Pacific Journal of Mathematics

TOROIDAL SURGERY ON PERIODIC KNOTS

Katura Miyazaki and Kimihiko Motegi

Volume 193 No. 2

April 2000

TOROIDAL SURGERY ON PERIODIC KNOTS

Katura Miyazaki and Kimihiko Motegi

We show that r-Dehn surgery on a hyperbolic, periodic knot K with period p > 2 yields a hyperbolic manifold unless p = 3, r = 0 and the genus of K is one. Regarding hyperbolic, periodic knots with period 2, we show that only integral Dehn surgeries can yield toroidal manifolds.

1. Introduction.

A 3-manifold is *toroidal* if it contains an essential torus, i.e., an incompressible torus not parallel to a boundary component. A knot K in S^3 is called a *periodic knot with period* p if there is a homeomorphism $f: S^3 \to S^3$ such that f(K) = K, $\operatorname{Fix}(f) \cap K = \emptyset$, and $\operatorname{Fix}(f)$ is a circle. We call f a *periodic map of* K. For a knot K in a 3-manifold $M \subset S^3$ we denote by M(K;r)the manifold obtained by r-Dehn surgery of M on K, where $r \in \mathbf{Q} \cup \{1/0\}$; if $M = S^3$, simply we denote M(K;r) by (K;r).

The hyperbolic Dehn surgery theorem of Thurston [25] shows that for hyperbolic knots K, (K; r) is non-hyperbolic only for finitely many $r \in \mathbf{Q}$. In this paper we consider when Dehn surgery on a hyperbolic, periodic knot yields a non-hyperbolic, in particular toroidal, manifold. For example, the figure eight knot 4_1 , which has period 2, has exactly 10 surgeries producing non-hyperbolic manifolds [25]; if $(4_1; r)$ is toroidal, then $r = 0, \pm 4$.

Theorem 1.1. If K is a hyperbolic, periodic knot with period 2 and (K;r) is toroidal, then r is an integer.

Remark. Gordon and Luecke proved that the denominator of a toroidal surgery slope is at most two for hyperbolic knots [11], and furthermore if the denominator is two then the knot is strongly invertible [12]. Eudave-Muñoz [5] constructed an infinite family of strongly invertible hyperbolic knots having non-integral, toroidal surgeries. Theorem 1.1 shows that none of his knots has period 2.

Then, does a hyperbolic, periodic knot with period greater than 2 have a non-hyperbolic Dehn surgery? Our answer is "no except for a special case" (Corollary 1.4). Before giving the statement let us review what nonhyperbolic manifolds are like. Each of the following cases is an obstruction to a closed orientable manifold M being hyperbolic:

- (1) M is reducible;
- (2) M is a Seifert fibered manifold with a finite fundamental group;
- (3) $\pi_1(M)$ has a subgroup isomorphic to $\mathbf{Z} \times \mathbf{Z}$.

In 1981, Thurston announced the Symmetry Theorem [26]: If M admits an action by a finite group G such that a fixed point set of some nontrivial element of G has dimension at least one, then M has a G-invariant geometric decomposition such that G acts on each piece by isometries. The theorem implies that (1)-(3) are the only obstructions to such M being hyperbolic. Recently, the Symmetry Theorem is proved in the case when the union of fixed point sets of nontrivial elements of G is a 1-manifold by Cooper, Hodgson and Kerckhoff [3], and Boileau and Porti [1]; this case of the theorem is what we need and referred to below as the Symmetry Theorem. On the other hand, if M is irreducible, condition (3) implies (3') below [7, Corollary 8.6].

 $(3^\prime)~M$ is either toroidal or a Seifert fibered manifold with an infinite fundamental group.

If K is a hyperbolic, periodic knot, (K; r) does not fall under case (1) by the Cabling Conjecture for symmetric knots (Hayashi and Shimokawa [17], Gordon and Luecke). Since the periodic map of K extends to a periodic map on (K; r), the Symmetry Theorem applies to (K; r). Regarding (2) and (3'), the authors proved that:

Theorem 1.2 ([21, Theorem 1.5 and Proposition 5.6]). If K is a hyperbolic, periodic knot with period greater than 2, then (K;r) is not Seifert fibered for any $r \in \mathbf{Q}$. (Without using the Symmetry Theorem we show that M is not a Seifert fibered manifold with an infinite fundamental group.)

Without assuming the Symmetry Theorem, we shall prove:

Theorem 1.3. Let K be a hyperbolic, periodic knot with period p > 2. Then (K;r) is toroidal if and only if p = 3, r = 0, and the genus of K is one.

Remark. The (3, 3, 3) pretzel knot is an example of a genus one, hyperbolic, periodic knot with period 3.

Theorems 1.2 and 1.3 preclude the possibility of cases (2) and (3'). Then the Symmetry Theorem implies that:

Corollary 1.4. Let K be a hyperbolic, periodic knot with period p > 2. Then (K;r) is hyperbolic for any $r \in \mathbf{Q}$ except when p = 3, r = 0, and the genus of K is one.

The if part of Theorem 1.3 is proved below. The only if part is proved in \S 3, 4. Theorem 1.1 is proved in \S 5 by graph-theoretic arguments.

Proof of the if part of Theorem 1.3. If K has an incompressible Seifert surface of genus one, then (K; 0) contains a non-separating torus obtained from the

Seifert surface by attaching a meridian disk of the glued solid torus. Gabai [6] shows that such a torus is incompressible.

