Pacific Journal of Mathematics

TOROIDAL SURGERY ON PERIODIC KNOTS
Katura Miyazaki and Kimihiko Motegi

TOROIDAL SURGERY ON PERIODIC KNOTS

Katura Miyazaki and Kimihiko Motegi

Abstract

We show that r-Dehn surgery on a hyperbolic, periodic knot K with period $p>2$ yields a hyperbolic manifold unless $p=3, r=0$ and the genus of K is one. Regarding hyperbolic, periodic knots with period 2, we show that only integral Dehn surgeries can yield toroidal manifolds.

1. Introduction.

A 3-manifold is toroidal if it contains an essential torus, i.e., an incompressible torus not parallel to a boundary component. A knot K in S^{3} is called a periodic knot with period p if there is a homeomorphism $f: S^{3} \rightarrow S^{3}$ such that $f(K)=K, \operatorname{Fix}(f) \cap K=\emptyset$, and $\operatorname{Fix}(f)$ is a circle. We call f a periodic map of K. For a knot K in a 3-manifold $M \subset S^{3}$ we denote by $M(K ; r)$ the manifold obtained by r-Dehn surgery of M on K, where $r \in \mathbf{Q} \cup\{1 / 0\}$; if $M=S^{3}$, simply we denote $M(K ; r)$ by $(K ; r)$.

The hyperbolic Dehn surgery theorem of Thurston [25] shows that for hyperbolic knots $K,(K ; r)$ is non-hyperbolic only for finitely many $r \in \mathbf{Q}$. In this paper we consider when Dehn surgery on a hyperbolic, periodic knot yields a non-hyperbolic, in particular toroidal, manifold. For example, the figure eight knot 4_{1}, which has period 2 , has exactly 10 surgeries producing non-hyperbolic manifolds [25]; if $\left(4_{1} ; r\right)$ is toroidal, then $r=0, \pm 4$.

Theorem 1.1. If K is a hyperbolic, periodic knot with period 2 and ($K ; r$) is toroidal, then r is an integer.

Remark. Gordon and Luecke proved that the denominator of a toroidal surgery slope is at most two for hyperbolic knots [11], and furthermore if the denominator is two then the knot is strongly invertible [12]. EudaveMuñoz [5] constructed an infinite family of strongly invertible hyperbolic knots having non-integral, toroidal surgeries. Theorem 1.1 shows that none of his knots has period 2 .

Then, does a hyperbolic, periodic knot with period greater than 2 have a non-hyperbolic Dehn surgery? Our answer is "no except for a special case" (Corollary 1.4). Before giving the statement let us review what nonhyperbolic manifolds are like. Each of the following cases is an obstruction to a closed orientable manifold M being hyperbolic:
(1) M is reducible;
(2) M is a Seifert fibered manifold with a finite fundamental group;
(3) $\pi_{1}(M)$ has a subgroup isomorphic to $\mathbf{Z} \times \mathbf{Z}$.

In 1981, Thurston announced the Symmetry Theorem [26]: If M admits an action by a finite group G such that a fixed point set of some nontrivial element of G has dimension at least one, then M has a G-invariant geometric decomposition such that G acts on each piece by isometries. The theorem implies that (1)-(3) are the only obstructions to such M being hyperbolic. Recently, the Symmetry Theorem is proved in the case when the union of fixed point sets of nontrivial elements of G is a 1-manifold by Cooper, Hodgson and Kerckhoff [3], and Boileau and Porti [1]; this case of the theorem is what we need and referred to below as the Symmetry Theorem. On the other hand, if M is irreducible, condition (3) implies (3^{\prime}) below [7, Corollary 8.6].
$\left(3^{\prime}\right) M$ is either toroidal or a Seifert fibered manifold with an infinite fundamental group.

If K is a hyperbolic, periodic knot, $(K ; r)$ does not fall under case (1) by the Cabling Conjecture for symmetric knots (Hayashi and Shimokawa [17], Gordon and Luecke). Since the periodic map of K extends to a periodic map on ($K ; r$), the Symmetry Theorem applies to ($K ; r$). Regarding (2) and $\left(3^{\prime}\right)$, the authors proved that:
Theorem 1.2 ([21, Theorem 1.5 and Proposition 5.6]). If K is a hyperbolic, periodic knot with period greater than 2, then $(K ; r)$ is not Seifert fibered for any $r \in \mathbf{Q}$. (Without using the Symmetry Theorem we show that M is not a Seifert fibered manifold with an infinite fundamental group.)

Without assuming the Symmetry Theorem, we shall prove:
Theorem 1.3. Let K be a hyperbolic, periodic knot with period $p>2$. Then $(K ; r)$ is toroidal if and only if $p=3, r=0$, and the genus of K is one.

Remark. The $(3,3,3)$ pretzel knot is an example of a genus one, hyperbolic, periodic knot with period 3 .

Theorems 1.2 and 1.3 preclude the possibility of cases (2) and (3'). Then the Symmetry Theorem implies that:
Corollary 1.4. Let K be a hyperbolic, periodic knot with period $p>2$. Then $(K ; r)$ is hyperbolic for any $r \in \mathbf{Q}$ except when $p=3, r=0$, and the genus of K is one.

The if part of Theorem 1.3 is proved below. The only if part is proved in $\S \S 3,4$. Theorem 1.1 is proved in $\S 5$ by graph-theoretic arguments.
Proof of the if part of Theorem 1.3. If K has an incompressible Seifert surface of genus one, then $(K ; 0)$ contains a non-separating torus obtained from the

Seifert surface by attaching a meridian disk of the glued solid torus. Gabai [6] shows that such a torus is incompressible.

2. Preliminaries.

2.1. Dehn surgery on a factor knot.

Let K be a periodic knot, and f a periodic map of K with period p. Set $C=\operatorname{Fix}(f)$, which is a trivial knot in S^{3} by the positive solution to the Smith Conjecture [22]. Then f induces the p-fold cyclic covering π from S^{3} to the quotient space $S^{3} /\langle f\rangle=S^{3}$ branched along the trivial knot $C_{f}=\pi(C)$. We denote the factor knot $\pi(K)$ by K_{f}. Dehn surgeries on K and K_{f} are related as follows.

