Pacific Journal of Mathematics

STEINITZ CLASS OF MORDELL–WEIL GROUPS OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

TONG LIU AND XIANKE ZHANG

Volume 193 No. 2

April 2000

STEINITZ CLASS OF MORDELL–WEIL GROUPS OF ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

TONG LIU AND XIANKE ZHANG

Let E be an elliptic curve having Complex Multiplication by the ring \mathcal{O}_K of integers of $K = \mathbb{Q}(\sqrt{-D})$, let H = K(j(E))be the Hilbert class field of K. Then the Mordell–Weil group E(H) is an \mathcal{O}_K -module. Its Steinitz class St(E) is studied here. In particular, when D is a prime number, St(E) is determined: If $D \equiv 3 \pmod{4}$ then St(E) = 1; if $D \equiv 1 \pmod{4}$ then $St(E) = [\mathcal{P}]^t$, where \mathcal{P} is any prime-ideal factor of 2 in K, $[\mathcal{P}]$ the ideal class of K represented by \mathcal{P} , t is a fixed integer. In addition, general structure for modules over Dedekind domain is also discussed. These results develop the results by D. Dummit and W. Miller for D = 10 and specific elliptic curves to more general D and general elliptic curves.

1. Introduction.

Let $K = \mathbf{Q}(\sqrt{-D})$ be an imaginary quadratic number field, \mathcal{O}_K the ring of all integers of K. Let E be an elliptic curve having Complex Multiplication by the ring \mathcal{O}_K . Then E is defined over the field $F = \mathbf{Q}(j(E))$, where j(E)denotes the *j*-invariant of E. So H = K(j(E)) is the Hilbert class field of K, [4], and the Mordell-Weil group E(H) (i.e., all the *H*-rational points of E) is naturally a module over the Dedekind domain \mathcal{O}_K (operation is the complex multiplication). By the structural theorem for finitely generated modules over Dedekind domain we have

$$E(H) \cong E(H)_{\mathrm{tor}} \oplus \mathcal{O}_K \oplus \cdots \oplus \mathcal{O}_K \oplus \mathcal{A} = E(H)_{\mathrm{tor}} \oplus \mathcal{O}_K^{s-1} \oplus \mathcal{A},$$

where \mathcal{A} is an ideal of \mathcal{O}_K which is uniquely determined by E(H) up to a multiplication by a number from K. Thus E(H) determines uniquely an ideal class $[\mathcal{A}]$ of K represented by \mathcal{A} ; $[\mathcal{A}]$ is said to be the Steinitz class of E and denoted by St(E). (Similarly, any module M over a Dedekind domain R defines an ideal class of R, which is said to be the Steinitz class of M and denoted by St(M).) So the structure of the Mordell-Weil group E(H), as a module over the Dedekind domain \mathcal{O}_K , is uniquely determined by its Steinitz class, rank s, and its torsion part. Therefore, it is important to determine the Steinitz class. D. Dummit and W. Miller, [1] in 1996 determined the Steinitz class of some specific elliptic curves when D = 10and found some of their properties.

Since the Steinitz class St(E) is essentially concerned only with the free part of E(H), we denote

$$E(\cdot)_f = E(\cdot)/E(\cdot)_{\text{tor}},$$

that is, the quotient group of the Mordell group $E(\cdot)$ modulo its torsion part. Note that $E(\cdot)_f$ is isomorphic to the free part of $E(\cdot)$. This notation will be used also for any subgroup I of $E(\cdot)$ to define I_f . Also we can assume the Weierstrass equation of the elliptic curve E to be ([5])

$$E: y^2 = f(x) = x^3 + a_2 x^2 + a_4 x + a_6$$

with $a_2, a_4, a_6 \in F$.

We will first analyze the interior structure of E(H), give a general theorem for the structure of modules over Dedekind domain, and then determine Steinitz classes St(E) for some types of elliptic curves. In particular, when D = p is a prime number and $p \equiv 3 \pmod{4}$, we will prove that St(E) is the principal class of K; And when D = p is a prime number and $p \equiv 1$ (mod 4), we will show that

$$\operatorname{St}(E) = [\mathcal{P}]^t$$
, with $t = l + \log |H^1(G, E(H)_f)|$,

where \mathcal{P} is any prime factor of 2 in K, $l = \operatorname{rank}_{\mathbf{Z}}(E(F))$ is the **Z**-rank of E(F), $|H^1(G, E(H)_f)|$ is the order of the first cohomology group $H^1(G, E(H)_f)$, and $G = \operatorname{Gal}(H/F)$.

