} (L_{k-q+n-1}^0)^{(n-2-j)}(0) \delta^{(j)}.$$

But

$$\begin{split} &2\left|\lambda\right|^{-1} \int\limits_{0}^{\infty} L_{k-q}^{n-1}\left(t\right) e^{-\frac{t}{2}} N f\left(2\left|\lambda\right|^{-1} t\right) dt \\ &= \int\limits_{0}^{\infty} L_{k-q}^{n-1} \left(\frac{\left|\lambda\right| t}{2}\right) e^{-\frac{\left|\lambda\right| t}{4}} N f\left(t\right) dt \\ &= 2^{n} \int\limits_{B(z)>0} e^{-\frac{\left|\lambda\right|}{4} B(z)} L_{k-q}^{n-1} \left(\frac{\left|\lambda\right|}{2} B\left(z\right)\right) f\left(z\right) dz \end{split}$$

where the last equality follows from (2.12) applied to the function

$$F\left(z\right) = L_{k-q}^{n-1}\left(\frac{\left|\lambda\right|B\left(z\right)}{2}\right)e^{-\frac{\left|\lambda\right|B\left(z\right)}{4}}f\left(z\right).$$

On the other hand, a computation shows that

$$\left\langle \sum_{j=0}^{n-2} \left(L_{k-q+n-1}^{0} \right)^{(n-2-j)} (0) \, \delta^{(j)}, t \to 2 \, |\lambda|^{-1} \, e^{-\frac{t}{2}} N f \left(2 \, |\lambda|^{-1} \, t \right) \right\rangle$$

$$= 2 \sum_{l=0}^{n-2} 4^l \, |\lambda|^{-(l+1)} \sum_{j=l}^{n-2} \binom{j}{l} \left(L_{k-q+n-1}^{0} \right)^{(n-2-j)} (0) \, \frac{1}{2^j} \left\langle \delta_B^l, f \right\rangle$$

and the theorem follows.

Remark 4.2. Theorem 4.1 remains true for $k \leq -p$, with the obvious changes in the proof, if we replace L_{k-q}^{n-1} by L_{-k-p}^{n-1} , $\binom{n+k-q-1}{k-q+j+1}$ by $\binom{n-k-p-1}{-k-p+j+1}$

and the integration region $\{z : B(z) \ge 0\}$ by $\{z : B(z) \le 0\}$. It is also immediate to see that if -p < k < q, $\lambda \in \Re - \{0\}$, $f \in S(\mathbb{C}^n)$, then

$$\langle F_{\lambda,k}, f \rangle = \frac{1}{2^n} \sum_{l=0}^{n-2} 4^l |\lambda|^{-(l+1)} \sum_{j=l}^{n-2} \frac{1}{2^j} \binom{j}{l} \gamma_{j,k} \left\langle \delta_B^l, f \right\rangle$$

with $\gamma_{i,l}$ as in Remark 3.8, i.e.,

$$\gamma_{j,k} = \left(L_{k-q+n-1}^{0}\right)^{(n-j-2)}(0) = (-1)^{n-j} \binom{n+k-q-1}{n-j-2}$$

for $q - k - 1 \le j \le n - 2$ and $\gamma_{j,k} = 0$ if j < q - k - 1 and where δ_B^l is as in Theorem 4.1.

Remark 4.3. We have computed the distributions $F_{\lambda,k}$ and the constant $c_{\lambda,k}$, and so also $S_{\lambda,k} = e^{-i\lambda t} F_{\lambda,k}$.

Next, we compute μ_k . We first assume $k \geq q$. Taking account of Theorem 4.1. We recall that for $f = f(z, t) \in S'(H_n)$

$$\langle \mu_k, f \rangle = \int_{-\infty}^{\infty} \left\langle e^{-i\lambda t} F_{\lambda,k}, f \right\rangle |\lambda|^n d\lambda.$$