Take an f-invariant tubular neighborhood $N(K)$ of K. We can extend $f \mid S^{3}-\operatorname{int} N(K)$ over $(K ; m / n)$ periodically. Denote by \bar{f} the resulting periodic map on $(K ; m / n)$; the period of \bar{f} is p. We may assume that \bar{f} preserves the core K^{*} of the reglued solid torus. Note that for any $0<i<p, \operatorname{Fix}\left(\bar{f}^{i}\right)$ is either C or $C \cup K^{*}$. The projection $\pi^{\prime}:(K ; m / n) \rightarrow$ $(K ; m / n) /\langle\bar{f}\rangle$ is a p-fold cyclic branched covering. Then $(K ; m / n) /\langle\bar{f}\rangle$ is identified with $\left(K_{f} ; m /(n p)\right)$ such that $\pi^{\prime}\left(K^{*}\right)$ is a core of the reglued solid torus in $\left(K_{f} ; m /(n p)\right)$. So denote $\pi^{\prime}\left(K^{*}\right)=K_{f}^{*}$; see Diagram 2.1.

Diagram 2.1. The vertical and the slanted arrows mean Dehn surgeries.
Now choosing an f-invariant tubular neighborhood $N(C)$ of C, set $V=$ $S^{3}-\operatorname{int} N(C)$ and $V_{f}=V /\langle f\rangle=S^{3}-\operatorname{int} N\left(C_{f}\right)$. Just as above a Dehn surgery of V on K and that of V_{f} on K_{f} are related (Diagram 2.2).

$$
\begin{array}{ccc}
V & \xrightarrow{\pi} \quad V /\langle f\rangle=V_{f} \\
\downarrow & & \\
V\left(K ; \frac{m}{n}\right) & \xrightarrow{\pi^{\prime}} & V\left(K ; \frac{m}{n}\right) /\langle\bar{f}\rangle
\end{array} \quad=\quad V_{f}\left(K_{f} ; \frac{m}{n p}\right)
$$

Diagram 2.2. The vertical and the slanted arrows mean Dehn surgeries.
Suppose $K \subset V$ is a hyperbolic knot. Since $\pi: V-K \rightarrow V_{f}-K_{f}$ is an unbranched covering, $V_{f}-K_{f}$ is neither toroidal nor Seifert fibered. Thus K_{f} is hyperbolic in $V_{f}[\mathbf{2 2}]$. In the next subsection, we shall show that this hypothesis is satisfied if K is hyperbolic in S^{3}.

2.2. Hyperbolic, periodic knots.

Proposition 2.1. Let $K \subset S^{3}$ be a hyperbolic, periodic knot. Let $C=$ $\operatorname{Fix}(f)$, where f is a periodic map of K. Then $K \cup C$ is a hyperbolic link in S^{3}.
Proof. $N(K)$ and $N(C)$ denote disjoint tubular neighborhoods of K and C which are preserved by f, respectively. Set $V=S^{3}-\operatorname{int} N(C)$, an unknotted solid torus. Let \mathcal{T} be a characteristic family of tori for $V-\operatorname{int} N(K)$ whose union is invariant under $f[\mathbf{1 9}$, Theorem 8.6]. It suffices to prove $\mathcal{T}=\emptyset$. Note that since $K \subset S^{3}$ is hyperbolic, any torus in \mathcal{T} is compressible in $S^{3}-K$; in particular, any compressing disk meets C.

Assume for a contradiction that there is a torus in \mathcal{T} which separates $\partial N(K)$ and ∂V. Among such tori let T be the one closest to ∂V. Let V^{\prime} be the solid torus in V such that $\partial V^{\prime}=T$. Note $f\left(V^{\prime}\right)=V^{\prime}$, and $T=\partial V^{\prime}$ is compressible in $S^{3}-K$. It follows that V^{\prime} is unknotted in S^{3}. By the equivariant loop theorem $[\mathbf{2 0}]$ there is a meridian disk D of $S^{3}-\operatorname{int} V^{\prime}$ such that $f(D)=D$ or $f(D) \cap D=\emptyset$. Since $C \cap D \neq \emptyset$, we have $f(D)=D$. Hence, D meets $C=\operatorname{Fix}(f)$ in a single point. This together with the unknottedness of C in S^{3} shows that C is a core of the unknotted solid torus $S^{3}-\operatorname{int} V^{\prime}$. A core of V^{\prime} and C then form a Hopf link, so that T and ∂V bounds $T^{2} \times I$. This contradicts the minimality of \mathcal{T}.

Hence, if $\mathcal{T} \neq \emptyset$, each torus in \mathcal{T} would not separate $\partial N(K)$ and ∂V. Let T be a torus in \mathcal{T} such that the manifold $E \subset V-\operatorname{int} N(K)$ bounded by T does not contain a torus in $\mathcal{T}-\{T\}$. Then for any i either $f^{i}(E)=E$ or $f^{i}(E) \cap E=\emptyset$. Set $X=S^{3}-\operatorname{int}\left(N(K) \cup \bigcup_{i \geq 0} f^{i}(E)\right)$. Since T is compressible in $S^{3}-K, T$ is compressible in $S^{3}-\operatorname{int}(N(K) \cup E)$ and thus in X. Let D be a compressing disk for $T \subset X$ such that $f(D)=D$ or $f(D) \cap D=\emptyset[\mathbf{2 0}]$. Just as above, the fact $C \cap D \neq \emptyset$ implies that D meets C in a single point. Hence C winds around the knotted solid torus $S^{3}-\operatorname{int} E$ geometrically once, which contradicts that C is unknotted in S^{3}.

3. Proof of Theorem 1.3: Case when $(m, p)=1$ or p.

In this section and the next, we prove the only if part of Theorem 1.3.
Let K be a hyperbolic, periodic knot, and f a periodic map of K with period $p>2$. We use the notation in $\S 2.1$ in what follows.