2. The Structure of the Mordell group E(H).

Lemma 1. The degree of the extension H/F is [H : F] = 2, where $F = \mathbf{Q}(j(E)), H = K(j(E)), j(E)$ is the *j*-invariant of *E*.

Proof. Obviously we have $[H:F] \leq 2$. If [H:F] = 1, then $K \subset F$. By a result in page 12-13 of [2] we know that $F = \mathbf{Q}(j(E))$ has a real embedding into the complex field \mathbf{C} . Since K is totally imaginary, $K \subset F$ is impossible. Thus [H:F] = 2. This proves the lemma.

Based on Lemma 1, we assume throughout the Galois group of H/F to be $G = \text{Gal}(H/F) = \{1, \sigma\}$. For any $\alpha \in \mathcal{O}_K$, let $[\alpha]$ denote the endomorphism of E corresponding to the multiplication by α . The multiplication by $\sqrt{-D}$ will be important to our following proof. Associating with $E : y^2 = f(x)$, we consider the following elliptic curve

$$E_D: -Dy^2 = f(x).$$

Note that E_D and E are isomorphic via the map

 $i: E_D(\mathbf{C}) \to E(\mathbf{C}), \qquad (x, y) \mapsto (x, \sqrt{-D}y).$

Therefore we know that

$$\operatorname{End}(E_D) \cong \operatorname{End}(E).$$

So E_D also has complex multiplication by \mathcal{O}_K , and is defined over F. Also via the isomorphism i of E and E_D , we have

$$E_D(F) \cong I$$
,

where

$$I = \{ (x, \sqrt{-D}y) | (x, \sqrt{-D}y) \in E(H), \ x, y \in F \}.$$

The subgroup I of E(H) defined here will be very important in the following analysis.

Lemma 2. The map $i \circ [\sqrt{-D}]$ is an *F*-isogeny of E_D to *E*. Thus

$$\operatorname{rank}_{\mathbf{Z}}(E_D(F)) = \operatorname{rank}_{\mathbf{Z}}(E(F)) = l.$$

Proof. By [1] we have

$$[\sqrt{-D}](x,y) = (a(x), y\sqrt{-D}b(x)),$$

with $a(x), b(x) \in F(x)$. So $i \circ [\sqrt{-D}]$ is an *F*-isogeny of E_D to *E*. Lemma 3. $(I_f : [\sqrt{-D}]E(F)_f)(E(F)_f : [\sqrt{-D}]I_f) = D^l$.

Proof.

$$D^{l} = (E(F)_{f} : [D]E(F)_{f})$$

= $(E(F)_{f} : [\sqrt{-D}]I_{f})([\sqrt{-D}]I_{f} : [D]E(F)_{f})$
= $(E(F)_{f} : [\sqrt{-D}]I_{f})(I_{f} : [\sqrt{-D}]E(F)_{f}).$

Lemma 4. $2E(H)_f \subset E(F)_f \oplus I_f \subset E(H)_f$,

$$\operatorname{rank}_{\mathbf{Z}}(E(H)) = \operatorname{rank}_{\mathbf{Z}}(E(F)) + \operatorname{rank}_{\mathbf{Z}}(E_D(F)) = 2 \operatorname{rank}_{\mathbf{Z}}(E(F)) = 2l.$$

Proof. If $P = (x, y) \in E(F)_f$ with $P \in I_f$, then y = 0, which means that P is a torsion point. So P = O is the point at infinity, and $E(F)_f \oplus I_f = E(F)_f + I_f \subset E(H)_f$. For any $Q \in E(H)_f$, we have $2Q = (Q + Q^{\sigma}) + (Q - Q^{\sigma})$, where $G = \text{Gal}(H/F) = \{1, \sigma\}$. Via the definition of $E(F)_f$ and I_f , we have

$$E(F)_f = \{P | P^{\sigma} = P, \forall P \in E(H)_f\}, \quad I_f = \{P | P^{\sigma} = -P, \forall P \in E(H)_f\}.$$

So $Q + Q^{\sigma} \in E(F)_f, Q - Q^{\sigma} \in I_f, 2Q \in E(F)_f \oplus I_f.$ Thus $2E(H)_f \subset E(F)_f \oplus I_f \subset E(H)_f.$ This completes the proof. \Box

As for the index of $E(F)_f \oplus I_f$ in $E(H)_f$, we have the following theorem, which could be also deduced from the cohomology theory of cyclic groups.

