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Here we consider the Heisenberg group H,, = C™ X R.
U (p,q) , p+q = n, acts by automorphism on H,, by g-(z,t) =

(gz,t).
Let {X1,...,X,,Y1,...,Y,,T} be the standard basis of
the Lie algebra of H,, and let

p n
_ 2 2 2 2
L—Z(Xj "'Yj)_ > (Xj+Yj)'
i=1 j=p+1
Via the Plancherel inversion formula, we obtain the joint
spectral decomposition of L? (H,,) with respect to L and T

“+oco
F=3 [ reSwtdn feS(H
kez >
where each S) i is a tempered distribution U (p, q) invariant
satisfying iTS)\,k = )\S)\,k, LS)\,k = — |>\| (2’(7 + P — q) S)\,k. ‘We
compute explicitly the distributions S} ; and the integral p; =
S f % Sak |A|™ dA

1. Introduction.
Let H, = C" xR with law group (z,t) (z/, /)= (2 + 2/, t + t' — 3ImB(z, 7)),

p n

where B (z,w) = ) zjw; — . zjw;. Then H, can be viewed as the
J=1 j=p+1

2n + 1 dimensional Heisenberg group. Indeed, if n = p + ¢, Q (z,w) =

—ImB (z,w) is the standard symplectic form on R2(P+9) via the identification

¥ : R2r+a) — O™ given by

(1'1) \Il (w/’x//, y/’y//) — (‘r/ + iy,,.’L'// _ ,L'y//) , .:E/’ y/ c §Rp;$//7y// c %q
Moreover, ¥ provides a global coordinate system (x,y,t) with x = (2/, 2"),
y = (v,y"). The vector fields X; = —%yj% + rd%j, Y, = %xj% + %7
j=1,...,nand T = % form a basis for the Lie algebra h,, of H,,. As usual,

U (hy,) will denote its universal enveloping algebra, which can be identified
with the algebra of left invariant differential operators on H,.
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U(p,q) = {9 € GL(n,C): B(gz,gw) = B(z,w)} acts by automorphism
on H, by

(12) g(zat) :(gzat)a gEU(p7Q)’(Z’t) € Hy.
It is well known that the subalgebra U (hn)U(") of the elements which com-
mute with the action of U (n) = U (n,0) given by (1.2), is generated by T’

n
and the Heisenberg Laplacian ) (X JQ + Yf) . The spherical functions asso-
j=1

ciated with the Gelfand pair (U (n), H,) have been obtained independently
by many authors (see e.g., [H-R], [Ko]|, [St]). Moreover in [B-J-R] it is
developed a general calculus to provide the bounded K- spherical functions
for a Gelfand pair (K, H,), K C U (n).

For general p,q,p+ ¢ =n, let

n

p
=X (X]+v7) - > (XF+77).
7j=1

J=p+1
Then
p 2 2 - 2 2 82 ! 82 82
7j=1 Jj=p+1
_._Z (a:c?*ayj >+8tz(m ? dy; yja%)

It is easy to see, reasoning as in the case p = n,q = 0, (see Lemma 2.1
below), that the subalgebra U (hy)V P9 | of the left invariant differential
operators which commute with the action of U (p, q) is generated by T" and
L. So, it is natural to ask for the joint eigendistributions of L and T and
the associated decomposition of L% (H,,). In order to do this, we will use,
following [St], the Plancherel inversion formula to decompose f € S (H,,) as

f= Z/ £ Sk A" dA

keZ

where each S j is a tempered and U (p, ¢) invariant distribution satisfying
iTS\k = ASxk, LSk = — A (2k +p — q) S\ -

Next we will study the confluent hypergeometric equation in a suitable
distribution space in order to obtain that, for k > ¢

(S ) czcj /e_méé(f(.,t))dt

R
+c / e_i)‘te_%lB(z)LZ:l <‘)\B(z))H(|)\|B(z))f(z,t)dzdt

7\ 2
Cn xR
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where B (z) = B (z,z), H is the Heaviside function, 5% are canonical distri-
butions associated to the quadratic form B defined as in [G-Sh], supported
on{z € C": B(z) =0} and where LZ:; denotes, as usual, a Laguerre poly-
nomial. The various constants c,c;j (\) are explicitly computed. Similar
formulas are obtained if £ < —p. If —p < k < ¢, Sy is written as a finite
sum in terms of the distributions 553, 7 =1,...,n — 2. Finally, we compute
wi = [ Sxx A" dX and so the projections pg f = f* u, k € Z. In particular
R

we recover the projections onto the kernel of L + i (2k 4+ p — q) T, extending
the formula given in [M-R,2] for n = 2, p = ¢ = 1, to arbitrary n, p, q.

Acknowledgments. We express our thanks to Fulvio Ricci who introduced
and guides us in this beautiful subject and to Jorge Vargas for many useful
conversations.

2. Some preliminaries.

As in the case p = n,q = 0 we have that U (hn)U(p’q) is generated by T
and L and the proof follows the same lines but we add it for the sake of
completeness.

Lemma 2.1. U (h,)"PPis generated by T and L.
Proof. Let S (hy,) be the symmetric algebra generated by the set
{X1,..., Xp,,....Y,,T}

and let A : S (hy) — U (hy,) be the symmetrizer map. Since U (p, q) acts on
S (hy) and on U (hy,) by automorphism, the following diagram is commuta-~
tive (see [V], Th. 3.3.4)

S(hn) —=— Ulln)

lg lg ,  9€U(pa).

S(hn) —>— U(hy)

A is a linear isomorphism, thus A maps S (b)Y ®? onto U (h,,)V®9 . Since
the action of U (p, q) preserves degree on S (hy,), the lines of Theorem 3.3.8
in [V] say that if {1,u1,... ,um} is a set of generators of S (h,)” % | then
{1,A (u1) ..., A (um)} generates U (hy)" P9 If w € S (hy)Y Y then u =
S P (X1, s X0, Y1,..., Yy, ) T? where the sum is finite and each Pj is
a polynomial U (p, q) invariant. Decomposing P; as a sum of homogeneous
polynomials, the same is true for all of them. Since SU (p, q) acts transitively
on

p n

S1=q(@y) €W Y (af+y) = D (o +f) =1

j=1 j=p+1
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p n
each P; must be a polynomial in 321 (x? + yf) _j—zp:—i-l (3:? + yf) . This ends
the proof. O

We recall that for A € R A # 0, the Schrodinger’s representation 7y of the
Heisenberg group R" x %" x R is defined on L? (R") by

21 mlayth(Q)= e MVRECDI) ().

