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We show that r-Dehn surgery on a hyperbolic, periodic
knot K with period p > 2 yields a hyperbolic manifold unless
p = 3, r = 0 and the genus of K is one. Regarding hyperbolic,
periodic knots with period 2, we show that only integral Dehn
surgeries can yield toroidal manifolds.

1. Introduction.

A 3-manifold is toroidal if it contains an essential torus, i.e., an incompress-
ible torus not parallel to a boundary component. A knot K in S3 is called
a periodic knot with period p if there is a homeomorphism f : S3 → S3 such
that f(K) = K, Fix(f)∩K = ∅, and Fix(f) is a circle. We call f a periodic
map of K. For a knot K in a 3-manifold M ⊂ S3 we denote by M(K; r)
the manifold obtained by r-Dehn surgery of M on K, where r ∈ Q∪ {1/0};
if M = S3, simply we denote M(K; r) by (K; r).

The hyperbolic Dehn surgery theorem of Thurston [25] shows that for
hyperbolic knots K, (K; r) is non-hyperbolic only for finitely many r ∈ Q.
In this paper we consider when Dehn surgery on a hyperbolic, periodic knot
yields a non-hyperbolic, in particular toroidal, manifold. For example, the
figure eight knot 41, which has period 2, has exactly 10 surgeries producing
non-hyperbolic manifolds [25]; if (41; r) is toroidal, then r = 0,±4.

Theorem 1.1. If K is a hyperbolic, periodic knot with period 2 and (K; r)
is toroidal, then r is an integer.

Remark. Gordon and Luecke proved that the denominator of a toroidal
surgery slope is at most two for hyperbolic knots [11], and furthermore if
the denominator is two then the knot is strongly invertible [12]. Eudave-
Muñoz [5] constructed an infinite family of strongly invertible hyperbolic
knots having non-integral, toroidal surgeries. Theorem 1.1 shows that none
of his knots has period 2.

Then, does a hyperbolic, periodic knot with period greater than 2 have
a non-hyperbolic Dehn surgery? Our answer is “no except for a special
case” (Corollary 1.4). Before giving the statement let us review what non-
hyperbolic manifolds are like. Each of the following cases is an obstruction
to a closed orientable manifold M being hyperbolic:
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(1) M is reducible;
(2) M is a Seifert fibered manifold with a finite fundamental group;
(3) π1(M) has a subgroup isomorphic to Z× Z.

In 1981, Thurston announced the Symmetry Theorem [26]: If M admits an
action by a finite group G such that a fixed point set of some nontrivial ele-
ment of G has dimension at least one, then M has a G-invariant geometric
decomposition such that G acts on each piece by isometries. The theorem
implies that (1)-(3) are the only obstructions to such M being hyperbolic.
Recently, the Symmetry Theorem is proved in the case when the union of
fixed point sets of nontrivial elements of G is a 1-manifold by Cooper, Hodg-
son and Kerckhoff [3], and Boileau and Porti [1]; this case of the theorem
is what we need and referred to below as the Symmetry Theorem. On the
other hand, if M is irreducible, condition (3) implies (3′) below [7, Corollary
8.6].

(3′) M is either toroidal or a Seifert fibered manifold with an infinite fun-
damental group.

If K is a hyperbolic, periodic knot, (K; r) does not fall under case (1) by
the Cabling Conjecture for symmetric knots (Hayashi and Shimokawa [17],
Gordon and Luecke). Since the periodic map of K extends to a periodic
map on (K; r), the Symmetry Theorem applies to (K; r). Regarding (2)
and (3′), the authors proved that:

Theorem 1.2 ([21, Theorem 1.5 and Proposition 5.6]). If K is a hyper-
bolic, periodic knot with period greater than 2, then (K; r) is not Seifert
fibered for any r ∈ Q. (Without using the Symmetry Theorem we show that
M is not a Seifert fibered manifold with an infinite fundamental group.)

