
Pacific
Journal of
Mathematics

STEINITZ CLASS OF MORDELL–WEIL GROUPS
OF ELLIPTIC CURVES

WITH COMPLEX MULTIPLICATION

Tong Liu and Xianke Zhang

Volume 193 No. 2 April 2000



PACIFIC JOURNAL OF MATHEMATICS
Vol. 193, No. 2, 2000

STEINITZ CLASS OF MORDELL–WEIL GROUPS
OF ELLIPTIC CURVES

WITH COMPLEX MULTIPLICATION

Tong Liu and Xianke Zhang

Let E be an elliptic curve having Complex Multiplication
by the ring OK of integers of K = Q(

√
−D), let H = K(j(E))

be the Hilbert class field of K. Then the Mordell–Weil group
E(H) is an OK-module. Its Steinitz class St(E) is studied
here. In particular, when D is a prime number, St(E) is
determined: If D ≡ 3 (mod 4) then St(E) = 1; if D ≡ 1
(mod 4) then St(E) = [P]t, where P is any prime-ideal factor
of 2 in K, [P] the ideal class of K represented by P, t is a
fixed integer. In addition, general structure for modules over
Dedekind domain is also discussed. These results develop the
results by D. Dummit and W. Miller for D = 10 and specific
elliptic curves to more general D and general elliptic curves.

1. Introduction.

Let K = Q(
√
−D) be an imaginary quadratic number field, OK the ring of

all integers of K. Let E be an elliptic curve having Complex Multiplication
by the ring OK . Then E is defined over the field F = Q(j(E)), where j(E)
denotes the j-invariant of E. So H = K(j(E)) is the Hilbert class field of
K, [4], and the Mordell-Weil group E(H) (i.e., all the H-rational points of
E) is naturally a module over the Dedekind domain OK (operation is the
complex multiplication). By the structural theorem for finitely generated
modules over Dedekind domain we have

E(H) ∼= E(H)tor ⊕OK ⊕ · · · ⊕ OK ⊕A = E(H)tor ⊕Os−1
K ⊕A,

where A is an ideal of OK which is uniquely determined by E(H) up to a
multiplication by a number from K. Thus E(H) determines uniquely an
ideal class [A] of K represented by A; [A] is said to be the Steinitz class
of E and denoted by St(E). (Similarly, any module M over a Dedekind
domain R defines an ideal class of R, which is said to be the Steinitz class
of M and denoted by St(M).) So the structure of the Mordell-Weil group
E(H), as a module over the Dedekind domain OK , is uniquely determined
by its Steinitz class, rank s, and its torsion part. Therefore, it is important
to determine the Steinitz class. D. Dummit and W. Miller, [1] in 1996
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determined the Steinitz class of some specific elliptic curves when D = 10
and found some of their properties.

Since the Steinitz class St(E) is essentially concerned only with the free
part of E(H), we denote

E(·)f = E(·)/E(·)tor,
that is, the quotient group of the Mordell group E(·) modulo its torsion
part. Note that E(·)f is isomorphic to the free part of E(·). This notation
will be used also for any subgroup I of E(·) to define If . Also we can assume
the Weierstrass equation of the elliptic curve E to be ([5])

E : y2 = f(x) = x3 + a2x
2 + a4x+ a6

with a2, a4, a6 ∈ F .

We will first analyze the interior structure of E(H), give a general theorem
for the structure of modules over Dedekind domain, and then determine
Steinitz classes St(E) for some types of elliptic curves. In particular, when
D = p is a prime number and p ≡ 3 (mod 4), we will prove that St(E) is
the principal class of K; And when D = p is a prime number and p ≡ 1
(mod 4), we will show that

St(E) = [P]t, with t = l + log |H1(G,E(H)f )|,
where P is any prime factor of 2 in K, l = rankZ(E(F )) is the Z-rank
of E(F ), |H1(G,E(H)f )| is the order of the first cohomology group
H1(G,E(H)f ), and G = Gal(H/F ).

2. The Structure of the Mordell group E(H).

Lemma 1. The degree of the extension H/F is [H : F ] = 2, where F =
Q(j(E)), H = K(j(E)), j(E) is the j-invariant of E.