2. Preliminaries.

2.1. Dehn surgery on a factor knot.

Let K be a periodic knot, and f a periodic map of K with period p. Set C = Fix(f), which is a trivial knot in S^3 by the positive solution to the Smith Conjecture [22]. Then f induces the p-fold cyclic covering π from S^3 to the quotient space $S^3/\langle f \rangle = S^3$ branched along the trivial knot $C_f = \pi(C)$. We denote the factor knot $\pi(K)$ by K_f . Dehn surgeries on K and K_f are related as follows.

Take an f-invariant tubular neighborhood N(K) of K. We can extend $f|S^3 - \operatorname{int} N(K)$ over (K; m/n) periodically. Denote by \overline{f} the resulting periodic map on (K; m/n); the period of \overline{f} is p. We may assume that \overline{f} preserves the core K^* of the reglued solid torus. Note that for any 0 < i < p, $\operatorname{Fix}(\overline{f}^i)$ is either C or $C \cup K^*$. The projection $\pi' : (K; m/n) \to (K; m/n)/\langle \overline{f} \rangle$ is a p-fold cyclic branched covering. Then $(K; m/n)/\langle \overline{f} \rangle$ is identified with $(K_f; m/(np))$ such that $\pi'(K^*)$ is a core of the reglued solid torus in $(K_f; m/(np))$. So denote $\pi'(K^*) = K_f^*$; see Diagram 2.1.

Diagram 2.1. The vertical and the slanted arrows mean Dehn surgeries.

Now choosing an f-invariant tubular neighborhood N(C) of C, set $V = S^3 - \operatorname{int} N(C)$ and $V_f = V/\langle f \rangle = S^3 - \operatorname{int} N(C_f)$. Just as above a Dehn surgery of V on K and that of V_f on K_f are related (Diagram 2.2).

$$V \longrightarrow V/\langle f \rangle = V_f$$

$$\downarrow \qquad \qquad \searrow$$

$$V(K; \frac{m}{n}) \xrightarrow{\pi'} V(K; \frac{m}{n})/\langle \bar{f} \rangle = V_f(K_f; \frac{m}{np})$$

Diagram 2.2. The vertical and the slanted arrows mean Dehn surgeries.

Suppose $K \subset V$ is a hyperbolic knot. Since $\pi : V - K \to V_f - K_f$ is an unbranched covering, $V_f - K_f$ is neither toroidal nor Seifert fibered. Thus K_f is hyperbolic in V_f [22]. In the next subsection, we shall show that this hypothesis is satisfied if K is hyperbolic in S^3 .

2.2. Hyperbolic, periodic knots.

Proposition 2.1. Let $K \subset S^3$ be a hyperbolic, periodic knot. Let C = Fix(f), where f is a periodic map of K. Then $K \cup C$ is a hyperbolic link in S^3 .

Proof. N(K) and N(C) denote disjoint tubular neighborhoods of K and C which are preserved by f, respectively. Set $V = S^3 - \operatorname{int} N(C)$, an unknotted solid torus. Let \mathcal{T} be a characteristic family of tori for $V - \operatorname{int} N(K)$ whose union is invariant under f [19, Theorem 8.6]. It suffices to prove $\mathcal{T} = \emptyset$. Note that since $K \subset S^3$ is hyperbolic, any torus in \mathcal{T} is compressible in $S^3 - K$; in particular, any compressing disk meets C.

Assume for a contradiction that there is a torus in \mathcal{T} which separates $\partial N(K)$ and ∂V . Among such tori let T be the one closest to ∂V . Let V' be the solid torus in V such that $\partial V' = T$. Note f(V') = V', and $T = \partial V'$ is compressible in $S^3 - K$. It follows that V' is unknotted in S^3 . By the equivariant loop theorem [20] there is a meridian disk D of $S^3 - \operatorname{int} V'$ such that f(D) = D or $f(D) \cap D = \emptyset$. Since $C \cap D \neq \emptyset$, we have f(D) = D. Hence, D meets $C = \operatorname{Fix}(f)$ in a single point. This together with the unknottedness of C in S^3 shows that C is a core of the unknotted solid torus $S^3 - \operatorname{int} V'$. A core of V' and C then form a Hopf link, so that T and ∂V bounds $T^2 \times I$. This contradicts the minimality of \mathcal{T} .

Hence, if $\mathcal{T} \neq \emptyset$, each torus in \mathcal{T} would not separate $\partial N(K)$ and ∂V . Let T be a torus in \mathcal{T} such that the manifold $E \subset V - \operatorname{int} N(K)$ bounded by T does not contain a torus in $\mathcal{T} - \{T\}$. Then for any i either $f^i(E) = E$ or $f^i(E) \cap E = \emptyset$. Set $X = S^3 - \operatorname{int}(N(K) \cup \bigcup_{i \ge 0} f^i(E))$. Since T is compressible in $S^3 - K$, T is compressible in $S^3 - \operatorname{int}(N(K) \cup E)$ and thus in X. Let D be a compressing disk for $T \subset X$ such that f(D) = D or $f(D) \cap D = \emptyset$ [20]. Just as above, the fact $C \cap D \neq \emptyset$ implies that D meets C in a single point. Hence C winds around the knotted solid torus $S^3 - \operatorname{int} E$ geometrically once, which contradicts that C is unknotted in S^3 .

3. Proof of Theorem 1.3: Case when (m, p) = 1 or p.

In this section and the next, we prove the only if part of Theorem 1.3.

Let K be a hyperbolic, periodic knot, and f a periodic map of K with period p > 2. We use the notation in §2.1 in what follows.