Theorem 1.

$$(E(H)_f : E(F)_f \oplus I_f) = \frac{2^l}{|H^1(G, E(H)_f)|},$$

where $|H^1(G, E(H)_f)|$ is the order of the cohomology group $H^1(G, E(H)_f)$.

Proof. Consider the colomology group

 $H^{1}(G, E(H)_{f}) = Z^{1}(G, E(H)_{f})/B^{1}(G, E(H)_{f}).$

Let $T = \{P - P^{\sigma} | P \in E(H)_f\}$. We will prove that $Z^1(G, E(H)_f) \cong I_f$, $B^1(G, E(H)_f) \cong T$. For any cocycle $\xi \in Z^1(G, E(H)_f)$, let $\xi \stackrel{\phi}{\to} \xi_{\sigma}$, where $\operatorname{Gal}(H/F) = \{1, \sigma\}$. By the definition of cocycle we have that $0 = \xi_1 = \xi_{\sigma^2} = (\xi_{\sigma})^{\sigma} + \xi_{\sigma}$, so $(\xi_{\sigma})^{\sigma} = -\xi_{\sigma}$, thus $\xi_{\sigma} \in I_f$, and ϕ is a map of $Z^1(G, E(H)_f)$ to I_f . Via the map ϕ we could see that $Z^1(G, E(H)_f) \cong I_f$, $B^1(G, E(H)_f) \cong T$. Now consider the homomorphism $E(H)_f \stackrel{\psi=P-P^{\sigma}}{\longrightarrow} T$. Obviously $2I_f \subset T$. Since $\psi^{-1}(2I_f) = E(F)_f \oplus I_f$, so

$$(E(H)_f : E(F)_f \oplus I_f) = (T : 2I_f) = (I_f : 2I_f)/(I_f : T)$$

= $2^l/|H^1(G, E(H)_f)|.$

3. Main Results and Their Proofs.

We will first give a general theorem on a finitely-generated module over a Dedekind domain, which establishes a relationship between the Steinitz class and the index of the module in its corresponding free module. This theorem is the key to our final results about Steinitz class.

Theorem 2. Suppose that L is a free \mathcal{O}_K -module, and $M \subset L$ is a submodule with $(L:M) < +\infty$. Then there is an integral \mathcal{O}_K -ideal \mathcal{A} such that $[\mathcal{A}]$ is the Steinitz class of M, and $N^K_{\mathbf{Q}}(\mathcal{A}) = (L:M)$, where $N^K_{\mathbf{Q}}(\cdot)$ denotes the norm map of ideals from K to the rationals \mathbf{Q} .

Proof. Let $L = \bigoplus_{i=1}^{n} \mathcal{O}_{K} e_{i}$, so $\{e_{1}, \ldots, e_{n}\}$ is an \mathcal{O}_{K} -basis for L. We will inductively prove that there are \mathcal{O}_{K} -ideals \mathcal{B}_{i} $(i = 1, \ldots, n)$ such that $M \cong \bigoplus_{i=1}^{n} \mathcal{B}_{i}$, and $(L:M) = \prod_{i=1}^{n} (\mathcal{O}_{K}:\mathcal{B}_{i})$. When n = 1, everything is obvious. Assume then the statement is true for