Without assuming the Symmetry Theorem, we shall prove:

Theorem 1.3. Let K be a hyperbolic, periodic knot with period p > 2. Then
(K; r) is toroidal if and only if p = 3, r = 0, and the genus of K is one.

Remark. The (3, 3, 3) pretzel knot is an example of a genus one, hyperbolic,
periodic knot with period 3.

Theorems 1.2 and 1.3 preclude the possibility of cases (2) and (3′). Then
the Symmetry Theorem implies that:

Corollary 1.4. Let K be a hyperbolic, periodic knot with period p > 2.
Then (K; r) is hyperbolic for any r ∈ Q except when p = 3, r = 0, and the
genus of K is one.

The if part of Theorem 1.3 is proved below. The only if part is proved in
§§3, 4. Theorem 1.1 is proved in §5 by graph-theoretic arguments.

Proof of the if part of Theorem 1.3. If K has an incompressible Seifert surface
of genus one, then (K; 0) contains a non-separating torus obtained from the
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Seifert surface by attaching a meridian disk of the glued solid torus. Gabai
[6] shows that such a torus is incompressible. �

2. Preliminaries.

2.1. Dehn surgery on a factor knot.
Let K be a periodic knot, and f a periodic map of K with period p.

Set C = Fix(f), which is a trivial knot in S3 by the positive solution to
the Smith Conjecture [22]. Then f induces the p-fold cyclic covering π
from S3 to the quotient space S3/〈f〉 = S3 branched along the trivial knot
Cf = π(C). We denote the factor knot π(K) by Kf . Dehn surgeries on K
and Kf are related as follows.

Take an f -invariant tubular neighborhood N(K) of K. We can extend
f |S3 − intN(K) over (K;m/n) periodically. Denote by f̄ the resulting
periodic map on (K;m/n); the period of f̄ is p. We may assume that
f̄ preserves the core K∗ of the reglued solid torus. Note that for any
0 < i < p, Fix(f̄ i) is either C or C ∪K∗. The projection π′ : (K;m/n) →
(K;m/n)/〈f̄〉 is a p-fold cyclic branched covering. Then (K;m/n)/〈f̄〉 is
identified with (Kf ;m/(np)) such that π′(K∗) is a core of the reglued solid
torus in (Kf ;m/(np)). So denote π′(K∗) = K∗

f ; see Diagram 2.1.

K −→ Kf

∩ ∩
S3 π−→ S3/〈f〉 = S3y ↘

(K; m
n ) π′

−→ (K; m
n )/〈f̄〉 = (Kf ; m

np)
∪ ∪

K∗ −→ K∗
f

Diagram 2.1. The vertical and the slanted arrows mean Dehn surgeries.

Now choosing an f -invariant tubular neighborhood N(C) of C, set V =
S3−intN(C) and Vf = V/〈f〉 = S3 − intN(Cf ). Just as above a Dehn
surgery of V on K and that of Vf on Kf are related (Diagram 2.2).

V
π−→ V/〈f〉 = Vfy ↘

V (K; m
n ) π′

−→ V (K; m
n )/〈f̄〉 = Vf (Kf ; m

np)

Diagram 2.2. The vertical and the slanted arrows mean Dehn surgeries.

Suppose K ⊂ V is a hyperbolic knot. Since π : V −K → Vf −Kf is an
unbranched covering, Vf −Kf is neither toroidal nor Seifert fibered. Thus
Kf is hyperbolic in Vf [22]. In the next subsection, we shall show that this
hypothesis is satisfied if K is hyperbolic in S3.
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2.2. Hyperbolic, periodic knots.

Proposition 2.1. Let K ⊂ S3 be a hyperbolic, periodic knot. Let C =
Fix(f), where f is a periodic map of K. Then K ∪C is a hyperbolic link in
S3.