Assume that (K; m/n) is toroidal. Note that (K; m/n) is irreducible and not Seifert fibered (Theorem 1.2). By the equivariant torus decomposition theorem [19], (K; m/n) contains an incompressible torus T such that for any $i, \bar{f}^i(T) = T$ or $\bar{f}^i(T) \cap T = \emptyset$. By rechoosing T, if necessary, the $\langle \bar{f} \rangle$ -equivariant torus T meets $C \cup K^*$ transversely, and N(C) and $N(K^*)$ in (possibly empty) meridian disks. Note $T \cap K^* \neq \emptyset$.

The proof is divided into three cases: (1) (m, p) = 1, (2) (m, p) = p, (3) 1 < (m, p) < p, where (m, p) is the greatest common divisor of m and p. The first two cases are dealt with in this section. Cases 1 and 3 will lead to contradictions.

Case 1.
$$(m, p) = 1$$
; then $\operatorname{Fix}(\overline{f^i}) = C$ for $0 < i < p$.

Claim 3.1. $T \cap C = \emptyset$.

Proof. Assume that T intersects C in k(>0) points. Then f(T) = T. Moreover, since f fixes C pointwise, \overline{f} preserves the orientation of T, and thus $T/\langle \overline{f} \rangle$ is an orientable surface. The assumption (m, p) = 1 implies $m \neq 0$, and then any closed orientable surface in (K; m/n) is separating. Thus k is even. The projection $\pi' : T \to T/\langle \overline{f} \rangle = \pi'(T)$ is a p-fold cyclic branched covering along k branch points of index p. The Riemann-Hurewitz formula gives

(1)
$$0 = \chi(T) = p\left(\chi(\pi'(T)) - k\left(1 - \frac{1}{p}\right)\right).$$

It follows $\chi(\pi'(T)) > 0$. Since $\pi'(T)$ is a closed, orientable surface, $\chi(\pi'(T))$ must be 2. Hence, 2 = k(1 - 1/p). We then obtain (p - 1)(k - 2) = 2. The solution sets in positive integers are (k, p) = (3, 3), (4, 2). The former contradicts the fact that k is even; the latter does the assumption p > 2. \Box

By Claim 3.1 $\pi': T \to \pi'(T)$ is an unbranched covering, thus $\pi'(T)$ is a Klein bottle or a torus. Hence, the m/(np)-surgery of the solid torus V_f on K_f contains a Klein bottle or a torus. Note that K_f is a hyperbolic knot in V_f , for K is hyperbolic in V (Proposition 2.1). Then, if $\pi'(T)$ is a Klein bottle, by [11] |np| = 1. This contradicts p > 1. It follows that $\pi'(T)$ is a torus. The fact that $\pi': V(K; m/n) \to V_f(K_f; m/(np))$ is an unbranched covering implies that $\pi'(T)$ is an essential torus in $V_f(K_f; m/(np))$. For hyperbolic knots in S^3 , Gordon and Luecke [11] proved that the denominator of a toroidal surgery slope is at most 2. As pointed out in [13], their proof works also for hyperbolic knots in a solid torus. Hence $|np| \leq 2$, a contradiction.

Case 2. (m, p) = p; then $\operatorname{Fix}(\overline{f^i}) = C \cup K^*$ for 1 < i < p.

Let $k = |T \cap (C \cup K^*)|$. The projection $\pi' : T \to T/\langle \bar{f} \rangle$ is a *p*-fold cyclic branched covering along k branch points of index p. As in Case 1 we obtain Equation (1), and the relevant solution set is (k, p) = (3, 3). This implies that T intersects C or K^* in an odd number of points, so T is a non-separating incompressible torus in (K; m/n). By considering the first homology group we see m = 0. [6, Corollary 8.3] shows if (K; 0) contains such a torus, then the genus of K is one as desired.

4. Proof of Theorem 1.3: Case when 1 < (m, p) < p.

In this case, $\operatorname{Fix}(\overline{f}) = C$, $\overline{f}|K^*$ has period p/(m,p), and $\overline{f}|S^3 - \operatorname{int} N(K^* \cup C)$ has period p. Note that (K; m/n) and $(K_f; m/(np))$ do not contain non-separating closed surfaces because $m \neq 0$. Set $n_1 = |T \cap C|$ and $n_2 = |T \cap K^*|$. Then n_i are even numbers, and $n_2 > 0$.

Subcase 1. $T \cap C \neq \emptyset$.

Then $\overline{f}_{(\overline{m,p})}^{p}|T$ has $n_1 + n_2$ fixed points. This implies that $\pi': T \to T/\langle \overline{f} \rangle = \pi'(T)$ is a *p*-fold cyclic branched covering along n_1 branch points of index *p* and $n_2(m,p)/p$ branch points of index (m,p). Note $n_2(m,p)/p = |\pi'(T) \cap K_f^*|$.

Claim 4.1. $n_1 = n_2 = 2$.

Proof. The Riemann-Hurewitz formula to the covering above gives:

(2)
$$0 = \chi(T) = p\left(\chi(\pi'(T)) - n_1\left(1 - \frac{1}{p}\right) - \frac{n_2(m, p)}{p}\left(1 - \frac{1}{(m, p)}\right)\right).$$

As in the proof of Claim 3.1, we obtain $\chi(\pi'(T)) = 2$. It follows:

(3)
$$2 = n_1 \left(1 - \frac{1}{p} \right) + \frac{n_2(m, p)}{p} \left(1 - \frac{1}{(m, p)} \right).$$

The right hand side of (3) is greater than $n_1/2$, therefore $4 > n_1$. Since $n_1(>0)$ is even, $n_1 = 2$ as claimed.

Multiplying (3) by p and substituting $n_1 = 2$, we obtain $2p = 2p - 2 + n_2(m, p) - n_2$. Thus $2 + n_2 = n_2(m, p) \ge 2n_2$. It follows that the even number n_2 must be 2.