When n = 1, everything is obvious. Assume then the statement is true for n-1 and consider the module-homomorphism $\rho: L \to \mathcal{O}_K, \rho\left(\sum_{i=1}^n r_i e_i\right) = r_n$. Then $\mathcal{B} = \rho(M)$ is an ideal of \mathcal{O}_K , and the sequence

$$0 \to N \to M \xrightarrow{\rho} \mathcal{B} \to 0$$

is exact, where $N = \ker(\rho) \cap M$. Since \mathcal{B} is a projective \mathcal{O}_K -module, there exists \mathcal{O}_K -module $\mathcal{C} \subset M$ such that $\mathcal{C} \cong \mathcal{B}$, $\rho(\mathcal{C}) = \mathcal{B}$, $M = N \oplus \mathcal{C} \cong N \oplus \mathcal{B}$. Thus

$$(L:M) = (L:N \oplus \mathcal{C}) = \left(L:\bigoplus_{i=1}^{n-1} \mathcal{O}_K + \mathcal{C}\right) \left(\bigoplus_{i=1}^{n-1} \mathcal{O}_K + \mathcal{C}:N \oplus \mathcal{C}\right)$$

where $\left(L: \bigoplus_{i=1}^{n-1} \mathcal{O}_K + \mathcal{C}\right) = \left(\rho^{-1}(\mathcal{O}_K): \rho^{-1}(\mathcal{B})\right) = (\mathcal{O}_K: \mathcal{B}).$

Consider $\mathcal{C} \cap \bigoplus_{i=1}^{n-1} \mathcal{O}_K = \mathcal{C} \cap \ker(\rho)$. When restricted on \mathcal{C} , the map ρ is injective, so we have

$$\begin{split} \bigoplus_{i=1}^{n-1} \mathcal{O}_K + \mathcal{C} &= \bigoplus_{i=1}^{n-1} \mathcal{O}_K \oplus \mathcal{C}, \\ \left(\bigoplus_{i=1}^{n-1} \mathcal{O}_K + \mathcal{C} : N \oplus \mathcal{C} \right) &= \left(\bigoplus_{i=1}^{n-1} \mathcal{O}_K \oplus \mathcal{C} : N \oplus \mathcal{C} \right) \\ &= \left(\bigoplus_{i=1}^{n-1} \mathcal{O}_K : N \right). \end{split}$$

Note that $N \subset \bigoplus_{i=1}^{n-1} \mathcal{O}_K$. So via the hypothesis of our induction, we know

that there are \mathcal{O}_K -ideals \mathcal{B}_i (i = 1, ..., n - 1) such that $N \cong \bigoplus_{i=1}^{n-1} \mathcal{B}_i$, and $\left(\bigoplus_{i=1}^{n-1} \mathcal{O}_K : N\right) = \prod_{i=1}^{n-1} (\mathcal{O}_K : \mathcal{B}_i)$. Thus we have $M \cong \bigoplus_{i=1}^n \mathcal{B}_i$ and $(L : M) = \prod_{i=1}^n (\mathcal{O}_K : \mathcal{B}_i) = \prod_{i=1}^n N_{\mathbf{Q}}^K(\mathcal{B}_i) = N_{\mathbf{Q}}^K\left(\prod_{i=1}^n \mathcal{B}_i\right)$, where $\mathcal{B}_n = \mathcal{B}$. Now the proof is completed by the following lemma.

Lemma 5. Assume A_1 and A_2 are two nonzero ideals of the Dedekind domain R, then we have isomorphism of R-modules: $A_1 \oplus A_2 \cong R \oplus A_1A_2$.

Proof. See Lemma 13 in page 168 of [3].

We now intend to prove our main results via our Theorem 2. To use Theorem 2, we need first to find the corresponding L and M in the Mordell group E(H). The corresponding L is given in Lemma 6. While the corresponding M is given in the proofs of Theorem 4 and 5, i.e., $M = [\sqrt{-D}]E(H)_f$ if $D \equiv 3 \pmod{4}$; $M = [2\sqrt{-D}]E(H)_f$ if $D \equiv 1 \pmod{4}$.

Lemma 6. $L = \mathcal{O}_K \cdot E(F)_f$ is a free \mathcal{O}_K -module of rank l.

Proof. Assume P_1, \ldots, P_l form a **Z**-basis of $E(F)_f$. We will prove

$$L = \mathcal{O}_K \cdot E(F)_f = \bigoplus_{i=1}^l \mathcal{O}_K P_i.$$

Now we suppose that $\sum_{i=1}^{l} [\alpha_i]P_i = 0$ for some $\alpha_i \in \mathcal{O}_K$ (i = 1, ..., l). When $D \equiv 3 \pmod{4}$, we have $\alpha_i = s_i + t_i(1 + \sqrt{-D})/2$ $(s_i, t_i \in \mathbf{Z}, i = 1, ..., l)$, then via $\sum_{i=1}^{l} [\alpha_i]P_i = 0$ we have $\sum_{i=1}^{l} [2s_i + t_i]P_i = 0$ and $\sum_{i=1}^{l} [\sqrt{-D}t_i]P_i = 0$. Thus $t_i = 0, s_i = 0, \alpha_i = 0$ (i = 1, ..., l). This proves the theorem when $D \equiv 3 \pmod{4}$. The case $D \equiv 1 \pmod{4}$ goes in the same way.