We denote by E) (h1, ha) the matrix entry associated to my and the vectors
h1, he, given by

Ey (h1, h2) (z,y,t) = (7 (2,y,t) h1, ha) .

We also denote by dmy the infinitesimal representation defined on the space
of C'*° vectors for 7y, which is, in this case, the space of the rapidly decreas-
ing functions

_d

~dt|=0
We still denote by 7 the corresponding representation of H, = C" x

R and by Ejy (hi,hg),dmy its associated matrix entries and infinitesimal

representation respectively.
It is remarked in [St] that

XE, (hl,hg):E/\(dﬂ')\ (X)hl,hg), XGU(hn)

It follows that iT'F), = AFE), and that, in order to obtain matrix entries
eigenfuntions of L, we must look for eigenvectors of dmy (L) in L? (R").

Thus we pick the orthonormal basis of L? (R") given by the Hermite
functions: For a = (aq,... ,ap) € (NU{0})", let

dmy (X)h 7 (exptX) h.

oy \E I
ha () = (2°latym) * e [ Hay ()
j=1
with |a| = a1 + -+ ap, ! = a;!. .. a,! and where
2 dk &2
Hk (8) = (—1)k€ @ (6 )

is the k — th Hermite polynomial.
It follows from (2.1) that

dmy (L) =—|A [ B(¢) - Z@— > 5

J j=p+1
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P
For o= (ou,..., o) weset [laf = > a;— Z+1 ;. Since <§2 59%) ha,
j= j=p

= (20 + 1) hq;, we have that dmy (L) ho = — A (2 [la|| + p — ) ha. Thus
(22)  dra (L) Ex(ha, ha) = = [A 2]l +p = q) Ex (ha; ha) -
(2.2) and the Plancherel inversion formula lead us to the joint spectral res-
olution of 1" and L.

The inversion formula asserts that, for f € S (H,,)

1 +oo n
fat) = [ trm () m (g ) A" )
(27r> .

where ), ( fH (x,y,t) 7 (2, y, t)f1 dxdydt. Moreover, for f € S (H,),
(z,y,t) € Hn, we have that

+oo
23) X[m0 m () e ha)l A < M < 0

with M independent of (x,y,t) (see [R], Th. 10.1).
Taking account of that

<7T/\ (1'7 Y, t) T (f) haa ha> = (E)\ (hom ha) * f) (:L‘a Y, t)
and that

Bx (hasha) ((2,9,6)7") = Bx (hasha) (2,0

we have

1 Foo n
Pt = e [ @) () o) A

) a

1 n
= T Z/ £ # B (has ha)) (2, y,2) [A" dA

1 n
s [ X U B )
@m)™ kez /= jat

Lemma 2.2. Let py : S (Hy) — C be defined by

+o00
/ > (f,Ex(hasha)) [N dN, € S(Hy).
T lell=k
Then uy, € S' (H,).
Proof. For k € Z, let Hy be the closed subspace of L?(R") generated by
{hea : ||la|| = k}, thus L? (R") = € Hy. Let Py be the orthogonal projection

keZ
from L? (R") onto Hj. Now, for f € S (H,), we define g f by

(2.4) T (orf) = Pema (f) -
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It follows from (2.3) that
+o0o
[ S 0 ma (200 s o) A A < o
e &

and so

+00
onf (2,9,1) = nﬂ / S (f % B (hao ha)) (2, ) I\ .

(2m 0 leli=k

prf commutes with left translations and by (2.4) and the Plancherel formula
it extends to a bounded operator on L? (H,). So, there exists a unique

tempered distribution, which is uj such that ppf = f * pg. U
We set, for A € R — {0} and f € S (H,)
(2'5) S}\,k (f) = Z <fa E) (ha, ha)> .
llall=F

We claim that Sy , is well defined and belongs to S’ (H,,) . In order to see this,
we consider H,, = H, /N where N = {0} x {0} x 27 Z. Then H,, = R" x R" x
51, where S* {ew 0 e §R} Each irreducible unitary representation of H,,
is umtarlly equivalent to one and only one of the following representations:
The representations 7, acting on L? (R") corresponding to A = 27m, m € Z
and the one dimensional representations ogy (2,y,t) = gilaztby) (a,b) €
R™ x R™. For f nice enough, m,, (f) is a Hilbert Schmidt operator. We have
also 0ap (f) = [nygnxg [ (2,9,1) e~z tby) dudydt = ]?(a, b,0) , where 7
denotes the euclidean Fourier transform and 0 is the identity in N. The
Plancherel identity asserts that

1) = 32 I Ols "+ [ o (1) dad,
R x

m#0

Also, setting ¢ (a,b) = o4 (f), the inversion formula is in this case

f @y t) =Y tr (7 (F) 7o ()7 ) Il + 6 (=, =)

m7#0

So we can consider L,T = % and py as above, and repeat all the arguments

for H, instead of H, to obtain that v (f) = > |m|" > (f, Em (ha,ha))
m#£0 o[ =k

defines a tempered distribution on § (§R” x R x Sl). Furthermore, the

analogous of (2.3) says that the last double series converges absolutely.

Now, for A € R — {0}, (2,t) € C™ x R, we can write (see, for example

[Fo]), Ex (ha,hq) (2,t) in terms of Laguerre polynomials as

(26)  Exlhasha) (2.8) = e HIEE HLO (5 158).
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For f € S (R*"), we set vy (f) = vy, (g1 (f)) , where gi (f) (2,t) = €™ f (2),
(2,t) € C™ x R and where we use the identification of C™ with R?" given by
(1.1). Then vy, € S’ (3%2”) if | € Z —{0}. In particular, we have that the
series

(2.7) e YT T2, (i |Zj|2)
ladl=k =1

defines an element in " (R*") and so Sy € S (Hy) .
We set, for p € 8" (Hy,), A € R — {0}

(2.8) (Oxp, £y = N7 Sy f)
where 0y f (z,1) (\/\72 /\t>

Lemma 2.3. Sy, € S’ (Hy) for all X e ® — {0} ,k € Z.
PT’OOf. SA,k = 5>\ (Sl,k) and Sl,k € Sl( n) O
Remark 2.4. Since the series (2.7) belongs to S’ (R?"), the same dilation

argument shows that the series =il > H Ly, (% Al |Zj|2) defines a
llell=k j=
tempered distribution F) , on R*" for A € R — {O} ke Z
For g € U(p,q), let Si’k be defined by Si?k (f) = Sk (f9), where
f9(z,t) = f(gz,t). We have
Lemma 2.5. Sy is a U (p, q) invariant distribution for all A € R—{0} ,k €
Z.