Proof. N(K) and N(C) denote disjoint tubular neighborhoods of K and C
which are preserved by f , respectively. Set V = S3−intN(C), an unknotted
solid torus. Let T be a characteristic family of tori for V−intN(K) whose
union is invariant under f [19, Theorem 8.6]. It suffices to prove T = ∅.
Note that since K ⊂ S3 is hyperbolic, any torus in T is compressible in
S3 −K; in particular, any compressing disk meets C.

Assume for a contradiction that there is a torus in T which separates
∂N(K) and ∂V . Among such tori let T be the one closest to ∂V . Let V ′

be the solid torus in V such that ∂V ′ = T . Note f(V ′) = V ′, and T = ∂V ′

is compressible in S3 − K. It follows that V ′ is unknotted in S3. By the
equivariant loop theorem [20] there is a meridian disk D of S3 − intV ′ such
that f(D) = D or f(D)∩D = ∅. Since C∩D 6= ∅, we have f(D) = D. Hence,
D meets C = Fix(f) in a single point. This together with the unknottedness
of C in S3 shows that C is a core of the unknotted solid torus S3− intV ′. A
core of V ′ and C then form a Hopf link, so that T and ∂V bounds T 2 × I.
This contradicts the minimality of T .

Hence, if T 6= ∅, each torus in T would not separate ∂N(K) and ∂V .
Let T be a torus in T such that the manifold E ⊂ V−intN(K) bounded by
T does not contain a torus in T − {T}. Then for any i either f i(E) = E
or f i(E) ∩ E = ∅. Set X = S3 − int(N(K) ∪

⋃
i≥0 f i(E)). Since T is

compressible in S3 −K, T is compressible in S3 − int(N(K) ∪E) and thus
in X. Let D be a compressing disk for T ⊂ X such that f(D) = D or
f(D)∩D = ∅ [20]. Just as above, the fact C ∩D 6= ∅ implies that D meets
C in a single point. Hence C winds around the knotted solid torus S3− intE
geometrically once, which contradicts that C is unknotted in S3. �

3. Proof of Theorem 1.3: Case when (m, p) = 1 or p.

In this section and the next, we prove the only if part of Theorem 1.3.
Let K be a hyperbolic, periodic knot, and f a periodic map of K with

period p > 2. We use the notation in §2.1 in what follows.
Assume that (K;m/n) is toroidal. Note that (K;m/n) is irreducible and

not Seifert fibered (Theorem 1.2). By the equivariant torus decomposition
theorem [19], (K;m/n) contains an incompressible torus T such that for
any i, f̄ i(T ) = T or f̄ i(T ) ∩ T = ∅. By rechoosing T , if necessary, the
〈f̄〉-equivariant torus T meets C ∪ K∗ transversely, and N(C) and N(K∗)
in (possibly empty) meridian disks. Note T ∩K∗ 6= ∅.

The proof is divided into three cases: (1) (m, p) = 1, (2) (m, p) = p,
(3) 1 < (m, p) < p, where (m, p) is the greatest common divisor of m and p.
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The first two cases are dealt with in this section. Cases 1 and 3 will lead to
contradictions.

Case 1. (m, p) = 1; then Fix(f̄ i) = C for 0 < i < p.

Claim 3.1. T ∩ C = ∅.

Proof. Assume that T intersects C in k(> 0) points. Then f(T ) = T .
Moreover, since f fixes C pointwise, f̄ preserves the orientation of T , and
thus T/〈f̄〉 is an orientable surface. The assumption (m, p) = 1 implies
m 6= 0, and then any closed orientable surface in (K;m/n) is separating.
Thus k is even. The projection π′ : T → T/〈f̄〉 = π′(T ) is a p-fold cyclic
branched covering along k branch points of index p. The Riemann-Hurewitz
formula gives

0 = χ(T ) = p

(
χ(π′(T ))− k

(
1− 1

p

))
.(1)

It follows χ(π′(T )) > 0. Since π′(T ) is a closed, orientable surface, χ(π′(T ))
must be 2. Hence, 2 = k(1 − 1/p). We then obtain (p − 1)(k − 2) = 2.
The solution sets in positive integers are (k, p) = (3, 3), (4, 2). The former
contradicts the fact that k is even; the latter does the assumption p > 2. �

By Claim 3.1 π′ : T → π′(T ) is an unbranched covering, thus π′(T ) is a
Klein bottle or a torus. Hence, the m/(np)-surgery of the solid torus Vf on
Kf contains a Klein bottle or a torus. Note that Kf is a hyperbolic knot
in Vf , for K is hyperbolic in V (Proposition 2.1). Then, if π′(T ) is a Klein
bottle, by [11] |np| = 1. This contradicts p > 1. It follows that π′(T ) is a
torus. The fact that π′ : V (K;m/n) → Vf (Kf ;m/(np)) is an unbranched
covering implies that π′(T ) is an essential torus in Vf (Kf ;m/(np)). For
hyperbolic knots in S3, Gordon and Luecke [11] proved that the denomina-
tor of a toroidal surgery slope is at most 2. As pointed out in [13], their
proof works also for hyperbolic knots in a solid torus. Hence |np| ≤ 2, a
contradiction.

Case 2. (m, p) = p; then Fix(f̄ i) = C ∪K∗ for 1 < i < p.
Let k = |T ∩ (C ∪ K∗)|. The projection π′ : T → T/〈f̄〉 is a p-fold

cyclic branched covering along k branch points of index p. As in Case 1 we
obtain Equation (1), and the relevant solution set is (k, p) = (3, 3). This
implies that T intersects C or K∗ in an odd number of points, so T is a
non-separating incompressible torus in (K;m/n). By considering the first
homology group we see m = 0. [6, Corollary 8.3] shows if (K; 0) contains
such a torus, then the genus of K is one as desired.
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4. Proof of Theorem 1.3: Case when 1 < (m, p) < p.

In this case, Fix(f̄) = C, f̄ |K∗ has period p/(m, p), and f̄ |S3−intN(K∗∪C)
has period p. Note that (K;m/n) and (Kf ;m/(np)) do not contain non-
separating closed surfaces because m 6= 0. Set n1 = |T ∩ C| and n2 =
|T ∩K∗|. Then ni are even numbers, and n2 > 0.

Subcase 1. T ∩ C 6= ∅.
Then f̄

p
(m,p) |T has n1 + n2 fixed points. This implies that π′ : T →

T/〈f̄〉 = π′(T ) is a p-fold cyclic branched covering along n1 branch points
of index p and n2(m, p)/p branch points of index (m, p). Note n2(m, p)/p =
|π′(T ) ∩K∗

f |.

Claim 4.1. n1 = n2 = 2.

Proof. The Riemann-Hurewitz formula to the covering above gives:

0 = χ(T ) = p

(
χ(π′(T ))− n1

(
1− 1

p

)
− n2(m, p)

p

(
1− 1

(m, p)

))
.(2)

As in the proof of Claim 3.1, we obtain χ(π′(T )) = 2. It follows:

2 = n1

(
1− 1

p

)
+

n2(m, p)
p

(
1− 1

(m, p)

)
.(3)

The right hand side of (3) is greater than n1/2, therefore 4 > n1. Since
n1(> 0) is even, n1 = 2 as claimed.

Multiplying (3) by p and substituting n1 = 2, we obtain 2p = 2p − 2 +
n2(m, p) − n2. Thus 2 + n2 = n2(m, p) ≥ 2n2. It follows that the even
number n2 must be 2. �

Since (m, p) < p, we have n2(m, p)/p < n2 = 2. Hence n2(m, p)/p = 1.
This implies that the 2-sphere π′(T ) in (Kf ;m/(np)) meets K∗

f in a single
point, a contradiction.

Subcase 2. T ∩ C = ∅.
Then the closed surface π′(T ) is contained in Vf (Kf ;m/(np)).

Claim 4.2. (1) π′(T ) is a 2-sphere.
(2) K∗

f meets π′(T ) in 4 points.