To determine our corresponding M in the case $D \equiv 3 \pmod{4}$, we need the following theorem.

Theorem 3. For $D \equiv 3 \pmod{4}$, we have $|H^1(G, E(H)_f)| = 1$, and $E(H)_f = \mathcal{O}_K \cdot E(F)_f + I_f$.

Proof. Let P_1, \ldots, P_l form a **Z**-basis of $E(F)_f$, and Q_1, \ldots, Q_l form a **Z**-basis of I_f . Put $\alpha = (1 + \sqrt{-D})/2$. We need only to prove that $E(H)_f/(E(F)_f \oplus I_f) = C_1 \oplus \cdots \oplus C_l$, where $C_i = (\overline{[\alpha]}P_i)$ is subgroup of order 2 generated by $\overline{[\alpha]}P_i$ in the quotient group $E(H)_f/(E(F)_f \oplus I_f)$. (Here \overline{a} denotes the residue class of a in this quotient group.) Obviously we have $\overline{[\alpha]}P_i \neq \overline{0}$; otherwise there would be $t_j, s_j \in \mathbf{Z}$ $(j = 1, \ldots, l)$ such that $[\alpha]P_i = \sum_{j=1}^l [t_j]P_j + \sum_{j=1}^l [s_j]Q_j$, then $[1 + \sqrt{-D}]P_i = \sum_{j=1}^l [2t_j]P_j + \sum_{j=1}^l [2s_j]Q_j$, and $P_i = \sum_{j=1}^l [2t_j]P_j$ giving a contradiction

and $P_i = \sum_{j=1}^{l} [2t_j] P_j$, giving a contradiction.

Furthermore, if $\sum_{i=1}^{l} [u_i]\overline{[\alpha]P_i} = \overline{0}$ for some $u_i \in \mathbf{Z}$ (i = 1, ..., l), then there

are $t_i, s_i \in \mathbf{Z}$ (i = 1, ..., l) such that $\sum_{i=1}^{l} [u_i \alpha] P_i = \sum_{i=1}^{l} [t_i] P_i + \sum_{i=1}^{l} [s_i] Q_i$, so

$$\sum_{i=1}^{l} [u_i]P_i + \sum_{i=1}^{l} [u_i\sqrt{-D}]P_i = \sum_{i=1}^{l} [2t_i]P_i + \sum_{i=1}^{l} [2s_i]Q_i.$$

Thus $\sum_{i=1}^{l} [u_i]P_i = \sum_{i=1}^{l} [2t_i]P_i$, which gives $u_i = 2t_i$ $(i = 1, \dots, l)$. Hence $[u_i]\overline{[\alpha]P_i} = \overline{[t_i][2\alpha]P_i} = \overline{[t_i(1+\sqrt{-D})]P_i} = \overline{0}$. This completes the proof. \Box

Now we can prove our main results via Theorem 2.

Theorem 4. Suppose that $D = p \equiv 3 \pmod{4}$ is a prime number, and E is an elliptic curve having complex multiplication by the full ring \mathcal{O}_K of integers of $K = \mathbf{Q}(\sqrt{-D})$. Then the Steinitz class of E is the principal class, i.e., $\operatorname{St}(E) = 1$.