Assume that $(K ; m / n)$ is toroidal. Note that $(K ; m / n)$ is irreducible and not Seifert fibered (Theorem 1.2). By the equivariant torus decomposition theorem [19], $(K ; m / n)$ contains an incompressible torus T such that for any $i, \bar{f}^{i}(T)=T$ or $\bar{f}^{i}(T) \cap T=\emptyset$. By rechoosing T, if necessary, the $\langle\bar{f}\rangle$-equivariant torus T meets $C \cup K^{*}$ transversely, and $N(C)$ and $N\left(K^{*}\right)$ in (possibly empty) meridian disks. Note $T \cap K^{*} \neq \emptyset$.

The proof is divided into three cases: (1) $(m, p)=1,(2)(m, p)=p$, (3) $1<(m, p)<p$, where (m, p) is the greatest common divisor of m and p.

The first two cases are dealt with in this section. Cases 1 and 3 will lead to contradictions.

Case 1. $(m, p)=1$; then $\operatorname{Fix}\left(\bar{f}^{i}\right)=C$ for $0<i<p$.
Claim 3.1. $T \cap C=\emptyset$.
Proof. Assume that T intersects C in $k(>0)$ points. Then $f(T)=T$. Moreover, since f fixes C pointwise, \bar{f} preserves the orientation of T, and thus $T /\langle\bar{f}\rangle$ is an orientable surface. The assumption $(m, p)=1$ implies $m \neq 0$, and then any closed orientable surface in $(K ; m / n)$ is separating. Thus k is even. The projection $\pi^{\prime}: T \rightarrow T /\langle\bar{f}\rangle=\pi^{\prime}(T)$ is a p-fold cyclic branched covering along k branch points of index p. The Riemann-Hurewitz formula gives

$$
\begin{equation*}
0=\chi(T)=p\left(\chi\left(\pi^{\prime}(T)\right)-k\left(1-\frac{1}{p}\right)\right) \tag{1}
\end{equation*}
$$

It follows $\chi\left(\pi^{\prime}(T)\right)>0$. Since $\pi^{\prime}(T)$ is a closed, orientable surface, $\chi\left(\pi^{\prime}(T)\right)$ must be 2 . Hence, $2=k(1-1 / p)$. We then obtain $(p-1)(k-2)=2$. The solution sets in positive integers are $(k, p)=(3,3),(4,2)$. The former contradicts the fact that k is even; the latter does the assumption $p>2$.

By Claim 3.1 $\pi^{\prime}: T \rightarrow \pi^{\prime}(T)$ is an unbranched covering, thus $\pi^{\prime}(T)$ is a Klein bottle or a torus. Hence, the $m /(n p)$-surgery of the solid torus V_{f} on K_{f} contains a Klein bottle or a torus. Note that K_{f} is a hyperbolic knot in V_{f}, for K is hyperbolic in V (Proposition 2.1). Then, if $\pi^{\prime}(T)$ is a Klein bottle, by [11] $|n p|=1$. This contradicts $p>1$. It follows that $\pi^{\prime}(T)$ is a torus. The fact that $\pi^{\prime}: V(K ; m / n) \rightarrow V_{f}\left(K_{f} ; m /(n p)\right)$ is an unbranched covering implies that $\pi^{\prime}(T)$ is an essential torus in $V_{f}\left(K_{f} ; m /(n p)\right)$. For hyperbolic knots in S^{3}, Gordon and Luecke [11] proved that the denominator of a toroidal surgery slope is at most 2 . As pointed out in [13], their proof works also for hyperbolic knots in a solid torus. Hence $|n p| \leq 2$, a contradiction.

Case 2. $(m, p)=p$; then $\operatorname{Fix}\left(\bar{f}^{i}\right)=C \cup K^{*}$ for $1<i<p$.
Let $k=\left|T \cap\left(C \cup K^{*}\right)\right|$. The projection $\pi^{\prime}: T \rightarrow T /\langle\bar{f}\rangle$ is a p-fold cyclic branched covering along k branch points of index p. As in Case 1 we obtain Equation (1), and the relevant solution set is $(k, p)=(3,3)$. This implies that T intersects C or K^{*} in an odd number of points, so T is a non-separating incompressible torus in $(K ; m / n)$. By considering the first homology group we see $m=0$. [6, Corollary 8.3] shows if $(K ; 0)$ contains such a torus, then the genus of K is one as desired.
4. Proof of Theorem 1.3: Case when $1<(m, p)<p$.

In this case, $\operatorname{Fix}(\bar{f})=C, \bar{f} \mid K^{*}$ has period $p /(m, p)$, and $\bar{f} \mid S^{3}-\operatorname{int} N\left(K^{*} \cup C\right)$ has period p. Note that $(K ; m / n)$ and $\left(K_{f} ; m /(n p)\right)$ do not contain nonseparating closed surfaces because $m \neq 0$. Set $n_{1}=|T \cap C|$ and $n_{2}=$ $\left|T \cap K^{*}\right|$. Then n_{i} are even numbers, and $n_{2}>0$.
Subcase 1. $T \cap C \neq \emptyset$.
Then $\left.\bar{f}^{\left.\frac{p}{m, p}\right)} \right\rvert\, T$ has $n_{1}+n_{2}$ fixed points. This implies that $\pi^{\prime}: T \rightarrow$ $T /\langle\bar{f}\rangle=\pi^{\prime}(T)$ is a p-fold cyclic branched covering along n_{1} branch points of index p and $n_{2}(m, p) / p$ branch points of index (m, p). Note $n_{2}(m, p) / p=$ $\left|\pi^{\prime}(T) \cap K_{f}^{*}\right|$.
Claim 4.1. $n_{1}=n_{2}=2$.
Proof. The Riemann-Hurewitz formula to the covering above gives:

$$
\begin{equation*}
0=\chi(T)=p\left(\chi\left(\pi^{\prime}(T)\right)-n_{1}\left(1-\frac{1}{p}\right)-\frac{n_{2}(m, p)}{p}\left(1-\frac{1}{(m, p)}\right)\right) . \tag{2}
\end{equation*}
$$

As in the proof of Claim 3.1, we obtain $\chi\left(\pi^{\prime}(T)\right)=2$. It follows:

$$
\begin{equation*}
2=n_{1}\left(1-\frac{1}{p}\right)+\frac{n_{2}(m, p)}{p}\left(1-\frac{1}{(m, p)}\right) . \tag{3}
\end{equation*}
$$

The right hand side of (3) is greater than $n_{1} / 2$, therefore $4>n_{1}$. Since $n_{1}(>0)$ is even, $n_{1}=2$ as claimed.