Proof. Let i be the least positive integer such that f̄ i(T ) = T ; then π′ :
T → T/〈f̄ i〉 = π′(T ) is a p/i-fold cyclic branched covering along in2(m, p)/p
branch points of index (m, p). For simplicity set k = in2(m, p)/p. We then
have:

0 = χ(T ) =
p

i

(
χ(π′(T ))− k

(
1− 1

(m, p)

))
.(4)
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This shows χ(π′(T )) > 0, so π′(T ) is RP 2 or S2. If the orientable manifold
Vf (Kf ;m/(np)) contains RP 2, it has a RP 3 factor in its prime decomposi-
tion. This is absurd because no surgery on a hyperbolic knot in a solid torus
yields a reducible manifold [23]. Therefore π′(T ) is a 2-sphere as claimed.

Letting χ(π′(T )) = 2 in (4), we obtain 2 = k(1−1/(m, p)). The right hand
side is smaller than k and greater than or equal to k/2, so that 2 < k ≤ 4.
Since k = |π′(T ) ∩K∗

f | is even, it must be 4. �

Claim 4.3. The 2-sphere π′(T ) in Vf (Kf ;m/(np)) gives an essential tangle
decomposition (defined below) of K∗

f .

Definition. Let K be a knot in a 3-manifold M . A separating 2-sphere
Ŝ ⊂ M gives an essential tangle decomposition of K if Ŝ meets K in 4 points
and S = Ŝ−intN(K) is incompressible in M−intN(K). Note that such an
S is boundary-incompressible in M−intN(K).

Proof. By Claim 4.2 it suffices to see S = π′(T )−intN(K∗
f ) is incompressible

in Vf (Kf ;m/(np)) − intN(K∗
f ). Assume for a contradiction that S has a

compressing disk D. Under the unbranched cyclic covering π′ : V (K;m/n)−
intN(K∗) → Vf (Kf ;m/(np)) − intN(K∗

f ), π′−1(D) consists of disks. Since
T is incompressible in V (K;m/n), each component of π′−1(∂D)∩T bounds
a unique disk in T which meets K∗. Let ∆ be an innermost one among such
disks. Recall f̄ |K∗ has period p/(m, p). Then g = f̄

p
(m,p) preserves ∆, and

thus g(∂∆) = ∂∆. This contradicts that f̄ permutes the p components of
π′−1(D) cyclically. �

The following proposition is essentially proved in Wu [27, Theorem 4.4].
We say that a Dehn surgery on a knot K is integral if the surgery slope on
∂N(K) meets a meridian of K in a single point.

Proposition 4.4. Let K be a knot in an irreducible 3-manifold M . Suppose
that K ⊂ M admits an essential tangle decomposition. Then M − intN(K)
contains an incompressible, closed orientable surface of genus 1 or 2 which
remains incompressible after any non-integral, nontrivial surgery on K ⊂
M .

In our setting, M = Vf (Kf ;m/(np)) is irreducible by [23], and K∗
f ⊂ M

admits an essential tangle decomposition. The solid torus Vf = Vf (Kf ; 1/0)
contains no incompressible closed surface. But the 1/0-slope of Kf ⊂ Vf

does not meet a meridian of K∗
f ⊂ M in a single point by

∣∣∣∣ 1 m/(m,np)
0 np/(m,np)

∣∣∣∣=
np/(m,np) = np/(m, p) 6= ±1. This contradicts Proposition 4.4. Hence,
Subcase 2 does not occur (Theorem 1.3). �
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Proof of Proposition 4.4. Let Ŝ be a 2-sphere giving an essential tangle
decomposition of K ⊂ M , and set S = Ŝ−intN(K). Let B be a 3-ball in M

bounded by Ŝ, and let B ∩K = t1 ∪ t2, two arcs properly embedded in B.
If E = B−intN(t1 ∪ t2) contains an incompressible torus F , then it is

incompressible in M−intN(K). Assume for a contradiction that F com-
presses after a non-integral, nontrivial surgery on K ⊂ M . We can apply
[4, Theorem 2.4.4] after cutting M−intN(K) along F . Then we obtain an
annulus A ⊂ M − intN(K) such that ∂A consists of an essential loop on
F and a longitude of ∂N(K). Isotop A so as to meet S transversely and
to minimize |A ∩ S|. Each component of A ∩ S is an arc whose ends are
in the longitude. An outermost disk of the components of A − S is then
a boundary-compressing disk for S. This contradicts the definition of an
essential tangle decomposition. Hence, we may assume that E does not
contain an incompressible torus.