By Theorem 4.1 $|\lambda|^n e^{-i\lambda t} \langle F_{\lambda,k}, f(.,t) \rangle = J_1(f)(\lambda,t) + J_2(f)(\lambda,t), t \in \Re$, where

$$J_{1}\left(f\right)\left(\lambda,t\right) = \frac{1}{2}\left|\lambda\right|^{n}e^{-i\lambda t}\int\limits_{B\left(z\right)>0}e^{-\frac{|\lambda|}{4}B\left(z\right)}L_{k-q}^{n-1}\left(\frac{|\lambda|}{2}B\left(z\right)\right)f\left(z,t\right)dz$$

and

$$J_{2}\left(f\right) \left(\lambda,t\right)$$

$$=\frac{1}{2^{n}}e^{-i\lambda t}\sum_{l=0}^{n-2}4^{l}\left|\lambda\right|^{n-(l+1)}\sum_{j=l}^{n-2}\frac{1}{2^{j}}\binom{j}{l}\left(L_{k-q+n-1}^{0}\right)^{(n-j-2)}\left(0\right)\left\langle\delta_{B}^{l},f\left(.,t\right)\right\rangle.$$

So, by well known properties of the Fourier transform on $S'(\Re)$,

$$(4.6) \qquad \int_{\Re} \left(\int_{\Re} J_2(f)(\lambda, t) dt \right) d\lambda$$

$$= \frac{1}{2^n} \sum_{l=0}^{n-2} 4^l (-i)^{n-l-1} \sum_{j=l}^{n-2} \frac{1}{2^j} {j \choose l} \gamma_{j,k} \left\langle \nu_l, \frac{\partial^{n-l-1} f}{\partial t^{n-l-1}} \right\rangle$$

where $\nu_l = \delta_B^l \otimes pv\left(\frac{1}{t}\right)$ if n - l - 1 is odd and $\nu_l = \delta_B^l \otimes \delta$ if n - l - 1 is even. Let $I_1(f) = \int_{\Re} \left(\int_{\Re} J_1(f)(\lambda, t) dt\right) d\lambda$. The properties of the Fourier

transform in $S'(\Re)$ imply that

$$(4.7) I_{1}(f) = \int_{\Re} \left\langle e^{-\lambda i t} e^{-\frac{|\lambda|}{4} B(z)} L_{k-q}^{n-1} \left(\frac{|\lambda|}{2} B(z) \right) H(B(z)), f \right\rangle |\lambda|^{n} d\lambda$$

$$= i \int_{\Re} \left\langle e^{-\lambda i t} e^{-\frac{|\lambda|}{4} B(z)} L_{k-q}^{n-1} \left(\frac{|\lambda|}{2} B(z) \right) H(B(z)), h \right\rangle |\lambda|^{n-1} d\lambda$$

where $h(z,t) = \frac{\partial \left(pv\left(\frac{1}{t}*f\right)\right)}{\partial t}(z,t)$. Now, following [**St**], we will compute (4.7).

Lemma 4.4. For $f \in S\left(C^n \times \Re\right)$ there exists $\int\limits_{C^n \times \Re} \frac{H(B(z))}{B(z)+it} f(z,t) dz dt$ and

$$\lim_{\epsilon \to 0} \int\limits_{C^n \times \Re} \frac{H\left(B\left(z\right)\right)}{B\left(z\right) + \epsilon + it} f\left(z,t\right) dz dt = \int\limits_{C^n \times \Re} \frac{H\left(B\left(z\right)\right)}{B\left(z\right) + it} f\left(z,t\right) dz dt.$$

Proof. We write

$$\frac{1}{B(z) + \epsilon + it} = P(t, B(z) + \epsilon) - iQ(t, B(z) + \epsilon)$$

where $P\left(t,s\right)=\frac{s}{s^2+t^2},\ Q\left(t,s\right)=\frac{t}{s^2+t^2},\ t,s\in\Re.$ Thus, for $s\in\Re\left\|P\left(.,s\right)\right\|_{L^1\left(\Re\right)}=\pi.$ So

$$\int_{\Re} |P(t, B(z) + \epsilon) f(z, t)| dt \le \pi \|f(z, \cdot)\|_{L^{\infty}(\Re)}, \quad z \in C^{n}.$$

Also, for $B(z) \neq 0$, we have

$$\lim_{\epsilon \to 0} \left(P\left(., B\left(z\right) + \epsilon\right) * f\left(z, .\right) \right) (0) = \left(P\left(., B\left(z\right)\right) * f\left(z, .\right) \right) (0).$$