Multiplying (3) by p and substituting $n_{1}=2$, we obtain $2 p=2 p-2+$ $n_{2}(m, p)-n_{2}$. Thus $2+n_{2}=n_{2}(m, p) \geq 2 n_{2}$. It follows that the even number n_{2} must be 2 .

Since $(m, p)<p$, we have $n_{2}(m, p) / p<n_{2}=2$. Hence $n_{2}(m, p) / p=1$. This implies that the 2 -sphere $\pi^{\prime}(T)$ in $\left(K_{f} ; m /(n p)\right)$ meets K_{f}^{*} in a single point, a contradiction.
Subcase 2. $T \cap C=\emptyset$.
Then the closed surface $\pi^{\prime}(T)$ is contained in $V_{f}\left(K_{f} ; m /(n p)\right)$.
Claim 4.2. (1) $\pi^{\prime}(T)$ is a 2 -sphere.
(2) K_{f}^{*} meets $\pi^{\prime}(T)$ in 4 points.

Proof. Let i be the least positive integer such that $\bar{f}^{i}(T)=T$; then π^{\prime} : $T \rightarrow T /\left\langle\bar{f}^{i}\right\rangle=\pi^{\prime}(T)$ is a p / i-fold cyclic branched covering along $i_{2}(m, p) / p$ branch points of index (m, p). For simplicity set $k=i n_{2}(m, p) / p$. We then have:

$$
\begin{equation*}
0=\chi(T)=\frac{p}{i}\left(\chi\left(\pi^{\prime}(T)\right)-k\left(1-\frac{1}{(m, p)}\right)\right) . \tag{4}
\end{equation*}
$$

This shows $\chi\left(\pi^{\prime}(T)\right)>0$, so $\pi^{\prime}(T)$ is $\mathbf{R} P^{2}$ or S^{2}. If the orientable manifold $V_{f}\left(K_{f} ; m /(n p)\right)$ contains $\mathbf{R} P^{2}$, it has a $\mathbf{R} P^{3}$ factor in its prime decomposition. This is absurd because no surgery on a hyperbolic knot in a solid torus yields a reducible manifold [23]. Therefore $\pi^{\prime}(T)$ is a 2 -sphere as claimed.

Letting $\chi\left(\pi^{\prime}(T)\right)=2$ in (4), we obtain $2=k(1-1 /(m, p))$. The right hand side is smaller than k and greater than or equal to $k / 2$, so that $2<k \leq 4$. Since $k=\left|\pi^{\prime}(T) \cap K_{f}^{*}\right|$ is even, it must be 4 .

Claim 4.3. The 2 -sphere $\pi^{\prime}(T)$ in $V_{f}\left(K_{f} ; m /(n p)\right)$ gives an essential tangle decomposition (defined below) of K_{f}^{*}.

Definition. Let K be a knot in a 3 -manifold M. A separating 2 -sphere $\widehat{S} \subset M$ gives an essential tangle decomposition of K if \widehat{S} meets K in 4 points and $S=\widehat{S}-\operatorname{int} N(K)$ is incompressible in $M-\operatorname{int} N(K)$. Note that such an S is boundary-incompressible in M-int $N(K)$.

Proof. By Claim 4.2 it suffices to see $S=\pi^{\prime}(T)-\operatorname{int} N\left(K_{f}^{*}\right)$ is incompressible in $V_{f}\left(K_{f} ; m /(n p)\right)-\operatorname{int} N\left(K_{f}^{*}\right)$. Assume for a contradiction that S has a compressing disk D. Under the unbranched cyclic covering $\pi^{\prime}: V(K ; m / n)-$ $\operatorname{int} N\left(K^{*}\right) \rightarrow V_{f}\left(K_{f} ; m /(n p)\right)-\operatorname{int} N\left(K_{f}^{*}\right), \pi^{\prime-1}(D)$ consists of disks. Since T is incompressible in $V(K ; m / n)$, each component of $\pi^{\prime-1}(\partial D) \cap T$ bounds a unique disk in T which meets K^{*}. Let Δ be an innermost one among such disks. Recall $\bar{f} \mid K^{*}$ has period $p /(m, p)$. Then $g=\bar{f} \frac{p}{(m, p)}$ preserves Δ, and thus $g(\partial \Delta)=\partial \Delta$. This contradicts that \bar{f} permutes the p components of $\pi^{\prime-1}(D)$ cyclically.

The following proposition is essentially proved in Wu [27, Theorem 4.4]. We say that a Dehn surgery on a knot K is integral if the surgery slope on $\partial N(K)$ meets a meridian of K in a single point.

Proposition 4.4. Let K be a knot in an irreducible 3-manifold M. Suppose that $K \subset M$ admits an essential tangle decomposition. Then $M-\operatorname{int} N(K)$ contains an incompressible, closed orientable surface of genus 1 or 2 which remains incompressible after any non-integral, nontrivial surgery on $K \subset$ M.

In our setting, $M=V_{f}\left(K_{f} ; m /(n p)\right)$ is irreducible by [23], and $K_{f}^{*} \subset M$ admits an essential tangle decomposition. The solid torus $V_{f}=V_{f}\left(K_{f} ; 1 / 0\right)$ contains no incompressible closed surface. But the $1 / 0$-slope of $K_{f} \subset V_{f}$ does not meet a meridian of $K_{f}^{*} \subset M$ in a single point by $\left|\begin{array}{ll}1 & m /(m, n p) \\ 0 & n p /(m, n p)\end{array}\right|=$ $n p /(m, n p)=n p /(m, p) \neq \pm 1$. This contradicts Proposition 4.4. Hence, Subcase 2 does not occur (Theorem 1.3).