Proof. Let w be the metaplectic representation of SU (p,q) on L? (R").

Then, for g € SU (p,q), (2,t) € Hy, we have that

(2.9) ™ (g2,1) = w(g) mx (z,)w (g71) -

Furthermore, L? (R") = @ Hy, where Hy is, as in Lemma 2.2, the closed
keZ

€
subspace generated by {hq : ||a|| = k}. It is known that (w, Hy) is SU (p, q)
irreducible (see 1.12, 2.7 and 2.8, Ch.VIII in [B-W]).

We denote by I, : Hj, — L? (R") the inclusion map and by Py, : L? (R") —
Hj. the orthogonal projection. We also set T,+ = Pymy (2,t) I. Then, for

f € S(H,), the operator T = | H. z,t) T, dzdt is a trace class operator.
Now, by (2.9)
<S§7k,f Z /f (z,t) (mx (92, t) hay ho) dzdt
llell=Fkgy,,

= Y [0 0w () b (57 ) dedt

loll=k;,
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= (T635,03) = (Sax. [)
B

with 03 = w (gil) hg and where we use that {63} g s another orthonormal

basis of Hy. Then Sy is SU (p,q) invariant. Finally, we note also that if
g = 20l, |z0| = 1, I the n x n identity matrix, it is clear from (2.6) that
5% . =Sk and so Sy is a U (p, ¢) invariant distribution. O

Remark 2.6. By the inversion Plancherel formula and Lemmas (2.2), (2.3)
and (2.5) we have f = 3> [ f« S\, [\["d), f € S(H,).
keZ

Let F\p € 5’ (§R2n) be the distribution defined in Remark 2.4. Since
F\r®1= ei’\tSMC we have that F) j is U (p, ¢) invariant. Then

= 0 0
- (wi2g; ~¥i3;) Pk =0

j=1

From LSy = — |\ (2k +p — q) Sxx and (1.3) we have that

1
(2.10) <—4)\QB (Z)—f—D) F)\,k = —‘)\’(2]6 —l—p—q) F)\J{;

n 2 2
where O = Z (Bm > + ay ) —zp;d (agjg + %) and B (z) = B(z, z) for
z_a:+zy,a: ye%".

Now, according with [T], the space of the U (p,q) invariant tempered
distributions can be described as the dual of the space of the functions
in C*° (R — {0}) with some kind of singularity at the origin. In order to
describe them, we introduce polar coordinates on R?" as follows. For x,y €

p n n
_ 2,2 2., .2 _ 2 .2 _
R" we set ¢ = Z (xj+yj) — Z (:L"j+yj>,p— Z (achryj), u =
Jj=1 Jj=p+1 j=1
1 1
(p—&2-0') wy, v = (45%)% w, where w, belongs to the 2p — 1 dimensional
sphere S$2P~1 and w, € §2471,
For f € S(?RQ") and for p,c € R, p >0, p >0, let

Mn o) = [ 1 ((”;f’)éwu, (";“)w> s,

5‘21)71 XSqul

and let, for 7 € R,

(2.11) W@ = [ QI ) (7 -7 dp

p>I7]
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We note that

(2.12) / f(z)de = ;I/Nf(a)da
20 R

Let H be the Heaviside function, defined by H (1) = 1if 7 > 0and H (1) =0
if 7 < 0. Let Hy the space of the functions ¢ : ® — C such that ¢ (1) =
01 (1) + H (1) pa (1) 7L, 01,02 € D(R), where D (R) denotes the space
of the functions in C*° (R) with compact support and let H be the space
defined analogously, but where now we require 1,2 € S (R).

If ¢ € H, then it is regular out of the origin and ¢ € C"~2 (R) . Moreover,
for each m > n — 1, there exists P, (¢), polynomial of degree m, such that
o — HP,, (¢) € C™(R). So, for m € N, ¢ admits an expansion

(2.13) @(T):iBj( ™+ H(r ZA )7+ o (™)
=0

with A; (¢) =0 for j <n —1.

Remark 2.7. Hj and H, with the topology given in [T}, are Frechet spaces
and N : S (§R2”) — H, N : D (%2”) — Hy are linear, continuous and
surjective maps. Moreover, their adjoints N’ : H' — S’ (R*") U(p’q), N’ :
H, — D' (3‘%2”)(](17 D are linear homeomorphisms. (see 2.1, 4.3, 5.1 and
some remarks at the beginning of §7 in [T]). (We also remark that 5.1 in

[T] holds for U (p, q) instead of SO (p, q) with the obvious changes.)
It is also proved in [T] that

(2.14) N(@f)=D(Nf),f €S (R
where the differential operator D is defined by

(2.15) D= 4(8822 (2—n)§7_>

so the adjoint of D is given by D'T = 4 (+T" +nT"), T € H .
We say that T' € H' is a solution of D'T' = 0 if (D'T, ) = 0 for all ¢ € H.
It is easy to see that T' € H’ is a solution of

)\2
(2.16) ZTTHAET +0T) = =N @k +p—q) T

if and only if N'T is a solution of (2.10). The same assertion is true for
solutions in Hj,.