Claim 4.5 (Hayashi [14]). M−intN(K) contains an incompressible, closed
orientable surface F of genus 2 which has a compressing disk in M inter-
secting K in a single point.

By applying [4, Lemma 2.5.3] or the arguments in [24] to M−intN(K)
cut along F , it follows that F remains incompressible after any non-integral,
nontrivial surgery on K ⊂ M . This completes the proof of Proposition
4.4. �

Proof of Claim 4.5. The arcs ti (i = 1, 2) are attached to Ŝ such that
ti ∩ Ŝ = ∂ti. First surger Ŝ along a 1-handle N(ti) attached to Ŝ; we obtain
a torus meeting K in 2 points. Then surger the torus along a 1-handle
N(K − tj) where i 6= j. Let Fi (i = 1, 2) be the resulting closed surface
of genus 2; see Figure 4.1. A cocore D of the 1-handle N(K − tj) is a
compressing disk for Fi ⊂ M meeting K in a single point, as desired.

The closed surface Fi splits M−intN(K) into two components. Let X be
the one containing ∂N(K), and Y the other. To prove the claim it suffices to
see that either F1 or F2 is incompressible in both X and Y . If Fi compresses
in X, the intersection of the compressing disk and D can be eliminated by a
cut and paste argument, so Fi− ∂D is compressible in X −D. This implies
that S surgered along ti is compressible in E = B−intN(t1 ∪ t2). However,
[27, Lemma 2.2] shows that for the atoroidal nontrivial tangle (B, t1 ∪ t2),
S surgered along ti is incompressible in E for i = 1 or 2. Hence, either F1

or F2 is incompressible in X.
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Figure 4.1.

Assume for a contradiction that there is a compressing disk ∆ for Fi ⊂ Y ,
where i = 1 or 2. Let A ⊂ Y be an annulus such that ∂A consists of
meridians of the 1-handles N(ti) and N(K − tj) (the shaded annulus in
Figure 4.1). By isotopy we may assume that ∆ meets A transversely in arcs.
Let ∆0 be the closure of an outermost component in ∆−A. If ∂∆0∩A is an
arc connecting distinct components of ∂A, then S is boundary-compressible
in M−intN(K), a contradiction. If ∂∆0 ∩ A is an arc connecting the same
component of ∂A, then Fi− ∂A is compressible in Y −A. This implies that
S is compressible in M−intN(K), a contradiction. �

5. Proof of Theorem 1.1.

Although Boyer and Zhang [2] showed the theorem when (K;m/n) is Seifert
fibered, we proceed without assuming their result.

Let K be a hyperbolic, periodic knot, and f a periodic map of K with
period 2. Assume that (K;m/n) is toroidal. If m is even, then [11] implies
that |n| = 1 as desired. In the following we assume that m is odd.

Lemma 5.1. There is an incompressible torus T in (K;m/n) meeting C =
Fix(f) = Fix(f̄) transversely such that f̄(T ) = T or f̄(T ) ∩ T = ∅.