Since (m, p) < p, we have $n_2(m, p)/p < n_2 = 2$. Hence $n_2(m, p)/p = 1$. This implies that the 2-sphere $\pi'(T)$ in $(K_f; m/(np))$ meets K_f^* in a single point, a contradiction.

Subcase 2. $T \cap C = \emptyset$.

Then the closed surface $\pi'(T)$ is contained in $V_f(K_f; m/(np))$.

Claim 4.2. (1) $\pi'(T)$ is a 2-sphere. (2) K_f^* meets $\pi'(T)$ in 4 points.

Proof. Let *i* be the least positive integer such that $\bar{f}^i(T) = T$; then $\pi' : T \to T/\langle \bar{f}^i \rangle = \pi'(T)$ is a p/i-fold cyclic branched covering along $in_2(m, p)/p$ branch points of index (m, p). For simplicity set $k = in_2(m, p)/p$. We then have:

(4)
$$0 = \chi(T) = \frac{p}{i} \left(\chi(\pi'(T)) - k \left(1 - \frac{1}{(m,p)} \right) \right).$$

This shows $\chi(\pi'(T)) > 0$, so $\pi'(T)$ is $\mathbb{R}P^2$ or S^2 . If the orientable manifold $V_f(K_f; m/(np))$ contains $\mathbb{R}P^2$, it has a $\mathbb{R}P^3$ factor in its prime decomposition. This is absurd because no surgery on a hyperbolic knot in a solid torus yields a reducible manifold [23]. Therefore $\pi'(T)$ is a 2-sphere as claimed.

Letting $\chi(\pi'(T)) = 2$ in (4), we obtain 2 = k(1-1/(m,p)). The right hand side is smaller than k and greater than or equal to k/2, so that $2 < k \leq 4$. Since $k = |\pi'(T) \cap K_f^*|$ is even, it must be 4.

Claim 4.3. The 2-sphere $\pi'(T)$ in $V_f(K_f; m/(np))$ gives an essential tangle decomposition (defined below) of K_f^* .

Definition. Let K be a knot in a 3-manifold M. A separating 2-sphere $\widehat{S} \subset M$ gives an essential tangle decomposition of K if \widehat{S} meets K in 4 points and $S = \widehat{S} - \operatorname{int} N(K)$ is incompressible in $M - \operatorname{int} N(K)$. Note that such an S is boundary-incompressible in $M - \operatorname{int} N(K)$.

Proof. By Claim 4.2 it suffices to see $S = \pi'(T) - \operatorname{int} N(K_f^*)$ is incompressible in $V_f(K_f; m/(np)) - \operatorname{int} N(K_f^*)$. Assume for a contradiction that S has a compressing disk D. Under the unbranched cyclic covering $\pi' : V(K; m/n) - \operatorname{int} N(K^*) \to V_f(K_f; m/(np)) - \operatorname{int} N(K_f^*), \pi'^{-1}(D)$ consists of disks. Since T is incompressible in V(K; m/n), each component of $\pi'^{-1}(\partial D) \cap T$ bounds a unique disk in T which meets K^* . Let Δ be an innermost one among such disks. Recall $\bar{f}|K^*$ has period p/(m,p). Then $g = \bar{f}^{\frac{p}{(m,p)}}$ preserves Δ , and thus $g(\partial \Delta) = \partial \Delta$. This contradicts that \bar{f} permutes the p components of $\pi'^{-1}(D)$ cyclically.

The following proposition is essentially proved in Wu [27, Theorem 4.4]. We say that a Dehn surgery on a knot K is *integral* if the surgery slope on $\partial N(K)$ meets a meridian of K in a single point.

Proposition 4.4. Let K be a knot in an irreducible 3-manifold M. Suppose that $K \subset M$ admits an essential tangle decomposition. Then $M - \operatorname{int} N(K)$ contains an incompressible, closed orientable surface of genus 1 or 2 which remains incompressible after any non-integral, nontrivial surgery on $K \subset M$.

In our setting, $M = V_f(K_f; m/(np))$ is irreducible by [23], and $K_f^* \subset M$ admits an essential tangle decomposition. The solid torus $V_f = V_f(K_f; 1/0)$ contains no incompressible closed surface. But the 1/0-slope of $K_f \subset V_f$ does not meet a meridian of $K_f^* \subset M$ in a single point by $\begin{vmatrix} 1 & m/(m, np) \\ 0 & np/(m, np) \end{vmatrix} = np/(m, np) \neq \pm 1$. This contradicts Proposition 4.4. Hence, Subcase 2 does not occur (Theorem 1.3). Proof of Proposition 4.4. Let \widehat{S} be a 2-sphere giving an essential tangle decomposition of $K \subset M$, and set $S = \widehat{S} - \operatorname{int} N(K)$. Let B be a 3-ball in M bounded by \widehat{S} , and let $B \cap K = t_1 \cup t_2$, two arcs properly embedded in B.

If $E = B - \operatorname{int} N(t_1 \cup t_2)$ contains an incompressible torus F, then it is incompressible in $M - \operatorname{int} N(K)$. Assume for a contradiction that F compresses after a non-integral, nontrivial surgery on $K \subset M$. We can apply [4, Theorem 2.4.4] after cutting $M - \operatorname{int} N(K)$ along F. Then we obtain an annulus $A \subset M - \operatorname{int} N(K)$ such that ∂A consists of an essential loop on F and a longitude of $\partial N(K)$. Isotop A so as to meet S transversely and to minimize $|A \cap S|$. Each component of $A \cap S$ is an arc whose ends are in the longitude. An outermost disk of the components of A - S is then a boundary-compressing disk for S. This contradicts the definition of an essential tangle decomposition. Hence, we may assume that E does not contain an incompressible torus.