Setting b = —|\(2k+p—q), (2.16) becomes 167T" + 16nT"—
()\2T+4b) = 0. As in [Ko|, we note that if § = i:l\, g = —% and

I = 4nﬁ b and if w (t) = eP'v (at), then w is a solution of 167w” 4+ 16nw’ —
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()\27 + 4b) w = 0 if and only if v is a solution of the confluent hypergeometric
equation (C.H.E) tv” + (n —t)v' + lv = 0.
For T'e€ H' and for k € Z, A € R — {0} we set

217)  (Bue) = (ST (@) a9 () = ¢ 31 (1

for k > 0, where 0y (t) = ¢ (At) and (6T, @) = |\ 7" (T, 65-1¢) .
We also set
12l

(218) (D) = (S Tua (9)),ua () () = e 370 (1)

if £ <O0.

We note that if £ > 0 then T € H6 is a solution of the C.H.E. with
parameter | = k — ¢ if and only if T) ;, is a solution in Hj, of (2.16). If £ <0
then T' € Hj, solves the C.H.E. with parameter [ = —k — p if and only if T)
solves (2.16).

Our aim is to find all the solutions in H’ of (2.16). We note that if S is
such a solution, then S = T} j, for some solution 7" € H;, of the C.H.E. with
parameter | = k —q if Kk > 0 and [ = —k — p if £ < 0. This leads us to
determine all the solutions in H{, of C.H.E. with parameter [ > —n+1 such
that the corresponding T, € H'.

3. About the confluent hypergeometric equation.

As in [Sz], if m, § are non negative integers, we denote by {Lgl}, the La-
guerre polynomials. Then Lgl(x) is defined as the only polynomial solution
of

"+ (B+1 -t +mv=0
and normalized by the condition

(3.1) /0 " e B L8 (2)LP, (¢)dx = (B + 1) <m£ ﬁ) S

We have that
" (m - x)
(3.2) =3 (") vt
=\ j!
and that %L& = —L,ﬂntll.
Let D; be the differential operator on H given by
(3.3) Dip(r) =7¢" + (2 —n)¢' + 1¢' + (1 + 1)p.

Then its adjoint Dj is D;T = tT" 4+ (n—t)T'+1T. We recall that A; (¢) =0
for p € H, j < n— 2. It is easy to see that if ¢ admits an asymptotic

development
E Bj(¢)m + H E Aj ()T
Jj=20 Jj=20
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then the expansion around 7 = 0 of Dy is

(34) D [I+1+5)Bi()+ (G +1)(G+2—n)Bj ()]
§>0

HHY [ +1+1)45(9) + G+ 10 +2 - )4z (9)] 7,
>0

With the natural restrictions on f, integration by parts gives

b b
/ £(t) (Duo) (t) dt = / (DIf) (D(t)dt + R(b, o) — R(a, )
where —oo < a < b < +o00 and
(36)  R(b.p) = (1—n+b)f(B)e(d) + b (b)) — bf (B)e(b).

Proposition 3.1. Forl > 0, T = (L?+n 1H)(n_1) is a solution in Hj of
DT = 0.
l

Proof. Let ¢j; = (L?_s_n_l)(n*%j) (0), 0 < j <n—2. Then a computation
shows that

n—2
T= (L))" H Y 07
7=0

and so T' € H' since every ¢ € H is in C""2 (R). Also
(DIT, ) = (T, Dip)

[e'e) n—2
- /0 (20 )"V () (Drg) (t)dt+<zcj,l(5<ﬂ'>,pm>.

=0
By (3.4), (3.5) and (3.6) we have

/0 ()Y () (D) (Bt = (1 — 1) (£4-1) " (0) Bo ()
and by (3.4)

n—2
<Z cj 69, Dzs0>
j:

n

|
N

cj1 (—1) j1B;j (Dyp)

S <
Il
N O

cja (1) 1 (I +1+4) Bjo+ (j+1) (j +2 = n) Bjy1 (9))

Il
3 <.
LIM

djiBj ()

=0

<.
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where doJZ(l + 1) Co,l and de:(—l)‘jj! ((l +1 +j) ¢+ (n —J— 1) Cj—l,l)
if 1 <j<n-—2. Since ¢j; = (—1)"" (fj_z:é) the lemma follows. O

Now, it is proved in [T] that if S € H' and supp(S) = {0} then there
exists my,ma € NU{0} a,...um,0q,... ), € C such that

mi ma
S(p)=>_a;Bj(p)+ Y ajAj(p), peH.
§=0 j=0

We will need the following:
Lemma 3.2. Assumel > —n+1. If S € H', suppS = {0} and if

n—2
D;S = cn—an—l + dn—lAn—l + chBj
§=0
with ¢y, ... ,Cn_1,dp_1 € C, then ¢p,_1 = dp,—1 = 0.

Proof. We write S = 7" a;B; + > 1% ajjA;. Suppose ¢,—1 # 0. By
(3.4) the coefficient of Bj(¢) in the expansion of D;(p) is (I+1+j)
+j(j+1—n)aj_; and so ¢,—1 = (I +n) ay—1 and a;j = —j(l]rll_:f) aj_1 for
j = —l. Then o # 0 if j > n. Contradiction. Analogously d,—1 # 0 would
imply o # 0 for j > n. O

If | > 0, a solution of the C.H.E. is the function fi (t) = L?*l (t). Another
solution fy € C? ((—00,0)) of the C.H.E., linearly independent with f, is
obtained setting fa(t) = c(t) f1(t) where c(t) satisfy

th)c (t) + [2tf1(t) + (n =) f1(t)] £ () = 0.
Then for ¢t < 0,

(3.7) RO = £ [ Al meds

is well defined since the zeros of the Laguerre’s polynomials are in (0, 4+00).
Also

fa(t)=o0 (et),

t——o00

fi () =o/(e),

t——o00

(3.8)

1

f2 (t) N —mt_n—i_ as t — 0.
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Lemma 3.3. Let for p € H,

—€

n—2
(Pf(f2),¢) = i, fa(t Z o

—0o0

Then Pf (f2) € H' and DjPf (f2) = —#@Bn_l (o).

Proof. Pf(f2) € H by Lemma 3.3 in [T]. On the other hand, from (3.4) it
n—2 . ) n—2 ; .

follows that if ¢ (t) = 5 £2©¢ then Dy = > (D) P0) 7 Thug
=0 i=

Q

(DiPf(f2),)=(Pf(f2),Dip)

n-2 ()
, 3 (D)™ (0)
= 6£%1+ / f2 () | (D) (t) — par th dt

= lim, 20Dy (o 0) (0t — lim R (—e,¢1)

where p1 = ¢ — 1 and R (—¢, ¢1) is given by (3.6).