Proof. Let $L = \mathcal{O}_K \cdot E(F)_f$, $M = [\sqrt{-p}]E(H)_f$. Since $M \cong E(H)_f$, we need only to prove $\operatorname{St}(M)$ is the principal class. By Theorem 3 we have $E(H)_f = \mathcal{O}_{KL} E(F)_f + I_f$. Thus

By Theorem 5 we have
$$E(H)_f = \mathcal{O}_K \cdot E(F)_f + I_f$$
. Thus

$$M = [\sqrt{-p}]E(H)_f = E(F)_f \cdot (\sqrt{-p}\mathcal{O}_K) + [\sqrt{-p}]I_f \subset \mathcal{O}_K \cdot E(F)_f = L;$$

$$(L:M) = (\mathcal{O}_K \cdot E(F)_f : [\sqrt{-p}]E(H)_f)$$

$$= \frac{(E(H)_f : [\sqrt{-p}]E(H)_f)}{(E(H)_f : \mathcal{O}_K \cdot E(F)_f)}$$

$$= \frac{p^l}{(E(H)_f : \mathcal{O}_K \cdot E(F)_f)}.$$

Since p is a prime number, so $(L:M) = p^t$ for some $t \ (0 \le t \le l)$. By Theorem 2, the Steinitz class of M is equal to $[\mathcal{A}]$ for some \mathcal{O}_K -ideal \mathcal{A} , and $p^t = (L:M) = N_{\mathbf{Q}}^K(\mathcal{A})$. Since p is a prime number, $\mathcal{A} = (\sqrt{-p}\mathcal{O}_K)^t$ is principal. Thus $\operatorname{St}(E) = \operatorname{St}(M)$ is the principal class. \Box

Theorem 5. Suppose that $D = p \equiv 1 \pmod{4}$ is a prime number, and E is an elliptic curve having complex multiplication by the ring \mathcal{O}_K of all integers of $K = \mathbf{Q}(\sqrt{-D})$. Then the Steinitz class of E is $\mathrm{St}(E) = [\mathcal{P}]^t$, where $[\mathcal{P}]$ is the ideal class of K represented by \mathcal{P} the prime factor of 2 in \mathcal{O}_K , $2^t = 2^l |H^1(G, E(H)_f)|$. In particular, the parity of t determines $\mathrm{St}(E)$, since \mathcal{P} is not principal while $\mathcal{P}^2 = 2\mathcal{O}_K$ is principal.

Proof. Let $L = \mathcal{O}_K \cdot E(F)_f$, $M = [2\sqrt{-p}]E(H)_f$. Since $M \cong E(H)_f$, so $\operatorname{St}(E) = \operatorname{St}(M)$. Note that $[2\sqrt{-p}]E(H)_f \subset [\sqrt{-p}](E(F)_f \oplus I_f)$, $[\sqrt{-p}]I_f \subset E(F)_f$. Thus we have $M \subset \mathcal{O}_K \cdot E(F)_f = L$, and

$$\begin{aligned} (L:M) &= (\mathcal{O}_{K} \cdot E(F)_{f} : [2\sqrt{-p}]E(H)_{f}) \\ &= \frac{(E(H)_{f} : [2\sqrt{-p}]E(H)_{f})}{(E(H)_{f} : \mathcal{O}_{K} \cdot E(F)_{f})} \\ &= \frac{(4p)^{l}}{(E(H)_{f} : E(F)_{f} \oplus I_{f})(E(F)_{f} \oplus I_{f} : \mathcal{O}_{K} \cdot E(F)_{f}))} \\ &= \frac{(4p)^{l}}{2^{l}|H^{1}(G, E(H)_{f})|^{-1}(I_{f} : [\sqrt{-p}]E(F)_{f})} \\ &= 2^{l}|H^{1}(G, E(H)_{f})| \cdot p^{l}/(I_{f} : [\sqrt{-p}]E(F)_{f}). \end{aligned}$$

Thus $(L: M) = 2^t p^r$ for some $t, r \ge 0$, since p is a prime number. By Theorem 2 we know that $N_{\mathbf{Q}}^K(\mathcal{A}) = 2^t p^r$ for some \mathcal{O}_K -ideal \mathcal{A} . Therefore $\mathcal{A} = \mathcal{P}^t([\sqrt{-p}]\mathcal{O}_K)^r$, $\operatorname{St}(E) = [\mathcal{A}] = [\mathcal{P}^t]$. This proves the theorem. \Box **Corollary 1.** Suppose as in Theorem 5. If $l = \operatorname{rank}_{\mathbf{Z}}(E(F)) = 1$, then $H^1(G, E(H)_f)$ determines the Steinitz class of E.