Claim 4.5 (Hayashi [14]). $M-\operatorname{int} N(K)$ contains an incompressible, closed orientable surface F of genus 2 which has a compressing disk in M intersecting K in a single point.

By applying [4, Lemma 2.5.3] or the arguments in [24] to $M-\operatorname{int} N(K)$ cut along F, it follows that F remains incompressible after any non-integral, nontrivial surgery on $K \subset M$. This completes the proof of Proposition 4.4.

Proof of Claim 4.5. The arcs t_i (i = 1, 2) are attached to \widehat{S} such that $t_i \cap \widehat{S} = \partial t_i$. First surger \widehat{S} along a 1-handle $N(t_i)$ attached to \widehat{S} ; we obtain a torus meeting K in 2 points. Then surger the torus along a 1-handle $N(\overline{K}-t_j)$ where $i \neq j$. Let F_i (i = 1, 2) be the resulting closed surface of genus 2; see Figure 4.1. A cocore D of the 1-handle $N(\overline{K}-t_j)$ is a compressing disk for $F_i \subset M$ meeting K in a single point, as desired.

The closed surface F_i splits $M-\operatorname{int} N(K)$ into two components. Let X be the one containing $\partial N(K)$, and Y the other. To prove the claim it suffices to see that either F_1 or F_2 is incompressible in both X and Y. If F_i compresses in X, the intersection of the compressing disk and D can be eliminated by a cut and paste argument, so $F_i - \partial D$ is compressible in X - D. This implies that S surgered along t_i is compressible in $E = B - \operatorname{int} N(t_1 \cup t_2)$. However, [27, Lemma 2.2] shows that for the atoroidal nontrivial tangle $(B, t_1 \cup t_2)$, S surgered along t_i is incompressible in E for i = 1 or 2. Hence, either F_1 or F_2 is incompressible in X.

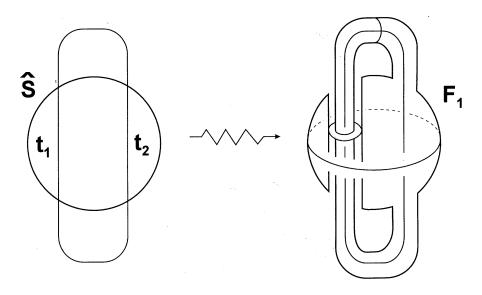


Figure 4.1.

Assume for a contradiction that there is a compressing disk Δ for $F_i \subset Y$, where i = 1 or 2. Let $A \subset Y$ be an annulus such that ∂A consists of meridians of the 1-handles $N(t_i)$ and $N(\overline{K-t_j})$ (the shaded annulus in Figure 4.1). By isotopy we may assume that Δ meets A transversely in arcs. Let Δ_0 be the closure of an outermost component in $\Delta - A$. If $\partial \Delta_0 \cap A$ is an arc connecting distinct components of ∂A , then S is boundary-compressible in $M-\operatorname{int} N(K)$, a contradiction. If $\partial \Delta_0 \cap A$ is an arc connecting the same component of ∂A , then $F_i - \partial A$ is compressible in Y - A. This implies that S is compressible in $M-\operatorname{int} N(K)$, a contradiction. \Box

5. Proof of Theorem 1.1.

Although Boyer and Zhang [2] showed the theorem when (K; m/n) is Seifert fibered, we proceed without assuming their result.

Let K be a hyperbolic, periodic knot, and f a periodic map of K with period 2. Assume that (K; m/n) is toroidal. If m is even, then [11] implies that |n| = 1 as desired. In the following we assume that m is odd.

Lemma 5.1. There is an incompressible torus T in (K; m/n) meeting $C = \text{Fix}(f) = \text{Fix}(\bar{f})$ transversely such that $\bar{f}(T) = T$ or $\bar{f}(T) \cap T = \emptyset$.

Proof. The lemma follows from the equivariant torus theorem for involutions [18, Corollary 4.6] unless (K; m/n) is a Seifert fibered manifold over S^2 with four exceptional fibers. If (K; m/n) is such a Seifert fibered manifold, first choose an \bar{f} -invariant Seifert fibration $p: (K; m/n) \to B = S^2$ [19] (see also [21, Lemma 5.4]). By [21, Proposition 5.1] C cannot be a fiber of (K; m/n);

then \overline{f} preserves each fiber meeting C but reverses the orientation of it. It follows that \overline{f} induces an orientation reversing involution, φ , of B which fixes each point on p(C). Then, φ is a reflection about the embedded circle p(C). Let l be a φ -invariant circle in B which meets p(C) transversely and encloses two cone points in each side (Figure 5.1). Then $p^{-1}(l)$ is an \overline{f} -invariant incompressible torus meeting C transversely. \Box

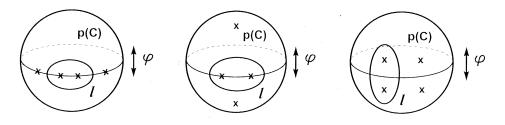


Figure 5.1.

Let T be the torus in Lemma 5.1.

Case 1. $T \cap C = \emptyset$.

The argument in the paragraph just after the proof of Claim 3.1 shows that |n| = 1.

Case 2. $T \cap C \neq \emptyset$.

Lemma 5.2. If $|n| \ge 2$, then $(K_f; m/(2n))$ has two lens space summands.

Theorem 1.1 readily follows from this lemma. If $|n| \ge 2$, then by Lemma 5.2 the non-integral surgery $(K_f; m/(2n))$ would be reducible, contradicting [9, Theorem 1] (Theorem 1.1).