As by (3.8)
. 1
Sli%l_ (L=n+s)fa(s)er(s)=(1—-n) manl ()
I ()= tim T (= 1) Byysn
Jim sfa(s) ¢y (s) = 70) Jim —— (n—=1)Bp_1s" 4 ....)
1
_fl (O) anl
and
Jim sfy(5) 1 (5) = 55 B
the lemma follows. (]

Proposition 3.4. Let T be in Hj,. Suppose that either k > q or k < —p and
A e R—{0}, let T\ be defined as in (2.17) and (2.18). If T\, is a tempered

solution (i.e., Ty € H') of (2.16) then T is a multiple of (L?—I—n—lH) (n—1)
where l=k—qifk>qandl=—-k—p if k < —p.

Proof. We know that there exists a basis of the solution space in C? (0, +00)
given by f1 (t) and a certain function g (¢) where g (t) «~ €' as t — 400 [Se].
In particular when we write T restricted to (0,400) , as a linear combination
afi + bg, the condition T , € H' implies b = 0
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We now consider S = (L?Jrn 1H)(nfl). Then suppS C (—o0,0],
D;S =0 and the correspondmg Syr €H.

Writing S restricted to (—o00,0) as a linear combination af; + Bf2 we
obtain that & = 0. Thus S — SPf (f2) has support at ¢ = 0 and by Lemma

3.3
D}(S — BPf (f2)) = —ﬂfll(O)Bn—L

If 5 # 0, this contradicts Lemma 3.2. Thus suppS = {0} . But, from (3.4), it
is easy to see that there is not nontrivial solution S supported at the origin
of DS =01if 1 > 0. So S = 0 and the proof is complete. O

To state a similar result for —p < k < ¢ we will need some facts about
the equation

(3.9) " +(n—t)v —lv, I=1,...,n—1

Lemma 3.5. Forl=1,...,n—1 there exists a polynomial P,_1 of degree [—
1 with P,_1 (0) = 1 such that for all open interval I C R—{0} (not necessarily
finite) two linearly independent solutions in C2(I) are given by g1 (t) =
P (t) €l and g (t) =t " T—2 (P—1 (t) €') where T— (g) denotes the
Taylor polynomial of degree n — 2 around the origin for the function g.

Proof. Following the notation of [Se|, we can write every solution of (3.9)
belonging to C? (I) as .1 Fy (I,n,t) + 1" 4 F (1 +1 —n,2 — n,t) where
00 ( t
(310) 1F1 CL C, t Zif
— (0); 4!
j=
and (a); =a(a+1)...(a+j—1).
o .
By (3.10) 1FA(14+1—n,2—n,t) = > pi—1(j) E—J, where p;_1(j) =
§=0
-1
> apj* for some ai,...,ax_1 € R and ag = 1. Induction on k shows that
k*O
Z j j, = q (t) ! with g a polynomial of degree k such that g (0) = 0 for

k: > 0.9 g1 (t) =t Fy (1 +1—n,2—n,t) is a solution of the desired
form.

Also

1F1(l,n,t)

D )G G-,
;On)j'!(z—mjzo CETET
7(n—1)!oo(j+(n—1)+(2—n))...((j+n—1)+(l—n))j
P (n+j—1) !
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_(n—1)! = . i
S - J;l (J )+ (J )5
n—1)!
((l—l))! (2—n)...(I—n)
t" 1(1F1(1+l—n2 ) Tn_z(lFl(l—l-l—n,Q—n,t))).
So we can take go (t) = ! "T},_o (1Fy (14+1—n,2 —n,t)). O
Lemma 3.6. For o € H, let Pf~ (g1) and Pf* (g2) be defined by
=2 L0 .
(PI~ (g1) lnnl/sh Hew - 229 a,
j=0

(P (g2) ) = elir(r]g

[e.o]

+/mwwww

1

Then Pf~ (g1) and Pf* (g2) belong to H' and they satisfy:
(i) Dy (Pf™(91)) = (n = 1) B,
n—2
(ii) D} (Pf* (g2)) = —(n—1)(Bp—1+ An_1) + Y. B;B; for some con-
§=0

stants (1, ..., Bn_s.

Proof. The proof follows similar lines those of Lemma 3.3, but now, to prove
(i) we take account of that P_; (0) = 1 where P, ! is as in Lemma 3.5.

For (ii) we observe that if ¢ € H and if ¥ (t) = Z Bj (p) ), we have

R(Lo—9¢)-R(lp)=-2-n)v(1)- ()fz()+fz() (1)
The constants (; are determined by fo (1) and f5 (1). O

Lemma 3.7. For eachl = —1,-2,... ,—n + 1, the space of the solutions
T € H{, which are supported at the origin of the equation D;T = 0 is one
dimensional.

Proof. For such a T we write T' = Z a;Bj+ Z o’ Aj. From (T, Dyp) =0
7=0 j=n—1

and (3.4) we obtain that o; ({+1+j) + a1 (j +1—n) = 0 for all j. If

j =n—1, this implies that a,,—1 ({+n) =0 and so a; =0 for all j > n —1.

n—2
The same argument says that oz; =0,7>n—1and thus T = % a;B;. Let
J:
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jo = —1—1. Then aj,—1 = 0. . Since

j+1l—n
3.11 =,
( ) Qj l_|_ 1 +] Q-1
for j # jo we have ag = a1 = - -- = aj,_1 = 0. So T is completely determined
by aj,. On the other hand, it is clear that for each o, we obtain in this way
a solution supported at {0} . O

n—2 )
Remark 3.8. Let [,7 be as in Lemma 3.7. If we write 7 = 3 ;,;00)
j=0

n—2
instead of ) «;Bj, by (3.11) we see that {v;,} satisfy
3=0

(I+1+5) v+ Mm—7—1)y-1,=0

for 0 < 5 < n — 2. But this is also the recurrence relation for the succes-

sive derivatives at the origin of the polynomial L?+n—1’ so we can choose

n—2 . i
a nontrivial solution as Ty = Y 7;;6U) with v;; = (L?_m_l)(n i=2) (0),
§=0

0 <j<n-—2. Now, a computation shows that Ty = (L?+n_1

)" Y
Proposition 3.9. Let T be in H(. Suppose —p < k < q, A € R — {0}, let
Ty be defined as in (2.17) and (2.18). If T\ is a tempered solution (i.e.,
Tri € H') of (2.16) then T is a multiple of the distribution Ty defined in
Remark 3.8.