Proof. Obviously we have [H : F ] ≤ 2. If [H : F ] = 1, then K ⊂ F . By a
result in page 12-13 of [2] we know that F = Q(j(E)) has a real embedding
into the complex field C. Since K is totally imaginary, K ⊂ F is impossible.
Thus [H : F ] = 2. This proves the lemma. �

Based on Lemma 1, we assume throughout the Galois group of H/F to be
G = Gal(H/F ) = {1, σ}. For any α ∈ OK , let [α] denote the endomorphism
of E corresponding to the multiplication by α. The multiplication by

√
−D

will be important to our following proof. Associating with E : y2 = f(x),
we consider the following elliptic curve

ED : −Dy2 = f(x).

Note that ED and E are isomorphic via the map

i : ED(C) → E(C), (x, y) 7→ (x,
√
−Dy).
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Therefore we know that

End(ED) ∼= End(E).

So ED also has complex multiplication by OK , and is defined over F . Also
via the isomorphism i of E and ED, we have

ED(F ) ∼= I,

where
I = {(x,

√
−Dy)|(x,

√
−Dy) ∈ E(H), x, y ∈ F}.

The subgroup I of E(H) defined here will be very important in the following
analysis.

Lemma 2. The map i ◦ [
√
−D] is an F -isogeny of ED to E. Thus

rankZ(ED(F )) = rankZ(E(F )) = l.

Proof. By [1] we have

[
√
−D](x, y) = (a(x), y

√
−Db(x)),

with a(x), b(x) ∈ F (x). So i ◦ [
√
−D] is an F -isogeny of ED to E. �

Lemma 3. (If : [
√
−D]E(F )f )(E(F )f : [

√
−D]If ) = Dl.

Proof.

Dl = (E(F )f : [D]E(F )f )

= (E(F )f : [
√
−D]If )([

√
−D]If : [D]E(F )f )

= (E(F )f : [
√
−D]If )(If : [

√
−D]E(F )f ).

�

Lemma 4. 2E(H)f ⊂ E(F )f ⊕ If ⊂ E(H)f ,

rankZ(E(H)) = rankZ(E(F )) + rankZ(ED(F )) = 2 rankZ(E(F )) = 2l.

Proof. If P = (x, y) ∈ E(F )f with P ∈ If , then y = 0, which means that P is
a torsion point. So P = O is the point at infinity, and E(F )f⊕If = E(F )f+
If ⊂ E(H)f . For any Q ∈ E(H)f , we have 2Q = (Q + Qσ) + (Q − Qσ),
where G = Gal(H/F ) = {1, σ}. Via the definition of E(F )f and If , we
have

E(F )f = {P |P σ = P, ∀P ∈ E(H)f}, If = {P |P σ = −P, ∀P ∈ E(H)f}.

So Q + Qσ ∈ E(F )f , Q − Qσ ∈ If , 2Q ∈ E(F )f ⊕ If . Thus 2E(H)f ⊂
E(F )f ⊕ If ⊂ E(H)f . This completes the proof. �

As for the index of E(F )f ⊕ If in E(H)f , we have the following theorem,
which could be also deduced from the cohomology theory of cyclic groups.
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Theorem 1.

(E(H)f : E(F )f ⊕ If ) =
2l

|H1(G,E(H)f )|
,

where |H1(G,E(H)f )| is the order of the cohomology group H1(G,E(H)f ).

Proof. Consider the colomology group

H1(G,E(H)f ) = Z1(G,E(H)f )/B1(G,E(H)f ).

Let T = {P − P σ|P ∈ E(H)f}. We will prove that Z1(G,E(H)f ) ∼= If ,

B1(G,E(H)f ) ∼= T . For any cocycle ξ ∈ Z1(G,E(H)f ) , let ξ
φ→ ξσ,

where Gal(H/F ) = {1, σ}. By the definition of cocycle we have that 0 =
ξ1 = ξσ2 = (ξσ)

σ + ξσ, so (ξσ)
σ = −ξσ, thus ξσ ∈ If , and φ is a map of

Z1(G,E(H)f ) to If . Via the map φ we could see that Z1(G,E(H)f ) ∼=
If , B

1(G,E(H)f ) ∼= T . Now consider the homomorphism E(H)f
ψ=P−Pσ

−→
T . Obviously 2If ⊂ T . Since ψ−1(2If ) = E(F )f ⊕ If , so

(E(H)f : E(F )f ⊕ If ) = (T : 2If ) = (If : 2If )/(If : T )

= 2l/|H1(G,E(H)f )|.