Proof. The lemma follows from the equivariant torus theorem for involutions
[18, Corollary 4.6] unless (K;m/n) is a Seifert fibered manifold over S2 with
four exceptional fibers. If (K;m/n) is such a Seifert fibered manifold, first
choose an f̄ -invariant Seifert fibration p : (K;m/n) → B = S2 [19] (see also
[21, Lemma 5.4]). By [21, Proposition 5.1] C cannot be a fiber of (K;m/n);
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then f̄ preserves each fiber meeting C but reverses the orientation of it. It
follows that f̄ induces an orientation reversing involution, ϕ, of B which
fixes each point on p(C). Then, ϕ is a reflection about the embedded circle
p(C). Let l be a ϕ-invariant circle in B which meets p(C) transversely
and encloses two cone points in each side (Figure 5.1). Then p−1(l) is an
f̄ -invariant incompressible torus meeting C transversely. �

Figure 5.1.

Let T be the torus in Lemma 5.1.

Case 1. T ∩ C = ∅.
The argument in the paragraph just after the proof of Claim 3.1 shows

that |n| = 1.

Case 2. T ∩ C 6= ∅.

Lemma 5.2. If |n| ≥ 2, then (Kf ;m/(2n)) has two lens space summands.

Theorem 1.1 readily follows from this lemma. If |n| ≥ 2, then by Lemma
5.2 the non-integral surgery (Kf ;m/(2n)) would be reducible, contradicting
[9, Theorem 1] (Theorem 1.1). �

The rest of this section is devoted to proving Lemma 5.2 by graph-
theoretic technique. The arguments are variants of those in Hayashi and
Motegi [16, §4].

From the argument in the proof of Claim 3.1, T/〈f̄〉 ∼= S2 and T meets
C in four points. Consider the unbranched covering π′ : V (K;m/n) →
Vf (Kf ;m/(2n)). We set S = π′(T − intN(C)), a 2-sphere with four open
disks removed; S is properly embedded in Vf (Kf ;m/(2n)) with components
of ∂S preferred longitudes of Vf (⊂ S3). Since T is separating in (K;m/n),
T/〈f̄〉 is separating in (Kf ;m/(2n)) and hence S separates Vf (Kf ;m/(2n)).

Claim 5.3. S is essential in Vf (Kf ;m/(2n)).

Proof. (Cf. the proof of Claim 4.3.) If D is a compressing disk of S in
Vf (Kf ;m/(2n)), π′−1(D) consists of two compressing disks of T − intN(C)
in V (K;m/n). However T is incompressible, so each component of π′−1(∂D)
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bounds a disk in T which meets C. Since C = Fix(f̄), each such disk
is preserved by f̄ . This contradicts that f̄ exchanges the components of
π′−1(D). �

In the following we write M = Vf−intN(Kf ), which is hyperbolic (Propo-
sition 2.1).

Isotoping S so as to minimize qS = |S ∩K∗
f |, we obtain an essential (i.e.,

incompressible and boundary-incompressible) planar surface PS = S ∩M in
M . Since qS is even and (K;m/n)− intN(K∗) is atoroidal, we have qS ≥ 2.
Let D be a meridian disk of Vf such that qD = |D ∩Kf | is minimal. Then
we have an essential planar surface PD = D ∩M in M . Since K has period
2, the linking number lk(Cf ,Kf ) = lk(C,K) is odd, so qD is odd. If qD = 1,
then K is a trivial knot or a composite knot, contradicting the hyperbolicity
of K. Thus qD ≥ 3.

We define graphs in D and S as in [4] and introduce the concepts of
(great) x-edge cycles and [x, x + 1]-Scharlemann cycles as in [16]. By an
isotopy we may assume that ∂PD and ∂PS intersect in minimum number of
points, and PD ∩ PS consists of loops and arcs which are essential in both
PD and PS . We define ΓD to be the graph in D such that its (fat) vertices
are the disks D ∩N(Kf ) and its edges are the arc components e of PD ∩PS

with at least one endpoint of e in a fat vertex. Similarly, we define the graph
ΓS in S. An edge with one endpoint in ∂D or ∂S is a boundary edge.