Since $\sup_{t\in\Re}|f\left(z,t\right)|\in L^{1}\left(C^{n}\right)$, the dominated convergence theorem implies that $P\left(t,B\left(z\right)\right)f\left(z,t\right)\in L^{1}\left(C^{n}\times\Re\right)$ and

$$\lim_{\epsilon \to 0} \int_{C^n \times \Re} P(t, B(z) + \epsilon) H(B(z)) f(z, t) dz dt$$

$$= \int_{C^n \times \Re} P(t, B(z)) H(B(z)) f(z, t) dz dt.$$

On the other hand, let $G_{\epsilon}\left(z\right)=\int\limits_{\Re}Q\left(t,B\left(z\right)+\epsilon\right)f\left(z,t\right)dt.$ So

$$G_{\epsilon}(z) = \int_{|t|<1} Q(t, B(z) + \epsilon) [f(z, t) - f(z, 0)] dt$$

$$+ \int_{|t| \ge 1} Q(t, B(z) + \epsilon) f(z, t) dt.$$

Now, for |t| < 1

$$\left|\frac{f\left(z,t\right)-f\left(z,0\right)}{t}\right|=\left|\frac{\partial f}{\partial t}\left(z,\zeta\left(z,t\right)\right)\right|\leq \sup_{|u|<1}\left|\frac{\partial f}{\partial t}\left(z,u\right)\right|.$$

Also

$$\sup_{|t|<1}\left|tQ\left(t,B\left(z\right)+\epsilon\right)\right|\leq1,\quad\sup_{|t|\geq1}\left|Q\left(t,B\left(z\right)+\epsilon\right)\right|\leq1.$$

Thus $|G_{\epsilon}(z)| \leq \sup_{|u|<1} \left| \frac{\partial f}{\partial t}(z,u) \right| + \|f(z,.)\|_{L^{1}(\Re{-[-1,1]})}$. So, as above, we can use the dominated convergence theorem to obtain that $Q(t,B(z)) H(B(z)) f(z,t) \in L^{1}(C^{n} \times \Re)$ and

$$\lim_{\epsilon \to 0} \int_{C^n \times \Re} Q(t, B(z) + \epsilon) H(B(z)) f(z, t) dz dt$$

$$= \int_{C^n \times \Re} Q(t, B(z)) H(B(z)) f(z, t) dz dt.$$

Following [St], we use the generatrix identity for the Laguerre polynomials

(4.8)
$$\sum_{s=0}^{\infty} L_s^{n-1}(t) r^s = (1-r)^{-n} e^{-\frac{r}{1-r}t}$$

to obtain, for $\epsilon > 0$

$$(4.9) \qquad \int_{0}^{\infty} e^{-\epsilon \lambda} e^{-i\lambda t} e^{-\frac{\lambda}{4}B(z)} L_{k-q}^{n-1} \left(\frac{\lambda}{2}B(z)\right) H(B(z)) \lambda^{n-1} d\lambda$$
$$= \alpha_{k} \frac{\left[B(z) - 4\epsilon - 4it\right]^{k-q}}{\left[B(z) + 4\epsilon + 4it\right]^{k+p}} H(B(z))$$

where

(4.10)
$$\alpha_{\kappa} = 4^{n} (n-1)! \binom{p+k-1}{k-q} (-1)^{k-q}.$$

Indeed, by (4.8), we can write, for |r| < 1, $B(z) \ge 0$, $t \in \Re$, $\epsilon > 0$

$$\sum_{k=q}^{\infty} r^{k-q} \int_{0}^{\infty} e^{-\epsilon \lambda} e^{-i\lambda t} e^{-\frac{\lambda}{4}B(z)} L_{k-q}^{n-1} \left(\frac{\lambda}{2}B(z)\right) \lambda^{n-1} d\lambda$$

$$= \sum_{s=0}^{\infty} r^{s} \int_{0}^{\infty} e^{-\epsilon \lambda} e^{-i\lambda t} e^{-\frac{\lambda}{4}B(z)} L_{s}^{n-1} \left(\frac{\lambda}{2}B(z)\right) \lambda^{n-1} d\lambda$$

$$= (1-r)^{-n} \int_0^\infty \exp\left(-\lambda \left(\frac{B\left(z\right)\left(1+r\right)+4\left(\epsilon+it\right)\left(1-r\right)}{4\left(1-r\right)}\right)\right) \lambda^{n-1} d\lambda$$

$$= \frac{4^n \left(n-1\right)!}{\left[B\left(z\right)+4\epsilon+4it+r\left(B\left(z\right)-4\epsilon-4it\right)\right]^n}.$$

Now, we compare the Taylor developments to obtain (4.9).