�

3. Main Results and Their Proofs.

We will first give a general theorem on a finitely-generated module over a
Dedekind domain, which establishes a relationship between the Steinitz class
and the index of the module in its corresponding free module. This theorem
is the key to our final results about Steinitz class.

Theorem 2. Suppose that L is a free OK-module, and M ⊂ L is a submod-
ule with (L : M) < +∞. Then there is an integral OK-ideal A such that [A]
is the Steinitz class of M , and NK

Q (A) = (L : M), where NK
Q (·) denotes

the norm map of ideals from K to the rationals Q.

Proof. Let L =
n⊕
i=1

OKei , so {e1, . . . , en} is an OK-basis for L. We

will inductively prove that there are OK-ideals Bi (i = 1, . . . , n) such that

M ∼=
n⊕
i=1

Bi , and (L : M) =
n∏
i=1

(OK : Bi).

When n = 1, everything is obvious. Assume then the statement is true for

n− 1 and consider the module-homomorphism ρ : L→ OK , ρ
(

n∑
i=1

riei

)
=

rn. Then B = ρ(M) is an ideal of OK , and the sequence

0 → N →M
ρ→ B → 0
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is exact, where N = ker(ρ) ∩M . Since B is a projective OK-module, there
exists OK-module C ⊂M such that C ∼= B, ρ(C) = B, M = N ⊕C ∼= N ⊕B.
Thus

(L : M) = (L : N ⊕ C) =

(
L :

n−1⊕
i=1

OK + C

)(
n−1⊕
i=1

OK + C : N ⊕ C

)

where
(
L :

n−1⊕
i=1

OK + C
)

= (ρ−1(OK) : ρ−1(B)) = (OK : B).

Consider C ∩
n−1⊕
i=1

OK = C ∩ ker(ρ). When restricted on C, the map ρ is

injective, so we have
n−1⊕
i=1

OK + C =
n−1⊕
i=1

OK ⊕ C,

(
n−1⊕
i=1

OK + C : N ⊕ C

)
=

(
n−1⊕
i=1

OK ⊕ C : N ⊕ C

)

=

(
n−1⊕
i=1

OK : N

)
.

Note that N ⊂
n−1⊕
i=1

OK . So via the hypothesis of our induction, we know

that there are OK-ideals Bi (i = 1, . . . , n − 1) such that N ∼=
n−1⊕
i=1

Bi, and(
n−1⊕
i=1

OK : N
)

=
n−1∏
i=1

(OK : Bi). Thus we have M ∼=
n⊕
i=1

Bi and (L : M) =

n∏
i=1

(OK : Bi) =
n∏
i=1

NK
Q (Bi) = NK

Q

(
n∏
i=1

Bi
)

, where Bn = B. Now the proof

is completed by the following lemma.

Lemma 5. Assume A1 and A2 are two nonzero ideals of the Dedekind do-
main R, then we have isomorphism of R-modules: A1 ⊕A2

∼= R⊕A1A2.

Proof. See Lemma 13 in page 168 of [3]. �

We now intend to prove our main results via our Theorem 2. To use Theo-
rem 2, we need first to find the corresponding L and M in the Mordell group
E(H). The corresponding L is given in Lemma 6. While the corresponding
M is given in the proofs of Theorem 4 and 5, i.e., M = [

√
−D]E(H)f if

D ≡ 3 (mod 4); M = [2
√
−D]E(H)f if D ≡ 1 (mod 4).

Lemma 6. L = OK · E(F )f is a free OK-module of rank l.
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Proof. Assume P1, . . . , Pl form a Z-basis of E(F )f . We will prove

L = OK · E(F )f =
l⊕

i=1

OKPi.