Proof of Proposition 4.4. Let \widehat{S} be a 2 -sphere giving an essential tangle decomposition of $K \subset M$, and set $S=\widehat{S}-\operatorname{int} N(K)$. Let B be a 3 -ball in M bounded by \widehat{S}, and let $B \cap K=t_{1} \cup t_{2}$, two arcs properly embedded in B.

If $E=B-\operatorname{int} N\left(t_{1} \cup t_{2}\right)$ contains an incompressible torus F, then it is incompressible in $M-\operatorname{int} N(K)$. Assume for a contradiction that F compresses after a non-integral, nontrivial surgery on $K \subset M$. We can apply [4, Theorem 2.4.4] after cutting M-int $N(K)$ along F. Then we obtain an annulus $A \subset M-\operatorname{int} N(K)$ such that ∂A consists of an essential loop on F and a longitude of $\partial N(K)$. Isotop A so as to meet S transversely and to minimize $|A \cap S|$. Each component of $A \cap S$ is an arc whose ends are in the longitude. An outermost disk of the components of $A-S$ is then a boundary-compressing disk for S. This contradicts the definition of an essential tangle decomposition. Hence, we may assume that E does not contain an incompressible torus.
Claim 4.5 (Hayashi [14]). $M-\operatorname{int} N(K)$ contains an incompressible, closed orientable surface F of genus 2 which has a compressing disk in M intersecting K in a single point.

By applying [4, Lemma 2.5.3] or the arguments in [24] to $M-\operatorname{int} N(K)$ cut along F, it follows that F remains incompressible after any non-integral, nontrivial surgery on $K \subset M$. This completes the proof of Proposition 4.4.

Proof of Claim 4.5. The arcs $t_{i}(i=1,2)$ are attached to \widehat{S} such that $t_{i} \cap \widehat{S}=\partial t_{i}$. First surger \widehat{S} along a 1-handle $N\left(t_{i}\right)$ attached to \widehat{S}; we obtain a torus meeting K in 2 points. Then surger the torus along a 1-handle $N\left(\overline{K-t_{j}}\right)$ where $i \neq j$. Let $F_{i}(i=1,2)$ be the resulting closed surface of genus 2; see Figure 4.1. A cocore D of the 1-handle $N\left(\overline{K-t_{j}}\right)$ is a compressing disk for $F_{i} \subset M$ meeting K in a single point, as desired.

The closed surface F_{i} splits $M-\operatorname{int} N(K)$ into two components. Let X be the one containing $\partial N(K)$, and Y the other. To prove the claim it suffices to see that either F_{1} or F_{2} is incompressible in both X and Y. If F_{i} compresses in X, the intersection of the compressing disk and D can be eliminated by a cut and paste argument, so $F_{i}-\partial D$ is compressible in $X-D$. This implies that S surgered along t_{i} is compressible in $E=B-\operatorname{int} N\left(t_{1} \cup t_{2}\right)$. However, [27, Lemma 2.2] shows that for the atoroidal nontrivial tangle $\left(B, t_{1} \cup t_{2}\right)$, S surgered along t_{i} is incompressible in E for $i=1$ or 2 . Hence, either F_{1} or F_{2} is incompressible in X.

Figure 4.1.
Assume for a contradiction that there is a compressing disk Δ for $F_{i} \subset Y$, where $i=1$ or 2 . Let $A \subset Y$ be an annulus such that ∂A consists of meridians of the 1-handles $N\left(t_{i}\right)$ and $N\left(\overline{K-t_{j}}\right)$ (the shaded annulus in Figure 4.1). By isotopy we may assume that Δ meets A transversely in arcs. Let Δ_{0} be the closure of an outermost component in $\Delta-A$. If $\partial \Delta_{0} \cap A$ is an arc connecting distinct components of ∂A, then S is boundary-compressible in $M-\operatorname{int} N(K)$, a contradiction. If $\partial \Delta_{0} \cap A$ is an arc connecting the same component of ∂A, then $F_{i}-\partial A$ is compressible in $Y-A$. This implies that S is compressible in M - $\operatorname{int} N(K)$, a contradiction.

5. Proof of Theorem 1.1.

Although Boyer and Zhang [2] showed the theorem when $(K ; m / n)$ is Seifert fibered, we proceed without assuming their result.

Let K be a hyperbolic, periodic knot, and f a periodic map of K with period 2. Assume that $(K ; m / n)$ is toroidal. If m is even, then [11] implies that $|n|=1$ as desired. In the following we assume that m is odd.

Lemma 5.1. There is an incompressible torus T in $(K ; m / n)$ meeting $C=$ $\operatorname{Fix}(f)=\operatorname{Fix}(\bar{f})$ transversely such that $\bar{f}(T)=T$ or $\bar{f}(T) \cap T=\emptyset$.

Proof. The lemma follows from the equivariant torus theorem for involutions [18, Corollary 4.6] unless ($K ; m / n$) is a Seifert fibered manifold over S^{2} with four exceptional fibers. If ($K ; m / n$) is such a Seifert fibered manifold, first choose an \bar{f}-invariant Seifert fibration $p:(K ; m / n) \rightarrow B=S^{2}[\mathbf{1 9}]$ (see also [21, Lemma 5.4]). By [21, Proposition 5.1] C cannot be a fiber of $(K ; m / n)$;
then \bar{f} preserves each fiber meeting C but reverses the orientation of it. It follows that \bar{f} induces an orientation reversing involution, φ, of B which fixes each point on $p(C)$. Then, φ is a reflection about the embedded circle $p(C)$. Let l be a φ-invariant circle in B which meets $p(C)$ transversely and encloses two cone points in each side (Figure 5.1). Then $p^{-1}(l)$ is an \bar{f}-invariant incompressible torus meeting C transversely.

Figure 5.1.
Let T be the torus in Lemma 5.1.
Case 1. $T \cap C=\emptyset$.
The argument in the paragraph just after the proof of Claim 3.1 shows that $|n|=1$.
Case 2. $T \cap C \neq \emptyset$.
Lemma 5.2. If $|n| \geq 2$, then $\left(K_{f} ; m /(2 n)\right)$ has two lens space summands.
Theorem 1.1 readily follows from this lemma. If $|n| \geq 2$, then by Lemma 5.2 the non-integral surgery $\left(K_{f} ; m /(2 n)\right)$ would be reducible, contradicting [9, Theorem 1] (Theorem 1.1).