Write

$$\frac{B\left(z\right)-it}{B\left(z\right)+it} = \frac{2B\left(z\right)}{B\left(z\right)+it} - 1.$$

Now, letting $\epsilon \to 0^+$, and taking account of Lemma 4.4, we have

$$(4.11) \qquad \int_{0}^{\infty} \left\langle e^{-i\lambda t} e^{-\frac{\lambda}{4}B(z)} L_{k-q}^{n-1} \left(\frac{\lambda}{2}B(z) \right) H(B(z)) \lambda^{n-1}, f \right\rangle d\lambda$$
$$= \alpha_{k} \lim_{\epsilon \to 0} \left\langle \frac{\left[B(z) - 4\epsilon - 4it \right]^{k-q}}{\left[B(z) + 4\epsilon + 4it \right]^{k+p}} H(B(z)), f \right\rangle.$$

Now, this limit is

$$\begin{split} &\alpha_{k} \lim_{\epsilon \to 0} \left\langle \left[\frac{2B\left(z\right)}{B\left(z\right) + 4\epsilon + 4it} - 1 \right]^{k-q} \frac{H\left(B\left(z\right)\right)}{\left[B\left(z\right) + 4\epsilon + 4it\right]^{n}}, f \right\rangle \\ &= \alpha_{k} \lim_{\epsilon \to 0} \sum_{l=0}^{k-q} \binom{k-q}{l} \left(-1\right)^{k-q-l} 2^{l} \left\langle \frac{B\left(z\right)^{l} H\left(B\left(z\right)\right)}{\left[B\left(z\right) + 4\epsilon + 4it\right]^{n+l}}, f \right\rangle \\ &= \alpha_{k} \sum_{l=0}^{k-q} \binom{k-q}{l} \left(-1\right)^{k-q-l} \frac{2^{l} \left(-4i\right)^{n+l-1}}{\left(n+l-1\right)!} \left\langle \frac{B\left(z\right)^{l} H\left(B\left(z\right)\right)}{B\left(z\right) + 4it}, \frac{\partial^{n+l-1} f}{\partial t^{n+l-1}} \right\rangle. \end{split}$$

So

$$(4.12) \qquad \int_{0}^{\infty} \left\langle e^{-i\lambda t} e^{-\frac{\lambda}{4}B(z)} L_{k-q}^{n-1} \left(\frac{\lambda}{2}B(z) \right) H\left(B(z) \right) \lambda^{n-1}, f \right\rangle d\lambda$$
$$= \alpha_{k} \sum_{l=0}^{k-q} \beta_{k,l} \left\langle \frac{B(z)^{l} H\left(B(z) \right)}{B(z) + 4it}, \frac{\partial^{n+l-1} f}{\partial t^{n+l-1}} \right\rangle$$

where

(4.13)
$$\beta_{k,l} = {\binom{k-q}{l}} (-1)^{k-q-l} \frac{2^l (-4i)^{n+l-1}}{(n+l-1)!}.$$

From (4.11) a change of variable gives

$$(4.14) \qquad \int_{-\infty}^{0} \left\langle e^{-i\lambda t} e^{-\frac{|\lambda|}{4}B(z)} L_{k-q}^{n-1} \left(\frac{|\lambda|}{2} B(z) \right) H(B(z)) |\lambda|^{n-1}, f \right\rangle d\lambda$$
$$= \alpha_k \sum_{l=0}^{k-q} \overline{\beta}_{k,l} \left\langle \frac{B(z)^l H(B(z))}{B(z) - 4it}, \frac{\partial^{n+l-1} f}{\partial t^{n+l-1}} \right\rangle$$

where, by (4.13), $\overline{\beta}_{k,l} = (-1)^{n+l-1} \beta_{k,l}$. So we have:

Theorem 4.5. For $k \geq q$ and $0 \leq l \leq k - q$, let $\alpha_k, \beta_{k,l}$ defined by (4.10) and (4.13) respectively. Then we have $\mu_k(f) = I_1(f) + I_2(f)$ where $I_1(f)$

$$=\frac{i\alpha_{k}}{2}\sum_{l=0}^{k-q}\beta_{k,l}\left\langle \left(\frac{B\left(z\right)^{l}H\left(B\left(z\right)\right)}{B\left(z\right)+4it}+\left(-1\right)^{n+l-1}\frac{B\left(z\right)^{l}H\left(B\left(z\right)\right)}{B\left(z\right)-4it}\right),\frac{\partial^{n+l}\left(pv\left(\frac{1}{t}*f\right)\right)}{\partial t^{n+l}}\right\rangle$$

and

 $I_2(f)$

$$=\frac{1}{2^{n}}\sum_{l=0}^{n-2}4^{l}\sum_{j=l}^{n-2}\left(-i\right)^{n-l-1}\frac{1}{2^{j}}\binom{j}{l}\left(L_{k-q+n-1}^{0}\right)^{(n-j-2)}\left(0\right)\left\langle \nu_{l},\frac{\partial^{n-l-1}f}{\partial t^{n-l-1}}\right\rangle$$

where $\nu_l = \delta_B^l \otimes pv\left(\frac{1}{t}\right)$ if n - l - 1 is odd and $\nu_l = \delta_B^l \otimes \delta$ if n - l - 1 is even.

Proof. It follows from
$$(4.12)$$
, (4.14) , (4.7) and (4.6) .

Remark 4.6. If $k \leq -p$, Theorem 4.5 remains true if we replace k - q by -k - p and H(B(z)) by H(-B(z)) with the same proof, using (2.18) instead of (2.17). If -p < k < q the same arguments give us $\mu_k(f) = I_2(f)$, with

$$I_{2}(f) = \frac{1}{2^{n}} \sum_{l=0}^{n-2} 4^{l} \sum_{j=l}^{n-2} \frac{1}{2^{j}} \binom{j}{l} \gamma_{j,k} \left\langle \nu_{l}, \frac{\partial^{n-l-1} f}{\partial t^{n-l-1}} \right\rangle$$

where $\gamma_{j,k}$ is defined as in Remark 3.8.

Remark 4.7. Let $A = \{(z,t) \in C^n \times \Re : B(z) = 0\}$. If $f \in S(H_n)$ and $\operatorname{supp}(f) \cap A = \emptyset$ thus $\operatorname{supp}\left(\frac{\partial}{\partial t}\left(p.v.\left(\frac{1}{t}\right) * f\right)\right) \cap A = \emptyset$, then from (4.7) and (4.11) and taking account of that $I_2(f) = 0$, we have

$$\begin{split} &\mu_{k}\left(f\right)=I_{1}\left(f\right)\\ &=i\alpha_{k}\lim_{\epsilon\to0}\left\langle \frac{\left[B\left(z\right)-4\epsilon-4it\right]^{k-q}}{\left[B\left(z\right)+4\epsilon+4it\right]^{k+p}}H\left(B\left(z\right)\right),\frac{\partial}{\partial t}\left(p.v.\left(\frac{1}{t}\right)*f\right)\right\rangle\\ &=i\alpha_{k}\left\langle \frac{\left[B\left(z\right)-4it\right]^{k-q}}{\left[B\left(z\right)+4it\right]^{k+p}}H\left(B\left(z\right)\right),\frac{\partial}{\partial t}\left(p.v.\left(\frac{1}{t}\right)*f\right)\right\rangle\\ &=i\alpha_{k}\left\langle -\frac{\partial}{\partial t}\left(\frac{\left[B\left(z\right)-4it\right]^{k-q}}{\left[B\left(z\right)+4it\right]^{k+p}}\right)H\left(B\left(z\right)\right),p.v.\left(\frac{1}{t}\right)*f\right\rangle. \end{split}$$

This is an analogous expression to those obtained in [St], p. 362.

Remark 4.8. For $\epsilon = \pm 1$, $k \in \mathbb{Z}$, we set $R_{k,\epsilon} = \{\epsilon \rho, \rho (2k + p - q) : \rho > 0\}$. The rays $R_{k,\epsilon}$ are closely related to the study of the kernels of the operators $L - i\alpha T$, $\alpha \in \mathbb{C}$. In order to describe $\ker(L - i\alpha T)$, with $\alpha \in \mathbb{C}$