The rest of this section is devoted to proving Lemma 5.2 by graphtheoretic technique. The arguments are variants of those in Hayashi and Motegi $[16, \S4]$.

From the argument in the proof of Claim 3.1, $T/\langle \bar{f} \rangle \cong S^2$ and T meets C in four points. Consider the unbranched covering $\pi' : V(K; m/n) \to V_f(K_f; m/(2n))$. We set $S = \pi'(T - \operatorname{int} N(C))$, a 2-sphere with four open disks removed; S is properly embedded in $V_f(K_f; m/(2n))$ with components of ∂S preferred longitudes of $V_f(\subset S^3)$. Since T is separating in (K; m/n), $T/\langle \bar{f} \rangle$ is separating in $(K_f; m/(2n))$ and hence S separates $V_f(K_f; m/(2n))$.

Claim 5.3. S is essential in $V_f(K_f; m/(2n))$.

Proof. (Cf. the proof of Claim 4.3.) If D is a compressing disk of S in $V_f(K_f; m/(2n)), \pi'^{-1}(D)$ consists of two compressing disks of $T - \operatorname{int} N(C)$ in V(K; m/n). However T is incompressible, so each component of $\pi'^{-1}(\partial D)$

bounds a disk in T which meets C. Since $C = \text{Fix}(\bar{f})$, each such disk is preserved by \bar{f} . This contradicts that \bar{f} exchanges the components of $\pi'^{-1}(D)$.

In the following we write $M = V_f - \operatorname{int} N(K_f)$, which is hyperbolic (Proposition 2.1).

Isotoping S so as to minimize $q_S = |S \cap K_f^*|$, we obtain an essential (i.e., incompressible and boundary-incompressible) planar surface $P_S = S \cap M$ in M. Since q_S is even and $(K; m/n) - \operatorname{int} N(K^*)$ is atoroidal, we have $q_S \ge 2$. Let D be a meridian disk of V_f such that $q_D = |D \cap K_f|$ is minimal. Then we have an essential planar surface $P_D = D \cap M$ in M. Since K has period 2, the linking number $lk(C_f, K_f) = lk(C, K)$ is odd, so q_D is odd. If $q_D = 1$, then K is a trivial knot or a composite knot, contradicting the hyperbolicity of K. Thus $q_D \ge 3$.

We define graphs in D and S as in [4] and introduce the concepts of (great) x-edge cycles and [x, x + 1]-Scharlemann cycles as in [16]. By an isotopy we may assume that ∂P_D and ∂P_S intersect in minimum number of points, and $P_D \cap P_S$ consists of loops and arcs which are essential in both P_D and P_S . We define Γ_D to be the graph in D such that its (fat) vertices are the disks $D \cap N(K_f)$ and its edges are the arc components e of $P_D \cap P_S$ with at least one endpoint of e in a fat vertex. Similarly, we define the graph Γ_S in S. An edge with one endpoint in ∂D or ∂S is a boundary edge.

Number the fat vertices of Γ_D (resp. Γ_S) 1, 2, ..., q_D (resp. 1, 2, ..., q_S) in the order of appearence on K_f (resp. K_f^*). We next define a sign of a vertex of Γ_D to be the sign of the corresponding intersection point of K_f with D with respect to some chosen orientations of D, K_f and M. Similarly, give a sign to each vertex of Γ_S . An edge of Γ_α ($\alpha = D, S$) joining vertices of Γ_α with the same sign is a *positive edge*, and an edge joining the opposite signs is a *negative edge*.

Let p be some edge's endpoint at a fat vertex of Γ_D labelled x. Then p is in the boundary of some fat vertex of Γ_S labelled y (say). We label the edge-endpoint at the fat vertex x with y. Around each fat vertex of Γ_D the edge-endpoint labels occur in order $1, 2, \ldots, q_S, \ldots, 1, 2, \ldots, q_S$ repeated 2|n| times; the ordering is, without loss of generality, anticlockwise (resp. clockwise) at a positive (resp. negative) vertex. Label edge-endpoints at fat vertices of Γ_S , similarly. An edge with label x at one endpoint is an x-edge.

For a subgraph σ of Γ_D (resp. Γ_S), we call components of $D - \sigma$ (resp. $S - \sigma$) faces of σ . For a face P of a subgraph $\sigma \subset \Gamma_\alpha$ ($\alpha = D$ or S), ∂P denotes the subgraph of σ which consists of vertices and edges of σ meeting the closure of P in α . A subgraph σ of Γ_α is an *x*-edge cycle if its edges are positive *x*-edges, and there is a disk face P of σ such that $\sigma = \partial P$. Furthermore, if all the vertices of Γ_α in P have the same sign as the vertices of σ , then σ is a great *x*-edge cycle. A Scharlemann cycle is

an x-edge cycle for some label x which bounds a disk face of Γ_{α} . In our setting Γ_{α} does not contain a Scharlemann cycle with only one edge. Note that a Scharlemann/x-edge cycle σ is not necessarily a "cycle", i.e., σ with its vertices regarded as points may not be homeomorphic to a circle; see Figure 5.2. The above definition of a Scharlemann cycle is a mild extension of the definition by Gordon and Luecke [4], but the same as in Gordon [8]. We orient a Scharlemann cycle $\sigma \subset \Gamma_{\alpha}$ anticlockwise (resp. clockwise) if the sign of the vertices of σ is positive (resp. negative). Then, if an edge of σ has a label x at its tail, then its head has the label $x + 1 \pmod{q_{\alpha}}$. (Cf. Figure 5.2.) We say that σ is a Scharlemann cycle for the interval [x, x + 1], or simply [x, x + 1]-Scharlemann cycle.