Now we analyze the examples of Dummit and Miller in [1] by utilizing the above method. For these examples, we have $K = \mathbf{Q}(\sqrt{-10})$, D = 10, $H = K(\sqrt{5}) = \mathbf{Q}(\sqrt{-10}, \sqrt{5})$. We consider the \mathcal{O}_K -module $L = \mathcal{O}_K \cdot E(F)_f$ and $M = 2[\sqrt{-10}]E(H)_f$. Then via the same idea in the proof of Theorem 5 we have similar ratiocination for D = 10:

$$(L:M) = \frac{(E(H)_f : 2[\sqrt{-10}]E(H)_f)}{(E(H)_f : \mathcal{O}_K \cdot E(F)_f)}$$

= $\frac{(4 \cdot 10)^l}{(E(H)_f : E(F)_f \oplus I_f)(E(F)_f \oplus I_f : \mathcal{O}_K \cdot E(F)_f)}$
= $\frac{(40)^l}{2^l |H^1(G, E(H)_f)|^{-1}(I_f : [\sqrt{-10}]E(F)_f)}$
= $2^l |H^1(G, E(H)_f)| 10^l / (I_f : [\sqrt{-10}]E(F)_f).$

Thus the Steinitz class of E is determined by the 2-exponent of

$$2^{l}|H^{1}(G, E(H)_{f})|(I_{f}: [\sqrt{-10}]E(F)_{f}).$$

(DM1) Consider the following elliptic curve of Dummit and Miller in [1]: $E_1: \quad u^2 = x^3 + (6 + 6\sqrt{5})x^2 + (7 - 3\sqrt{5}).$

Then l = 1, $|H^1(G, E(H)_f)| = 2$, $(I_f : [\sqrt{-10}]E(F)_f) = 1$. Therefore we know that $2^l |H^1(G, E(H)_f)| (I_f : [\sqrt{-10}]E(F)_f) = 4$. Thus the Steinitz class of E_1 is the principal class, i.e., $St(E_1) = 1$.

(DM2) Consider the following elliptic curve in [1]:

$$E_{1,\text{isog}}: y^2 = x^3 - (912 + 12\sqrt{5})x^2 + (188 + 84\sqrt{5})x.$$

We have l = 1, $|H^1(G, E(H)_f)| = 2$, $(I_f : [\sqrt{-10}]E(F)_f) = 2$, and $2^l |H^1(G, E(H)_f)| (I_f : [\sqrt{-10}]E(F)_f) = 2^3$. Thus the Steinitz class $St(E_{1,isog}) = [\mathcal{P}]$, where \mathcal{P} is a prime factor of 2 in \mathcal{O}_K .

(DM3) For E_3 : $y^2 = x^3 + 36x^2 + (162 - 72\sqrt{5})x$, in [1], we have l = 2, $|H^1(G, E(H)_f)| = 2$, $(I_f : [\sqrt{-10}]E(F)_f) = 1$, $2^l |H^1(G, E(H)_f)| (I_f : [\sqrt{-10}]E(F)_f) = 2^3$. Thus $\operatorname{St}(E_3) = [\mathcal{P}]$, \mathcal{P} a prime factor of 2 in \mathcal{O}_K .

There are still many open problems about the Steinitz classes of elliptic curves. For example, we have the following conjecture.

Conjecture. Both the cases St(E) = 1 and $St(E) \neq 1$ exist for some elliptic curves E having complex multiplication by \mathcal{O}_K , where $K = \mathbf{Q}(\sqrt{-D})$ with prime number $D \equiv 1 \pmod{4}$.

References

- D.S. Dummit and W.L. Miller, The Steinitz class of the Mordell-Weil group of some CM elliptic curves, J. Number Theory, 56 (1996), 52-78.
- [2] B. Gross, Arithmetic on Elliptic Curves with Complex Multiplication, SLN, 776, Springer-Verlag, Berlin, 1980.
- [3] F. Keqin, Introduction to Commutative Algebra, Higher Education Press, Beijing, 1985.
- [4] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
- [5] J.H. Silverman, The Arithmetic of Elliptic Curves, Spring-Verlag, New York, 1982.

Received September 3, 1998 and revised February 10, 1999.

TSINGHUA UNIVERSITY BEIJING 100084 P.R. CHINA

TSINGHUA UNIVERSITY BEIJING 100084 P.R. CHINA *E-mail address*: xianke@tsinghua.edu.cn