The rest of this section is devoted to proving Lemma 5.2 by graphtheoretic technique. The arguments are variants of those in Hayashi and Motegi [16, §4].

From the argument in the proof of Claim 3.1, $T /\langle\bar{f}\rangle \cong S^{2}$ and T meets C in four points. Consider the unbranched covering $\pi^{\prime}: V(K ; m / n) \rightarrow$ $V_{f}\left(K_{f} ; m /(2 n)\right)$. We set $S=\pi^{\prime}(T-\operatorname{int} N(C))$, a 2 -sphere with four open disks removed; S is properly embedded in $V_{f}\left(K_{f} ; m /(2 n)\right)$ with components of ∂S preferred longitudes of $V_{f}\left(\subset S^{3}\right)$. Since T is separating in $(K ; m / n)$, $T /\langle\bar{f}\rangle$ is separating in $\left(K_{f} ; m /(2 n)\right)$ and hence S separates $V_{f}\left(K_{f} ; m /(2 n)\right)$.
Claim 5.3. S is essential in $V_{f}\left(K_{f} ; m /(2 n)\right)$.
Proof. (Cf. the proof of Claim 4.3.) If D is a compressing disk of S in $V_{f}\left(K_{f} ; m /(2 n)\right), \pi^{\prime-1}(D)$ consists of two compressing disks of $T-\operatorname{int} N(C)$ in $V(K ; m / n)$. However T is incompressible, so each component of $\pi^{\prime-1}(\partial D)$
bounds a disk in T which meets C. Since $C=\operatorname{Fix}(\bar{f})$, each such disk is preserved by \bar{f}. This contradicts that \bar{f} exchanges the components of $\pi^{\prime-1}(D)$.

In the following we write $M=V_{f}-\operatorname{int} N\left(K_{f}\right)$, which is hyperbolic (Proposition 2.1).

Isotoping S so as to minimize $q_{S}=\left|S \cap K_{f}^{*}\right|$, we obtain an essential (i.e., incompressible and boundary-incompressible) planar surface $P_{S}=S \cap M$ in M. Since q_{S} is even and $(K ; m / n)-\operatorname{int} N\left(K^{*}\right)$ is atoroidal, we have $q_{S} \geq 2$. Let D be a meridian disk of V_{f} such that $q_{D}=\left|D \cap K_{f}\right|$ is minimal. Then we have an essential planar surface $P_{D}=D \cap M$ in M. Since K has period 2, the linking number $l k\left(C_{f}, K_{f}\right)=l k(C, K)$ is odd, so q_{D} is odd. If $q_{D}=1$, then K is a trivial knot or a composite knot, contradicting the hyperbolicity of K. Thus $q_{D} \geq 3$.

We define graphs in D and S as in [4] and introduce the concepts of (great) x-edge cycles and $[x, x+1]$-Scharlemann cycles as in $[\mathbf{1 6}]$. By an isotopy we may assume that ∂P_{D} and ∂P_{S} intersect in minimum number of points, and $P_{D} \cap P_{S}$ consists of loops and arcs which are essential in both P_{D} and P_{S}. We define Γ_{D} to be the graph in D such that its (fat) vertices are the disks $D \cap N\left(K_{f}\right)$ and its edges are the arc components e of $P_{D} \cap P_{S}$ with at least one endpoint of e in a fat vertex. Similarly, we define the graph Γ_{S} in S. An edge with one endpoint in ∂D or ∂S is a boundary edge.

Number the fat vertices of $\Gamma_{D}\left(\right.$ resp. $\left.\Gamma_{S}\right) 1,2, \ldots, q_{D}\left(\right.$ resp. $\left.1,2, \ldots, q_{S}\right)$ in the order of appearence on $K_{f}\left(\right.$ resp. $\left.K_{f}^{*}\right)$. We next define a sign of a vertex of Γ_{D} to be the sign of the corresponding intersection point of K_{f} with D with respect to some chosen orientations of D, K_{f} and M. Similarly, give a sign to each vertex of Γ_{S}. An edge of $\Gamma_{\alpha}(\alpha=D, S)$ joining vertices of Γ_{α} with the same sign is a positive edge, and an edge joining the opposite signs is a negative edge.

Let p be some edge's endpoint at a fat vertex of Γ_{D} labelled x. Then p is in the boundary of some fat vertex of Γ_{S} labelled y (say). We label the edge-endpoint at the fat vertex x with y. Around each fat vertex of Γ_{D} the edge-endpoint labels occur in order $1,2, \ldots, q_{S}, \ldots, 1,2, \ldots, q_{S}$ repeated $2|n|$ times; the ordering is, without loss of generality, anticlockwise (resp. clockwise) at a positive (resp. negative) vertex. Label edge-endpoints at fat vertices of Γ_{S}, similarly. An edge with label x at one endpoint is an x-edge.

For a subgraph σ of $\Gamma_{D}\left(\right.$ resp. $\left.\Gamma_{S}\right)$, we call components of $D-\sigma$ (resp. $S-\sigma)$ faces of σ. For a face P of a subgraph $\sigma \subset \Gamma_{\alpha}(\alpha=D$ or $S)$, ∂P denotes the subgraph of σ which consists of vertices and edges of σ meeting the closure of P in α. A subgraph σ of Γ_{α} is an x-edge cycle if its edges are positive x-edges, and there is a disk face P of σ such that $\sigma=\partial P$. Furthermore, if all the vertices of Γ_{α} in P have the same sign as the vertices of σ, then σ is a great x-edge cycle. A Scharlemann cycle is
an x-edge cycle for some label x which bounds a disk face of Γ_{α}. In our setting Γ_{α} does not contain a Scharlemann cycle with only one edge. Note that a Scharlemann/ x-edge cycle σ is not necessarily a "cycle", i.e., σ with its vertices regarded as points may not be homeomorphic to a circle; see Figure 5.2. The above definition of a Scharlemann cycle is a mild extension of the definition by Gordon and Luecke [4], but the same as in Gordon [8]. We orient a Scharlemann cycle $\sigma \subset \Gamma_{\alpha}$ anticlockwise (resp. clockwise) if the sign of the vertices of σ is positive (resp. negative). Then, if an edge of σ has a label x at its tail, then its head has the label $x+1\left(\bmod q_{\alpha}\right)$. (Cf. Figure 5.2.) We say that σ is a Scharlemann cycle for the interval $[x, x+1]$, or simply $[x, x+1]$-Scharlemann cycle.