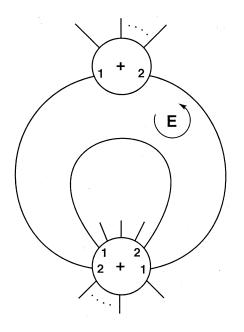


Figure 5.2.

Lemma 5.4. The graph Γ_S does not contain a Scharlemann cycle.

Proof. If Γ_S contains a Scharlemann cycle, then by [8, Theorem 4.1] we have a lens space summand in the solid torus V_f . This is a contradiction.

Lemma 5.5. If the graph Γ_D contains Scharlemann cycles for distinct intervals, then $(K_f; m/(2n))$ has at least two lens space summands.

Proof. Let σ_i be $[x_i, y_i]$ -Scharlemann cycles for i = 1, 2 such that $[x_1, y_1] \neq [x_2, y_2]$. Let $E_i \subset D$ be the disk face of σ_i . Then E_i is disjoint from the separating 2-sphere $\hat{S} = T/\langle \bar{f} \rangle$ in $(K_f; m/(2n))$. There are three possibilities:

 $\{x_1, y_1\} \cap \{x_2, y_2\}$ is empty, consists of one element, or two elements. (The last case occurs only when $q_S = 2$, $[x_1, y_1] = [1, 2]$ and $[x_2, y_2] = [2, 1]$.) Except for the first case, E_1 and E_2 are contained in the opposite sides of \widehat{S} , thus $(K_f; m/(2n))$ contains two disjoint punctured lens spaces by [8, Theorem 4.1].

Assume the first case happens. We consider the subgraph $\hat{\sigma}_i$ of Γ_S consisting of two vertices of labels x_i , y_i and the edges of σ_i . Then $\hat{S} - \hat{\sigma}_1$ consists of open disks; $\hat{\sigma}_2$ is contained in one of such disks because $\hat{\sigma}_1 \cap \hat{\sigma}_2 = \emptyset$. Hence we can choose disjoint disks D_1 and D_2 so that $\hat{\sigma}_i$ lies in D_i . Thus there are two disjoint punctured lens spaces in $(K_f; m/(2n))$.

Remark. Since *m* is assumed to be odd, $H_1((K_f; m/(2n)))$ has odd order. This implies that each Scharlemann cycle in Γ_D has an odd number of edges.

Lemma 5.6 ([15, Proposition 5.1]). If Γ_{α} contains a great x-edge cycle σ , then the disk face of σ contains a Scharlemann cycle.

Claim 5.7. Γ_S contains at most $q_D(q_S + 2)/2$ positive edges.

Proof. First we show that Γ_S contains at most $q_S + 2$ positive x-edges for every label x. Let x be an arbitrary label of fat vertices of Γ_D . Let Λ be the subgraph of Γ_S consisting of all positive x-edges and all vertices of Γ_S . (The graph Λ may have an isolated vertex.) Note that if Λ has a disk face, its boundary is a great x-edge cycle of Γ_S . Let f_d be the number of disk faces of Λ . Applying Euler's formula to the graph Λ on S, we have $q_S - k + \Sigma \chi$ (face) = $\chi(S) = -2$, where k is the number of edges of Λ . Thus if $k \ge q_S + 3$, then $f_d \ge \Sigma \chi$ (face) ≥ 1 , so that Γ_S contains a great x-edge cycle. Hence, Γ_S contains a Scharlemann cycle by Lemma 5.6. This contradicts Lemma 5.4.

Assume for a contradiction that Γ_S contains more than $q_D(q_S + 2)/2$ positive edges. Then the number of their endpoints is more than $q_D(q_S + 2)$. By the parity rule [4, §2.5] every positive edge has distinct labels at its two endpoints. Since there are q_D kinds edge-endpoint labels in Γ_S , there are more than $q_S + 2$ positive *x*-edges for some label *x*. This contradicts what we show above.

Claim 5.8. If Γ_D has at least $(q_D-1)q_S$ positive edges, then Γ_D has Scharlemann cycles for distinct intervals.

Proof. We first show that Γ_D contains at least $q_D - 1$ Scharlmann cycles by the arguments in the proof of Claim 5.7 or [16, Lemmas 4.5, 4.6]. In fact, using the arguments in the second paragraph of the proof of Claim 5.7, we see that Γ_D has at least $2(q_D - 1)$ positive x-edges for some label x. Then, as in the first paragraph of the proof, apply Euler's formula to the graph Λ on Dconsisting of all vertices of Γ_D and all positive x-edges of Γ_D . It follows that the Euler number of the faces of Λ is at least $\chi(D) - q_D + 2(q_D - 1) = q_D - 1$. This implies that Γ_D contains at least $q_D - 1$ great *x*-edge cycles bounding mutually disjoint disk faces. The claimed result then follows from Lemma 5.6.

Following the proof of [10, Theorem 2.3] ([16, Lemma 4.4]), we find Scharlemann cycles for distinct intervals. Assume for a contradiction that Γ_D contains Scharlemann cycles only for the interval (say) [x, x+1]. Let k be the number of Scharlemann cycles in Γ_D . As in Figure 8 in [16], we form a dual graph $\Lambda \subset D$ for Scharlemann cycles. First take one dual (fat) vertex in the disk face of each Scharlemann cycle in Γ_D , and then draw edges from each dual vertex to the vertices of the corresponding Scharlemann cycle. The vertices of Λ consist of q_D vertices of Γ_D and k dual vertices; the edges of Λ consist of the edges defined above. We apply Euler's formula to the graph Λ in D. The number of the vertices is $q_D + k$; the number of the edges is at least 3k by Remark after the proof of Lemma 5.5. It follows that the Euler number of the faces of Λ is at least $\chi(D) - (q_D + k) + 3k = 2k + 1 - q_D \ge q_D - 1 > 0$. This implies that there is a disk face of Λ , which contains a great x-edge cycle of Γ_D as shown in [16, Figure 9] and thus a Scharlemann cycle (Lemma 5.6). Hence, Γ_D contains more than k Scharlemann cycles, a contradiction.