2Z for n even and $\ker(L-i\alpha T)$, with $\alpha \in 1+2Z$ for n odd, we define $\wp_k^+, \wp_k^- : L^2(H_n) \to L^2(H_n)$ via the Plancherel inversion formula requiring that for $\lambda \in \Re - \{0\}$, $\pi_{\lambda}\wp_k^+ = \chi_{(0,\infty)}(\lambda) P_k \pi_{\lambda}$ and $\pi_{\lambda}\wp_k^- = \chi_{(-\infty,0)}(\lambda) P_k \pi_{\lambda}$, where P_k is define as at the beginning of the proof of Lemma 2.2. Thus \wp_k^+, \wp_k^- are orthogonal projections over certain subspaces of $L^2(H_n)$. As in Lemma 2.2 we have $\wp_k^+ f = \int_0^{+\infty} f * S_{\lambda,k} |\lambda|^n d\lambda$, $f \in S(H_n)$ (and the analogous formula for \wp_k^-). If m has the same parity than n, we define $k_1(m) = -\frac{1}{2}(m+p-q)$ and $k_2(m) = \frac{1}{2}(m-p+q)$. Thus $k_1(m), k_2(m) \in Z$. We observe that $R\left(\wp_{k_1(m)}^+\right) \subset \ker(L-imT) \cap L^2(H_n)$, where $\ker(L-imT) = \{S \in S'(H_n) : (L-imT)S = 0\}$. In order to see this inclusion, we proceed as follows. As in Lemma 2.2 we construct $\mu_{k_1(m)}^{\pm} \in S'(H_n)$ such that $\wp_{k_1(m)}^{\pm} f = f * \mu_{k_1(m)}^{\pm}$. As there, we have $\left\langle \mu_{k_1(m)}^+, \varphi \right\rangle = \int_0^{+\infty} \left\langle S_{\lambda.k_1(m)}, \varphi \right\rangle |\lambda|^n d\lambda$, $\varphi \in S'(H_n)$. Then

$$\left\langle (L - imT) \left(\mu_{k_1(m)}^+ \right), \varphi \right\rangle$$

$$= \left\langle \mu_{k_1(m)}^+, (L + imT) (\varphi) \right\rangle$$

$$= \int_0^{+\infty} \left\langle S_{\lambda.k_1(m)}, (L + imT) (\varphi) \right\rangle |\lambda|^n d\lambda$$

$$= \int_0^{+\infty} \left\langle (L - imT) S_{\lambda.k_1(m)}, \varphi \right\rangle |\lambda|^n d\lambda = 0.$$

Now, since L,T commute with left translations $(L-imT)\left(f*\mu_{k_1(m)}^+\right)=f*\left((L-imT)\mu_{k_1(m)}^+\right)=0$. So $R\left(\wp_{k_1(m)}^+\right)\subset\ker\left(L-imT\right)\cap L^2\left(H_n\right)$. Similarly, $R\left(\wp_{k_2(m)}^-\right)\subset\ker\left(L-imT\right)\cap L^2\left(H_n\right)$. So $R\left(\wp_{k_1(m)}^+\right)\oplus R\left(\wp_{k_2(m)}^-\right)\subset\ker\left(L-imT\right)\cap L^2\left(H_n\right)$. On the other hand, Plancherel theorem implies that $R\left(\wp_k^\pm\right)\perp R\left(\wp_s^\pm\right)$ if $k\neq s$ and $R\left(\wp_k^+\right)\perp R\left(\wp_k^-\right), k\in \dot{Z}$. We know also that, as operator on $L^2\left(H_n\right)$, iLT^{-1} has a closed and self-adjoint extension (see $[\mathbf{M-R,1}]$, Th. 7.4) that we still denote by iLT^{-1} . We have $\ker\left(L-i\alpha T\right)\cap L^2\left(H_n\right)=\ker\left(LT^{-1}-i\alpha\right),\ \alpha\in C$ (see $[\mathbf{M-R,2}]$, Proposition 1.4). Since iLT^{-1} is a self adjoint operator, we have $\ker\left(LT^{-1}-im\right)\perp\ker\left(LT^{-1}-i\widetilde{m}\right)$ for $m\neq\widetilde{m}$. Now, $L^2\left(H_n\right)=\bigoplus_{k\in Z}R\left(\wp_k\right)$. Thus we have the direct orthogonal sum

$$L^{2}\left(H_{n}\right) = \bigoplus_{m \in \mathbb{Z}} \left(R\left(\wp_{k_{1}\left(m\right)}^{+}\right) \bigoplus R\left(\wp_{k_{2}\left(m\right)}^{-}\right)\right).$$

Then we conclude that

$$\ker (L - imT) \cap L^{2}(H_{n}) = R\left(\wp_{k_{1}(m)}^{+}\right) \bigoplus R\left(\wp_{k_{2}(m)}^{-}\right)$$

and that if n is even then $\ker(L - i\alpha T) \cap L^2(H_n) = 0$ if $\alpha \notin 2\mathbb{Z}$ and that if n is odd then $\ker(L - i\alpha T) \cap L^2(H_n) = 0$ if $\alpha \notin 1 + 2\mathbb{Z}$.