Figure 5.2.
Lemma 5.4. The graph Γ_{S} does not contain a Scharlemann cycle.
Proof. If Γ_{S} contains a Scharlemann cycle, then by [8, Theorem 4.1] we have a lens space summand in the solid torus V_{f}. This is a contradiction.

Lemma 5.5. If the graph Γ_{D} contains Scharlemann cycles for distinct intervals, then $\left(K_{f} ; m /(2 n)\right)$ has at least two lens space summands.

Proof. Let σ_{i} be $\left[x_{i}, y_{i}\right]$-Scharlemann cycles for $i=1,2$ such that $\left[x_{1}, y_{1}\right] \neq$ $\left[x_{2}, y_{2}\right]$. Let $E_{i} \subset D$ be the disk face of σ_{i}. Then E_{i} is disjoint from the separating 2-sphere $\widehat{S}=T /\langle\bar{f}\rangle$ in $\left(K_{f} ; m /(2 n)\right)$. There are three posibilities:
$\left\{x_{1}, y_{1}\right\} \cap\left\{x_{2}, y_{2}\right\}$ is empty, consists of one element, or two elements. (The last case occurs only when $q_{S}=2,\left[x_{1}, y_{1}\right]=[1,2]$ and $\left[x_{2}, y_{2}\right]=[2,1]$.) Except for the first case, E_{1} and E_{2} are contained in the opposite sides of \widehat{S}, thus $\left(K_{f} ; m /(2 n)\right)$ contains two disjoint punctured lens spaces by [8, Theorem 4.1].

Assume the first case happens. We consider the subgraph $\widehat{\sigma}_{i}$ of Γ_{S} consisting of two vertices of labels x_{i}, y_{i} and the edges of σ_{i}. Then $\widehat{S}-\widehat{\sigma}_{1}$ consists of open disks; $\widehat{\sigma}_{2}$ is contained in one of such disks because $\widehat{\sigma}_{1} \cap \widehat{\sigma}_{2}=\emptyset$. Hence we can choose disjoint disks D_{1} and D_{2} so that $\widehat{\sigma}_{i}$ lies in D_{i}. Thus there are two disjoint punctured lens spaces in $\left(K_{f} ; m /(2 n)\right)$.

Remark. Since m is assumed to be odd, $H_{1}\left(\left(K_{f} ; m /(2 n)\right)\right)$ has odd order. This implies that each Scharlemann cycle in Γ_{D} has an odd number of edges.
Lemma 5.6 ([15, Proposition 5.1]). If Γ_{α} contains a great x-edge cycle σ, then the disk face of σ contains a Scharlemann cycle.
Claim 5.7. Γ_{S} contains at most $q_{D}\left(q_{S}+2\right) / 2$ positive edges.
Proof. First we show that Γ_{S} contains at most $q_{S}+2$ positive x-edges for every label x. Let x be an arbitrary label of fat vertices of Γ_{D}. Let Λ be the subgraph of Γ_{S} consisting of all positive x-edges and all vertices of Γ_{S}. (The graph Λ may have an isolated vertex.) Note that if Λ has a disk face, its boundary is a great x-edge cycle of Γ_{S}. Let f_{d} be the number of disk faces of Λ. Applying Euler's formula to the graph Λ on S, we have $q_{S}-k+\Sigma \chi$ (face) $=\chi(S)=-2$, where k is the number of edges of Λ. Thus if $k \geq q_{S}+3$, then $f_{d} \geq \Sigma \chi($ face $) \geq 1$, so that Γ_{S} contains a great x-edge cycle. Hence, Γ_{S} contains a Scharlemann cycle by Lemma 5.6. This contradicts Lemma 5.4.

Assume for a contradiction that Γ_{S} contains more than $q_{D}\left(q_{S}+2\right) / 2$ positive edges. Then the number of their endpoints is more than $q_{D}\left(q_{S}+2\right)$. By the parity rule $[4, \S 2.5]$ every positive edge has distinct labels at its two endpoints. Since there are q_{D} kinds edge-endpoint labels in Γ_{S}, there are more than $q_{S}+2$ positive x-edges for some label x. This contradicts what we show above.

Claim 5.8. If Γ_{D} has at least $\left(q_{D}-1\right) q_{S}$ positive edges, then Γ_{D} has Scharlemann cycles for distinct intervals.
Proof. We first show that Γ_{D} contains at least $q_{D}-1$ Scharlmann cycles by the arguments in the proof of Claim 5.7 or [$\mathbf{1 6}$, Lemmas $4.5,4.6]$. In fact, using the arguments in the second paragraph of the proof of Claim 5.7, we see that Γ_{D} has at least $2\left(q_{D}-1\right)$ positive x-edges for some label x. Then, as in the first paragraph of the proof, apply Euler's formula to the graph Λ on D consisting of all vertices of Γ_{D} and all positive x-edges of Γ_{D}. It follows that the Euler number of the faces of Λ is at least $\chi(D)-q_{D}+2\left(q_{D}-1\right)=q_{D}-1$.

This implies that Γ_{D} contains at least $q_{D}-1$ great x-edge cycles bounding mutually disjoint disk faces. The claimed result then follows from Lemma 5.6.