Proof. We argue as in Proposition 3.4. Suppose 0 < k < ¢. So Ty} is
given by (2.17). Now, 1) € H' implies that T restricted to (0, +o0) agrees
with ags and T restricted to (—00.0) agrees with (g;, for some a, 3 € C
and where g1, g2 are defined as in Lemma 3.5. So S =T — Pf~ (g1) —
P fT (g2) has support at the origin and, by Lemma 3.6, it satisfies D] (S) =

n—2
—fB(n—1)By,—1+a(n—1)(By-1+ An—1) + > 5;B;. But, by Lemma 3.2
j=0

a = (=0 and so T has support at the origin ;nd the lemma follows from
Lemma 3.7. The case —p < k < 0 is analogous. U

4. Determination of S) ; and p.

In this section we compute explicitly the distributions Sy, and py. Tak-
ing account of Remark 3.8 and Proposition 3.1, we consider the particular

distribution T' given by T = (L?Jrn_lH)(n*l) where | = k—qif k > 0

and | = —k —pif k < 0. Let Fr € 5 (?RQ”) be defined as in Remark

2.4. Since Fy; € 5 (Hn)U(p’q) and satisfies (2.10), the considerations in
Remark 2.7 and Propositions 3.4 and 3.9 imply that Fy ; = cx xN' (T ) for
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some ¢y, € C. In order to compute ¢y, we apply both distributions to the
function

(4.1)
INOESNCIREAEE LD SR | (; A W) |

ﬂ1+"'+ﬁn:‘k|7j:1
61>0,...0, >0

By (3.1) we have that, if £ >0

n_n -n n_n —n +k—1
(42) (Fap, fo) = 2" SRR L N (O

p—1
61++ﬂ17:|k‘5
B1>0,...0, >0

and if k<0
(4.3)

—k—-1
Br+ -+ Bq = |k,
B12>20,...8,>0

On the other hand, by well known properties of the Laguerre polynomials,
[A] 1
(14) P = ML ().

So, for ¢ > 0, and taking account of that the volume of the n dimensional
n+1
sphere is 271'%/1—‘ (%+1) | we have

(4.5)

Nfy (2 |>\|_1t>

_ 47Tp+q / _%an,1 ’)\’,0
T e-Dig-nt S Tk Ty

217"t

1 —1
2T )" (p—2 )" dp
47TP+Q

— n—1 —(n—1) s n—1 p—1 g1
o /t eHLIT (5) (s + 0P (s — )7 ds.

Now,

(Fxge, [a) = e (N (Tage) , [a) = ek (Do, N (f2)) -
From (4.5), the definition of T, and (4.2) we obtain that cyj is inde-
pendent of A. In order to compute ¢y, we consider first the case £ > 0. By
(2.17)

(Do N (f2)) = (21N O Tt — € TN (1) (1))
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— 2\ <T,t L eTEN(fy) (2 |)\|_1t>>

thus, by (4.5), we need to evaluate T (1)g) where T' = (Lg—q+n—1
and g (t) = e %0 (t) with

[e.e]
wo (t) = e 3 /0 e_ngfl (p+1t) (p+ 26"~ p?=tdp.

H) (n—1)

Since k—q+n—1=k+p—1land L} " (p+1t) (p+ 2t)P~! is a polynomial
in t of degree k + p — 1 we can use the Leibnitz formula for the derivatives
of a product, the fact that every polynomial can be written as a linear
combination of the Laguerre polynomials and the orthogonality relations
(3.1) to obtain that

T (to)
_(—1! /0 9. () /0 e 5ot e L (o4 1) (p+ 267 dpdt.

Since LY ' (p+1t) = Z . L2 (p) L? (t), we repeat the same argument to
m4j=
obtain that

T (o)

=2t (—1)"! /0 Ly (t) [ /0 e 2p Ly (0) dp| e 'LY (1) PN dt

0 -1 k
= (—1)"torT(—1)729 (¢ — 1)!/0 e LYy, 1 () (k!)tkﬂ’_ldt

(it ot gy

where we have used (3.1) and (3.2).
Finally, by (4.2), we find that

(p+k— 1) An" L (k+p—1)
ongn LT E = I oy om on —1)!
TRl T M D1 @b
and so
1
C)\,k' = 2"’L+1

If k£ < 0, we can repeat the above computation, using (2.18) instead of (2.17)
and replacing Lgfﬁnfl by Lofkfp+nfl' In this case we also find ¢y, = #

Theorem 4.1. Ifk > g, A\ e R— {0}, f € S(C™), then

<F,\7k,f>:% / e_%B(Z)LZ:; (';‘B(z)>f(z)dz

B(2)>0
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_i_anQle)\’—(H-l)gl J (_1)n—j n+k—q-1 <5l f>
2n £ — 2\ k—q+j+1)\F
where 6y = N’ ((5(l)) )
Proof.

(Fxg, f) = 2n+1 (N'Tyi, f) = ;ﬁ (T Nf)

2n1+1 <T t 2|\ te 2Ny (2|A|*1t)>,

Now, as at the beginning of the proof of Proposition 3.1,
S s Z L))" (0) 5,

But

2|A|—1/qu1 (e iNF (2031 e) di

0

/L” . <M2’t> NS (1) dt
0

_on / e—%B(sz:; (';‘B(z)>f(z)dz

B(2)>0
where the last equality follows from (2.12) applied to the function

Py = g (PR 2 .