The projectors \wp_k^{\pm} , $k \in \mathbb{Z}$ can be computed proceeding as in the determination of \wp_k . As in Lemma 2.2 we construct $\mu_k^{\pm} \in S'(H_n)$ such that $\wp_k^{\pm} f = f * \mu_k^{\pm}$, and then, with the same arguments used for μ_k , we decompose $\mu_k^{\pm}(f) = I_1^{\pm}(f) + I_2^{\pm}(f)$, where

$$I_{1}^{+}\left(f\right)=\int_{0}^{\infty}\left\langle e^{-\lambda it}e^{-\frac{\lambda}{4}B\left(z\right)}L_{k-q}^{n-1}\left(\frac{\lambda}{2}B\left(z\right)\right)H\left(B\left(z\right)\right),f\right\rangle \lambda^{n}d\lambda$$

and

$$I_{2}^{+}(f) = \int_{\Re} \int_{\Re} \frac{1}{2^{n}} e^{-i\lambda t} H(\lambda) \sum_{l=0}^{n-2} 4^{l} \lambda^{-(l+1)} \cdot \sum_{j=l}^{n-2} \frac{(-1)^{n-j}}{2^{j}} \binom{j}{l} \binom{n+l-1}{l+j+1} \left\langle \delta_{B}^{l}, f(.,t) \right\rangle dt d\lambda$$

thus, using the properties of the Fourier transform and taking account of that $\widehat{H} = \delta - ip.v. \left(\frac{1}{t}\right)$ we can obtain explicit formulas for μ_k^+ of similar type those given for μ_k . Since $\mu_k^- = \mu_k - \mu_k^+$ we obtain also an explicit description for μ_k^- .

References

- [B-J-R] C. Benson, J. Jenkins and G. Ratcliff, Bounded k-spherical function on Heisenberg groups, J. of. Func. Analysis, 105 (1992), 409-443.
- [B-W] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representation of reductive groups, Annals of Mathematics Studies, 94, Princeton University Press.
- [F] G. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies,
 122, Princeton University Press.
- [G-Sh] I. Gelfand and G. Shilov, Les Distributions, 1, Dunod, Paris, 1962.
- [H-R] A. Hulanicki and F. Ricci, A tauberian theorem and tangential convergence of bounded harmonic functions on balls in \mathbb{C}^n , Invent. Math., **62** (1980), 325-331.
- [Ko] A. Koranyi, Some applications of Gelfand pairs in classical analysis, in 'Harmonic Analysis and Group Representations', CIME, (1980), 333-348.
- [M-R,1] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups I, Invent. Math., 101 (1990), 545-582.
- [M-R,2] _____, Analysis of second order differential operators on Heisenberg groups II, J. of Funct. Analysis, 108(2) (1992), 296-346.
- [R] F. Ricci, Harmonic Analysis on the Heisemberg Group, Politecnico di Torino.
- [Se] J. Seaborn, Hypergeometric Functions and their applications, Springer-Verlag.

- [St] R. Strichartz, L^p harmonic analysis and Radon transforms on the Heisenberg group, J. of Funct. Analysis, 96 (1991), 350-406.
- [Sz] G. Szegö, Orthogonal Polynomials, Colloquium Publication, Vol. XXIII, A.M.S.
- [T] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand., 8 (1960), 201-218.
- [V] V.S. Varadarajan, *Lie groups, Lie algebras and their representations*, Prentice Hall, Series in Modern Analysis.

Received August 11, 1998. The second author was partially supported by CONICET, CONICOR and SECYT-UNC.

Facultad de Matemática, Astronomía y Física Universidad Nacional de Cordoba Ciudad Universitaria 5000 Cordoba Argentina

E-mail address: godoy@mate.uncor.edu

Facultad de Matemática, Astronomía y Física Universidad Nacional de Cordoba Ciudad Universitaria 5000 Cordoba Argentina

E-mail address: saal@mate.uncor.edu