Following the proof of [10, Theorem 2.3] ([16, Lemma 4.4]), we find Scharlemann cycles for distinct intervals. Assume for a contradiction that Γ_{D} contains Scharlemann cycles only for the interval (say) $[x, x+1]$. Let k be the number of Scharlemann cycles in Γ_{D}. As in Figure 8 in [16], we form a dual graph $\Lambda \subset D$ for Scharlemann cycles. First take one dual (fat) vertex in the disk face of each Scharlemann cycle in Γ_{D}, and then draw edges from each dual vertex to the vertices of the corresponding Scharlemann cycle. The vertices of Λ consist of q_{D} vertices of Γ_{D} and k dual vertices; the edges of Λ consist of the edges defined above. We apply Euler's formula to the graph Λ in D. The number of the vertices is $q_{D}+k$; the number of the edges is at least $3 k$ by Remark after the proof of Lemma 5.5. It follows that the Euler number of the faces of Λ is at least $\chi(D)-\left(q_{D}+k\right)+3 k=2 k+1-q_{D} \geq q_{D}-1>0$. This implies that there is a disk face of Λ, which contains a great x-edge cycle of Γ_{D} as shown in [16, Figure 9] and thus a Scharlemann cycle (Lemma 5.6). Hence, Γ_{D} contains more than k Scharlemann cycles, a contradiction.

Proof of Lemma 5.2. Since each component of ∂S is a longitude of V_{f}, the graph Γ_{S} has at most four boundary edges. Each vertex of Γ_{S} has $|2 n| q_{D}(\geq$ $\left.4 q_{D}\right)$ edge-endpoints; Γ_{S} has at most $q_{D}\left(q_{S}+2\right) / 2$ positive edges (Claim 5.7). Thus, the number of endpoints of the negative edges of Γ_{S} is at least

$$
\begin{aligned}
& 4 q_{D} q_{S}-4-q_{D}\left(q_{S}+2\right) \\
& =3 q_{D} q_{S}-2 q_{D}-4 \\
& =2\left(q_{D}-1\right) q_{S}+\left(q_{S}-2\right) q_{D}+2 q_{S}-4
\end{aligned}
$$

Since $q_{S} \geq 2$, this number is greater than or equal to $2\left(q_{D}-1\right) q_{S}$. By the parity rule Γ_{D} then has at least $\left(q_{D}-1\right) q_{S}$ positive edges. Hence Γ_{D} contains Scharlemann cycles for distinct intervals (Claim 5.8). Lemma 5.2 now follows from Lemma 5.5.

References

[1] M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, preprint.
[2] S. Boyer and X. Zhang, The semi-norm and Dehn filling, Ann. Math., 148 (1998), 737-801.
[3] D. Cooper, C. Hodgson and S. Kerckhoff, Geometric structures and symmetries of 3-manifolds, Lecture series given at the Third MSJ Regional Workshop on ConeManifolds and Hyperbolic Geometry, July 1-10, 1998, Tokyo Institute of Technology, Tokyo, Japan.
[4] M. Culler, C. McA. Gordon, J. Luecke and P.B. Shalen, Dehn surgery on knots, Ann. Math., 125 (1987), 237-300.
[5] M. Eudave-Muñoz, Non-hyperbolic manifolds obtained by Dehn surgery on a hyperbolic knot, in 'Studies in Advanced Mathematics', 2, part 1, (ed. W. Kazez), 1997, Amer. Math. Soc. and International Press, 35-61.
[6] D. Gabai, Foliations and the topology of 3-manifolds, III, J. Diff. Geom., 26 (1987), 479-536.
[7] , Convergence groups are Fuchsian groups, Ann. Math., 136 (1992), 447-510.
[8] C. McA. Gordon, Combinatorial methods in Dehn surgery, in 'Lectures at Knots '96, Series on knots and everything', 15 (ed. S. Suzuki), World Scientific, 263-290.
[9] C. McA. Gordon and J. Luecke, Only integral Dehn surgery can yield reducible manifolds, Math. Proc. Camb. Phil. Soc., 102 (1987), 97-101.
[10] __ Reducible manifolds and Dehn surgery, Topology, 35 (1996), 385-409.
[11] , Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., 4 (1995), 597-644.
[12] , Dehn surgeries on knots creating essential tori, II, Comm. Anal. Geom., to appear.
[13] , Toroidal and boundary-reducing Dehn fillings, Topol. Appl., 93 (1999), 77-90.
[14] C. Hayashi, On tangle decompositions of super simple knots, Master Thesis, University of Tokyo, 1992.
[15] C. Hayashi and K. Motegi, Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc., 349 (1997), 4465-4479.
[16] , Dehn surgery on knots in solid tori creating essential annuli, Trans. Amer. Math. Soc., 349 (1997), 4897-4930.
[17] C. Hayashi and K. Shimokawa, Symmetric knots satisfy the cabling conjecture, Math. Proc. Camb. Phil. Soc., 123 (1998), 501-529.
[18] W.H. Holzmann, An equivariant torus theorem for involutions, Trans. Amer. Math. Soc., 326 (1991), 887-906.
[19] W.H. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math., 86 (1986), 287-346.
[20] W.H. Meeks and S.-T. Yau, Equivariant Dehn's lemma and loop theorem, Comment. Math. Helv., 56 (1981), 225-239.
[21] K. Miyazaki and K. Motegi, Seifert fibered manifolds and Dehn surgery, III, Comm. Anal. Geom., 7 (1999), 551-582.
[22] J. Morgan and H. Bass (eds.), The Smith conjecture, Academic Press, 1984.
[23] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology, 29 (1990), 481-500.
[24] H. Short, Some closed incompressible surfaces in knot complements which survive surgery, in 'Low dimensional topology', London Math. Soc. Lect. Notes Ser., 95 (1985), Cambridge Univ. Press, 179-194.
[25] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1979.
[26] , Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.
[27] Y.-Q. Wu, Dehn surgery on arborescent knots, J. Diff. Geom., 43 (1997), 171-197.
Received July 24, 1998. The first author was supported in part by Grant-in-Aid for Scientific Research (No. 10640091), Ministry of Education, Science and Culture. The second author was supported in part by Grant-in-Aid for Encouragement of Young Scientists (No. 09740074), Ministry of Education, Science and Culture.

Tokyo Denki University
College of Humanities \& Sciences
2-2 Kanda-Nishikicho Nihon University
Tokyo 101
Japan
E-mail address: miyazaki@cck.dendai.ac.jp
Nihon University
Sakurajosui 3-25-40, Setagaya-Ku Tokyo 156
JAPAN
E-mail address: motegi@math.chs.nihon-u.ac.jp