On the other hand, a computation shows that

n—2 . -
<Z (L gint) "7 (089t = 2N eTENT (2107 t)>
7=0
n—2 n—2

=AY (7) () 05 ()

1=0 j=l
and the theorem follows. O

Remark 4.2. Theorem 4.1 remains true for £k < —p, with the obvious

changes in the proof, if we replace LZ:; by L™, kl . (Zf];;]qlll) by (_",;_kp_f]_:l)
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and the integration region {z : B (z) > 0} by {z: B(z) <0}. It is also im-
mediate to see that if —p <k < g, A€ R — {0} f€S(C"), then

! (I+1) 1
(Exgs f 2n24 A Z <l>73k<5 f>
with «;; as in Remark 3.8, i.e.,
n—j—2 n—i
= (g ) 7 0 = (-2

forq—k:—lSjgn—2and’yj,k:0ifj<q—k—1andwhere(5§9 is as in
Theorem 4.1.

n+k—q—1
n—j—2

Remark 4.3. We have computed the distributions F) j and the constant
C\k, and so also Sy i, = e_i’\tF,\yk.

Next, we compute py. We first assume k& > ¢. Taking account of Theorem
4.1. We recall that for f = f (z,t) € S’ (Hy)

[e.e]

(e, f) = / <6_i)‘tF,\,k,f> A" d.

—00

By Theorem 4.1 [A|" e M (Fy i, £ (., 1)) = J1 (f) (A 8) + Jo (f) (M, 1), t € R,

where

nnon=gire [ eireon (Bee) s
B(2)>0

and

J2 () (A1)
1 A n—2 - n—2 1 . i
_ 276_ZM Z4l ’)\’n (I+1) Z 27 <;) (Lgqurnfl)( 7—2) (0) <5lB7 f (.,t>> )
1=0 j=l

So, by well known properties of the Fourier transform on S’ (RR),

(4.6) / / Jo (F) (0 1) dt | dA

R \R
Lyt ' oLy
24 Z 27 ( )’Yj’k <Vl’ gpn—1—1 >

where v, :5§B®pv(%) if n—10—11is odd and y; :5g®5ifn—l—1 is
even. Let I (f) = [ < [ (f) (A ) dt> d)\. The properties of the Fourier
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transform in S’ (R) imply that

/<e_>“t BB e (';‘B(z)> H (B (z)),f> A" dA

&e/< M‘te“%'B(z)L’,}j <|;\‘B (z)) H (B (2)) ,h> A" dA
R

where h (z,t) = w (z,1).
Now, following [St], we will compute (4.7).

Lemma 4.4. For f € S(C™ x R) there exists B (z,t) dzdt and
O xR
H (B (%))
t) dzdt = — t) dzdt.
e—>0 / B(z)+e+it —|—e—i— it f(z ) dz / B(z)+itf(z’ ) dzdt
O xR CnxR

Proof. We write
1
Bl teri
where P (t,s) = ﬁ, Q(t,s)
RIP ()l prmy = 7 So

=P (t,B(z)+¢€)—iQ(t,B(z) +¢)

ﬁ, t,s € R. Thus, for s €

JIPEBE+0 5 G0ld<ml Gl =€ C"

Also, for B (z) # 0, we have
lim (P(.,,B(z)+¢€)* f(z.)(0)=(P(.,B(2)* f(z.))(0).

e—0

Since sup |f (z,t)| € L' (C™), the dominated convergence theorem implies
teR

that P (t, B (2)) f (2,t) € L' (C™ x R) and

lim P(t,B(z)+¢€)H(B(2)) f(z,t)dzdt

€E—>

CnxR
= / P(t,B(2))H(B(z)) f (z,t)dzdt.
CnxR
On the other hand, let G¢ (2) = [ Q (¢, B(z) +¢€) f (2,t) dt. So

R

a@:/memmumW¢wWﬁ



348 T. GODOY AND L. SAAL

+/Q(t,B(z)+e)f(z,t)dt.
lt>1

Now, for [¢t| <1

f(Z,t) — f(Z,O) 8f af
< e .
| oy )| < o B
Also
sup [tQ (¢, B(2) +€)| <1, sup|Q(t B(z)+¢)| <1
<1 =1
Thus (Ge(2)] < sup |% o] + 17 (2 )llpage oy So. as above

Ju|<1
we can use the dominated convergence theorem to obtain that

Q(t,B(2) H(B(2) f (s1) € L1 (C" x %) and
lim / QB (2) + ) H(B(2)) f (1) dzdt

Cn xR

/ Q (t,B(z))H(B(z)) f (z,t)dzdt.

O

Following [St], we use the generatrix identity for the Laguerre polynomials

o0

(4.8) St = (1) e T

s=0
to obtain, for € > 0

> —€eX —1 —2B(2) rn— A n—
(4.9) /0 e A M PE L] B(z))H(B(z)))\ L\

H (B (2))

=«
"IB(2) + de + 4it]FP

where

(4.10) = 4" (n — 1)! (p Zk; 1) (—1)

Indeed, by (4.8 ) we can write, for [r| <1, B(z) > 0,t € R, e >0

7B(Z)Ln 1 (;‘ (z)) An_ld)\

:Z s/ —e)\ —z)\t —AB(Z)Ln 1 <;‘ (Z)) AL

S=



L? SPECTRAL DECOMPOSITION

349

=(1-r" /Ooo exp (—A (B (2) 1+ 7’312;4_(? i) (1= ”)) AL

_ 4™ (n —1)!
~[B(2) +4de+ 4it + 1 (B (2) — 4e — 4it)]"

Now, we compare the Taylor developments to obtain (4.9).
Write

B(z)—it  2B(z)
B(z)+it B(z)+it
Now, letting ¢ — 0, and taking account of Lemma 4.4, we have

2

i { B(2) — e 4it]F 1 .
- < 5() +der PO ’f> '

(4.11) /0 h <emeiB<Z>Lg:ql <)\B (z)) H(B(2)) A", f> A

Now, this limit is

: 2B (2) 1 H(B(2)

1 —1
akel—r>r(1)<[B(z)+4e+4it } (B (2) +de+ af" !

k—q
= a; lim (k o q) (_1)k—q—l ol < [ B (Z)l H (B (2)) f>

B (2) + e + 4it]" TV

k—q ! Antl-1 l n+l—1
_ k—q k—q—1 2 (—41) B(2) H(B(z)) 0" 'f
= O l:O < > (_1) q < B(Z) —|—4Zt ) 8t”+l_1

(n+1—1)!

(4.12) /OOO <emeiB<Z>Lg:; (23 (z)> H (B (2)) A" 1, f> dA

— . /BEIHB(R) oy
M ;ﬁ’” < B(z) +4it ' otnti-1 >
where

B l(_ Z-n—i-l—l
(4.13) B = <k I q> (1)kql2(1§+4[)_1)!'