Now we suppose that
l∑

i=1
[αi]Pi = 0 for some αi ∈ OK (i = 1, . . . , l). When

D ≡ 3 (mod 4), we have αi = si + ti(1 +
√
−D)/2 (si, ti ∈ Z, i = 1, . . . , l),

then via
l∑

i=1
[αi]Pi = 0 we have

l∑
i=1

[2si + ti]Pi = 0 and
l∑

i=1
[
√
−Dti]Pi = 0.

Thus ti = 0, si = 0, αi = 0 (i = 1, . . . , l). This proves the theorem when
D ≡ 3 (mod 4). The case D ≡ 1 (mod 4) goes in the same way.

To determine our corresponding M in the case D ≡ 3 (mod 4), we need
the following theorem.

Theorem 3. For D≡3 (mod 4), we have |H1(G,E(H)f )| = 1, and E(H)f
= OK · E(F )f + If .

Proof. Let P1, . . . , Pl form a Z-basis of E(F )f , and Q1, . . . , Ql form
a Z-basis of If . Put α = (1 +

√
−D)/2. We need only to prove that

E(H)f/(E(F )f ⊕ If ) = C1 ⊕ · · · ⊕ Cl, where Ci = ([α]Pi) is subgroup
of order 2 generated by [α]Pi in the quotient group E(H)f/(E(F )f ⊕ If ).
(Here a denotes the residue class of a in this quotient group.) Obviously we
have [α]Pi 6= 0; otherwise there would be tj , sj ∈ Z (j = 1, . . . , l) such that

[α]Pi =
l∑

j=1
[tj ]Pj +

l∑
j=1

[sj ]Qj , then [1 +
√
−D]Pi =

l∑
j=1

[2tj ]Pj +
l∑

j=1
[2sj ]Qj ,

and Pi =
l∑

j=1
[2tj ]Pj , giving a contradiction.

Furthermore, if
l∑

i=1
[ui][α]Pi = 0 for some ui ∈ Z (i = 1, . . . , l), then there

are ti, si ∈ Z (i = 1, . . . , l) such that
l∑

i=1
[uiα]Pi =

l∑
i=1

[ti]Pi +
l∑

i=1
[si]Qi, so

l∑
i=1

[ui]Pi +
l∑

i=1

[ui
√
−D]Pi =

l∑
i=1

[2ti]Pi +
l∑

i=1

[2si]Qi.

Thus
l∑

i=1
[ui]Pi =

l∑
i=1

[2ti]Pi, which gives ui = 2ti (i = 1, . . . , l). Hence

[ui][α]Pi = [ti][2α]Pi = [ti(1 +
√
−D)]Pi = 0̄. This completes the proof. �

Now we can prove our main results via Theorem 2.
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Theorem 4. Suppose that D = p ≡ 3 (mod 4) is a prime number, and
E is an elliptic curve having complex multiplication by the full ring OK of
integers of K = Q(

√
−D). Then the Steinitz class of E is the principal

class, i.e., St(E) = 1.

Proof. Let L = OK · E(F )f , M = [
√
−p]E(H)f . Since M ∼= E(H)f , we

need only to prove St(M) is the principal class.
By Theorem 3 we have E(H)f = OK · E(F )f + If . Thus

M = [
√
−p]E(H)f = E(F )f · (

√
−pOK) + [

√
−p]If ⊂ OK · E(F )f = L;

(L : M) = (OK · E(F )f : [
√
−p]E(H)f )

=
(E(H)f : [

√
−p]E(H)f )

(E(H)f : OK · E(F )f )

=
pl

(E(H)f : OK · E(F )f )
.

Since p is a prime number, so (L : M) = pt for some t (0 ≤ t ≤ l) . By
Theorem 2, the Steinitz class of M is equal to [A] for some OK-ideal A,
and pt = (L : M) = NK

Q (A). Since p is a prime number, A = (
√
−pOK)t is

principal. Thus St(E) = St(M) is the principal class. �

Theorem 5. Suppose that D = p ≡ 1 (mod 4) is a prime number, and
E is an elliptic curve having complex multiplication by the ring OK of all
integers of K = Q(

√
−D). Then the Steinitz class of E is St(E) = [P]t,

where [P] is the ideal class of K represented by P the prime factor of 2 in
OK , 2t = 2l|H1(G,E(H)f )|. In particular, the parity of t determines St(E),
since P is not principal while P2 = 2OK is principal.