Proof of Lemma 5.2. Since each component of ∂S is a longitude of V_f , the graph Γ_S has at most four boundary edges. Each vertex of Γ_S has $|2n|q_D(\geq 4q_D)$ edge-endpoints; Γ_S has at most $q_D(q_S + 2)/2$ positive edges (Claim 5.7). Thus, the number of endpoints of the negative edges of Γ_S is at least

$$4q_Dq_S - 4 - q_D(q_S + 2) = 3q_Dq_S - 2q_D - 4 = 2(q_D - 1)q_S + (q_S - 2)q_D + 2q_S - 4.$$

Since $q_S \geq 2$, this number is greater than or equal to $2(q_D - 1)q_S$. By the parity rule Γ_D then has at least $(q_D - 1)q_S$ positive edges. Hence Γ_D contains Scharlemann cycles for distinct intervals (Claim 5.8). Lemma 5.2 now follows from Lemma 5.5.

References

- [1] M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, preprint.
- [2] S. Boyer and X. Zhang, The semi-norm and Dehn filling, Ann. Math., 148 (1998), 737-801.
- [3] D. Cooper, C. Hodgson and S. Kerckhoff, Geometric structures and symmetries of 3-manifolds, Lecture series given at the Third MSJ Regional Workshop on Cone-Manifolds and Hyperbolic Geometry, July 1-10, 1998, Tokyo Institute of Technology, Tokyo, Japan.
- [4] M. Culler, C. McA. Gordon, J. Luecke and P.B. Shalen, *Dehn surgery on knots*, Ann. Math., **125** (1987), 237-300.

- [5] M. Eudave-Muñoz, Non-hyperbolic manifolds obtained by Dehn surgery on a hyperbolic knot, in 'Studies in Advanced Mathematics', 2, part 1, (ed. W. Kazez), 1997, Amer. Math. Soc. and International Press, 35-61.
- [6] D. Gabai, Foliations and the topology of 3-manifolds, III, J. Diff. Geom., 26 (1987), 479-536.
- [7] _____, Convergence groups are Fuchsian groups, Ann. Math., 136 (1992), 447-510.
- [8] C. McA. Gordon, Combinatorial methods in Dehn surgery, in 'Lectures at Knots '96, Series on knots and everything', 15 (ed. S. Suzuki), World Scientific, 263-290.
- [9] C. McA. Gordon and J. Luecke, Only integral Dehn surgery can yield reducible manifolds, Math. Proc. Camb. Phil. Soc., 102 (1987), 97-101.
- [10] _____, Reducible manifolds and Dehn surgery, Topology, **35** (1996), 385-409.
- [11] _____, Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., 4 (1995), 597-644.
- [12] _____, Dehn surgeries on knots creating essential tori, II, Comm. Anal. Geom., to appear.
- [13] _____, Toroidal and boundary-reducing Dehn fillings, Topol. Appl., 93 (1999), 77-90.
- [14] C. Hayashi, On tangle decompositions of super simple knots, Master Thesis, University of Tokyo, 1992.
- [15] C. Hayashi and K. Motegi, Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc., 349 (1997), 4465-4479.
- [16] _____, Dehn surgery on knots in solid tori creating essential annuli, Trans. Amer. Math. Soc., **349** (1997), 4897-4930.
- [17] C. Hayashi and K. Shimokawa, Symmetric knots satisfy the cabling conjecture, Math. Proc. Camb. Phil. Soc., 123 (1998), 501-529.
- [18] W.H. Holzmann, An equivariant torus theorem for involutions, Trans. Amer. Math. Soc., 326 (1991), 887-906.
- [19] W.H. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math., 86 (1986), 287-346.
- [20] W.H. Meeks and S.-T. Yau, Equivariant Dehn's lemma and loop theorem, Comment. Math. Helv., 56 (1981), 225-239.
- [21] K. Miyazaki and K. Motegi, Seifert fibered manifolds and Dehn surgery, III, Comm. Anal. Geom., 7 (1999), 551-582.
- [22] J. Morgan and H. Bass (eds.), The Smith conjecture, Academic Press, 1984.
- [23] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology, 29 (1990), 481-500.
- [24] H. Short, Some closed incompressible surfaces in knot complements which survive surgery, in 'Low dimensional topology', London Math. Soc. Lect. Notes Ser., 95 (1985), Cambridge Univ. Press, 179-194.
- [25] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1979.
- [26] _____, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.

[27] Y.-Q. Wu, Dehn surgery on arborescent knots, J. Diff. Geom., 43 (1997), 171-197.

Received July 24, 1998. The first author was supported in part by Grant-in-Aid for Scientific Research (No. 10640091), Ministry of Education, Science and Culture. The second author was supported in part by Grant-in-Aid for Encouragement of Young Scientists (No. 09740074), Ministry of Education, Science and Culture.

Tokyo Denki University College of Humanities & Sciences 2-2 Kanda-Nishikicho Nihon University Tokyo 101 Japan *E-mail address*: miyazaki@cck.dendai.ac.jp Nihon University Sakurajosui 3-25-40, Setagaya-Ku Tokyo 156 Japan

E-mail address: motegi@math.chs.nihon-u.ac.jp