From (4.11) a change of variable gives
Al

(4.14) " <e—Mfe—iB<Z>Lg_; < . B(z)) H (B (2)) A", f> X

— 00

k—q B( lH(B( )aanlf
:O"“;ﬁkv’< ]§>(z)—4itz ) ’8t”+l—1>

> |
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where, by (4.13), B3, = (-1 1)™1 8.1, So we have:

Theorem 4.5. For k > q and 0 <1 < k — g, let oy, Bi,; defined by (4.10)
and (4.13) respectively. Then we have py (f) = I (f) + I (f) where

I (f)
. k—q I l n41 Ly
=3 o <<B<z> HB() | (_yyeri-t BE) HE (z») o f>)>

2 B (z) + 4it B (z) — 4it ot
and
I (f)

15— —1-1 1 (n—j—2) o1y
:2724 Z(_Z) 2J(l) (Lk q+n— 1) (0) <Vl’8t"ll>

=0 j=l

where v = (553®pv( ) ifn—101—11is odd and v; = 5l ®0 ifn—1—1 is even.
Proof. 1t follows from (4.12), (4.14), (4.7) and (4.6). O

Remark 4.6. If £ < —p, Theorem 4.5 remains true if we replace k — ¢
by —k —p and H (B (z)) by H (=B (z)) with the same proof, using (2.18)
instead of (2.17). If —p < k < ¢ the same arguments give us py (f) = I2 (f),

with
1 - - 8n_l_1f
222 Zl 5 (1 pss (o Gerr)

where ;. is defined as in Remark 3.8.

Remark 4.7. Let A = {(2,t) e C"xR:B(z)=0}. If f € S(H,) and
supp(f) N A = thus Supp(% (p.v. (%) * f)) N A = (), then from (4.7) and
(4.11) and taking account of that Is (f) = 0, we have

pr (f) =1 (f)

oty (B 5 & (o (1) 1))
= iay < EE ;Jer?ZJFZH(B (2)) 7; (p.v. (1) % f>>

, 0 [ [B(z) — 4it]*1 1
= ijqy <_8t <[ B() +4it]k+p> H (B (z)),p.v. <t> * f> .

This is an analogous expression to those obtained in [St], p. 362.

Remark 4.8. Fore =+1,k € Z, weset R, = {ep,p(2k +p—¢q) : p > 0}.
The rays Rj. are closely related to the study of the kernels of the op-
erators L — iaT, a € C. In order to describe ker (L —iaT), with o €
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27 for n even and ker (L —iaT), with o € 1+ 2Z for n odd, we de-
fine pi, 0, : L?(H,) — L?(H,) via the Plancherel inversion formula
requiring that for A € R — {0}, mp) = X(0,00) (A) Pemr and myp, =
X(=o00,0) (A) P, where Py is define as at the beginning of the proof of
Lemma 2.2. Thus p,j,p,; are orthogonal projections over certain sub-
spaces of L? (H,,). As in Lemma 2.2 we have p; f = f0+°° [ Sxp | A" dA,
f € S(Hy) (and the analogous formula for p, ). If m has the same parity
than n, we define ki (m) = —%(m+p—q) and ka(m) = 1 (m—p+q).
Thus k1 (m), k2 (m) € Z. We observe that R (p:l(m)) C ker (L —imT) N
L? (H,), where ker (L — imT) = {S € S’ (H,) : (L —imT)S = 0} . In order
to see thls inclusion, we proceed as follows. As in Lemma 2.2 we con-
struct ,uk, (m) € S’( H,,) such that p]f f = fx* ,uf . As there, we have

(15 oy % ( Sy s @) A" dA,(peS’( )Then
<(L = i) (if ) - 2)
= (118, s (L + imT) () )

+o0
- / (Sn s (L +imT) (0)) A" dA

m)

+oo
:/ (L — imT) Sy mys ) A" dA = 0.
0

Now, since L,T commute with left translations (L —imT) (f * 'U'Z_l(m)) =
Fx ((L — imT) u;(m)) —0.% R (p,jl(m)) C ker (L — imT)NL? (H,) . Sim-

ilarly, R (9, ) © ker (L —imT)NL? (Hy) - So B (0, ) )@ R (9p,m) ©
ker (L —imT) N L? (H,). On the other hand, Plancherel theorem implies
that R(pf) L R(pf) if k # s and R(pZ) € R(p;),k e Z. We know
also that, as operator on L?(H,), iLT~! has a closed and self-adjoint ex-
tension (see [M-R,1], Th. 7.4) that we still denote by iLT~!. We have
ker (L —iaT) N L? (Hy,) = ker (LT™! —ia) , a € C (see [M-R,2], Proposi-
tion 1.4). Since iLT ! is a self adjoint operator, we have ker (LT~ — im) L
ker (LT~ — im) for m # m. Now, L? (H,,) = @ R (pg) - Thus we have the

direct orthogonal sum

12 () = @ (7 (k) D R (91m))-

mez
Then we conclude that

ker(L—imT)ﬂLQ(H) (Pkl )@R<pk2 )
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and that if n is even then ker (L — iaT) N L? (H,) = 0 if o ¢ 2Z and that if
n is odd then ker (L —iaT)N L? (H,) =0 if a ¢ 1+ 2Z.

The projectors golf, k € Z can be computed proceeding as in the de-
termination of gj. As in Lemma 2.2 we construct ,uzt € S’ (H,,) such that
pfﬂt f=f *,uf, and then, with the same arguments used for py,, we decompose

wh (F) = I (f)+ I (f). where

I (f) = /O = <e_we—23<z> ) (;\B (z)> H(B(2)), f> A\

and
1 n—2
12+ (f) = //Tle_’)‘tH ()\) 241)\—(14-1)
£ R =0
n—2 s .
27 l I+5+1 <5Baf(wt)>dtd/\

j=l
thus, using the properties of the Fourier transform and taking account of
that H = 0 —ip.v. (%) we can obtain explicit formulas for MZ of similar type
those given for ju,. Since p, = g, — ,u;: we obtain also an explicit description
for puy .
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