Proof. Let L = OK · E(F )f , M = [2
√
−p]E(H)f . Since M ∼= E(H)f , so

St(E) = St(M). Note that [2
√
−p]E(H)f ⊂ [

√
−p](E(F )f⊕If ), [

√
−p]If ⊂

E(F )f . Thus we have M ⊂ OK · E(F )f = L, and

(L : M) = (OK · E(F )f : [2
√
−p]E(H)f )

=
(E(H)f : [2

√
−p]E(H)f )

(E(H)f : OK · E(F )f )

=
(4p)l

(E(H)f : E(F )f ⊕ If )(E(F )f ⊕ If : OK · E(F )f )

=
(4p)l

2l|H1(G,E(H)f )|−1(If : [
√
−p]E(F )f )

= 2l|H1(G,E(H)f )| · pl/(If : [
√
−p]E(F )f ).

Thus (L : M) = 2tpr for some t, r ≥ 0, since p is a prime number. By
Theorem 2 we know that NK

Q (A) = 2tpr for some OK-ideal A. Therefore
A = Pt([

√
−p]OK)r, St(E) = [A] = [Pt]. This proves the theorem. �



378 TONG LIU AND XIANKE ZHANG

Corollary 1. Suppose as in Theorem 5. If l = rankZ(E(F )) = 1, then
H1(G,E(H)f ) determines the Steinitz class of E.

Now we analyze the examples of Dummit and Miller in [1] by utilizing
the above method. For these examples, we have K = Q(

√
−10), D = 10,

H = K(
√

5) = Q(
√
−10,

√
5). We consider theOK-module L = OK ·E(F )f

and M = 2[
√
−10]E(H)f . Then via the same idea in the proof of Theorem

5 we have similar ratiocination for D = 10:

(L : M) =
(E(H)f : 2[

√
−10]E(H)f )

(E(H)f : OK · E(F )f )

=
(4 · 10)l

(E(H)f : E(F )f ⊕ If )(E(F )f ⊕ If : OK · E(F )f )

=
(40)l

2l|H1(G,E(H)f )|−1(If : [
√
−10]E(F )f )

= 2l|H1(G,E(H)f )|10l/(If : [
√
−10]E(F )f ).

Thus the Steinitz class of E is determined by the 2-exponent of

2l|H1(G,E(H)f )|(If : [
√
−10]E(F )f ).

(DM1) Consider the following elliptic curve of Dummit and Miller in [1]:

E1 : y2 = x3 + (6 + 6
√

5)x2 + (7− 3
√

5).

Then l = 1, |H1(G,E(H)f )| = 2, (If : [
√
−10]E(F )f ) = 1. Therefore we

know that 2l|H1(G,E(H)f )|(If : [
√
−10]E(F )f ) = 4. Thus the Steinitz

class of E1 is the principal class, i.e., St(E1) = 1.

(DM2) Consider the following elliptic curve in [1]:

E1,isog : y2 = x3 − (912 + 12
√

5)x2 + (188 + 84
√

5)x.

We have l = 1, |H1(G,E(H)f )| = 2, (If : [
√
−10]E(F )f ) = 2, and

2l|H1(G,E(H)f )|(If : [
√
−10]E(F )f ) = 23. Thus the Steinitz class

St(E1,isog) = [P], where P is a prime factor of 2 in OK .

(DM3) For E3 : y2 = x3 + 36x2 + (162 − 72
√

5)x, in [1], we have l =
2, |H1(G,E(H)f )| = 2, (If : [

√
−10]E(F )f ) = 1, 2l|H1(G,E(H)f )|(If :

[
√
−10]E(F )f ) = 23. Thus St(E3) = [P], P a prime factor of 2 in OK .

There are still many open problems about the Steinitz classes of elliptic
curves. For example, we have the following conjecture.

Conjecture. Both the cases St(E) = 1 and St(E) 6= 1 exist for some
elliptic curves E having complex multiplication by OK , where K = Q(

√
−D)

with prime number D ≡ 1 (mod 4).
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