Number the fat vertices of ΓD (resp. ΓS) 1, 2, . . . , qD (resp. 1, 2, . . . , qS)
in the order of appearence on Kf (resp. K∗

f ). We next define a sign of a
vertex of ΓD to be the sign of the corresponding intersection point of Kf

with D with respect to some chosen orientations of D,Kf and M . Similarly,
give a sign to each vertex of ΓS . An edge of Γα (α = D,S) joining vertices
of Γα with the same sign is a positive edge, and an edge joining the opposite
signs is a negative edge.

Let p be some edge’s endpoint at a fat vertex of ΓD labelled x. Then
p is in the boundary of some fat vertex of ΓS labelled y (say). We label
the edge-endpoint at the fat vertex x with y. Around each fat vertex of ΓD

the edge-endpoint labels occur in order 1, 2, . . . , qS , . . . , 1, 2, . . . , qS repeated
2|n| times; the ordering is, without loss of generality, anticlockwise (resp.
clockwise) at a positive (resp. negative) vertex. Label edge-endpoints at fat
vertices of ΓS , similarly. An edge with label x at one endpoint is an x-edge.

For a subgraph σ of ΓD (resp. ΓS), we call components of D − σ (resp.
S − σ) faces of σ. For a face P of a subgraph σ ⊂ Γα (α = D or S),
∂P denotes the subgraph of σ which consists of vertices and edges of σ
meeting the closure of P in α. A subgraph σ of Γα is an x-edge cycle if
its edges are positive x-edges, and there is a disk face P of σ such that
σ = ∂P . Furthermore, if all the vertices of Γα in P have the same sign as
the vertices of σ, then σ is a great x-edge cycle. A Scharlemann cycle is
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an x-edge cycle for some label x which bounds a disk face of Γα. In our
setting Γα does not contain a Scharlemann cycle with only one edge. Note
that a Scharlemann/x-edge cycle σ is not necessarily a “cycle”, i.e., σ with
its vertices regarded as points may not be homeomorphic to a circle; see
Figure 5.2. The above definition of a Scharlemann cycle is a mild extension
of the definition by Gordon and Luecke [4], but the same as in Gordon [8].
We orient a Scharlemann cycle σ ⊂ Γα anticlockwise (resp. clockwise) if the
sign of the vertices of σ is positive (resp. negative). Then, if an edge of σ
has a label x at its tail, then its head has the label x + 1 (mod qα). (Cf.
Figure 5.2.) We say that σ is a Scharlemann cycle for the interval [x, x+1],
or simply [x, x + 1]-Scharlemann cycle.

Figure 5.2.

Lemma 5.4. The graph ΓS does not contain a Scharlemann cycle.

Proof. If ΓS contains a Scharlemann cycle, then by [8, Theorem 4.1] we have
a lens space summand in the solid torus Vf . This is a contradiction. �

Lemma 5.5. If the graph ΓD contains Scharlemann cycles for distinct in-
tervals, then (Kf ;m/(2n)) has at least two lens space summands.

Proof. Let σi be [xi, yi]-Scharlemann cycles for i = 1, 2 such that [x1, y1] 6=
[x2, y2]. Let Ei ⊂ D be the disk face of σi. Then Ei is disjoint from the
separating 2-sphere Ŝ = T/〈f̄〉 in (Kf ;m/(2n)). There are three posibilities:
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{x1, y1} ∩ {x2, y2} is empty, consists of one element, or two elements. (The
last case occurs only when qS = 2, [x1, y1] = [1, 2] and [x2, y2] = [2, 1].)
Except for the first case, E1 and E2 are contained in the opposite sides
of Ŝ, thus (Kf ;m/(2n)) contains two disjoint punctured lens spaces by [8,
Theorem 4.1].

Assume the first case happens. We consider the subgraph σ̂i of ΓS consist-
ing of two vertices of labels xi, yi and the edges of σi. Then Ŝ − σ̂1 consists
of open disks; σ̂2 is contained in one of such disks because σ̂1 ∩ σ̂2 = ∅.
Hence we can choose disjoint disks D1 and D2 so that σ̂i lies in Di. Thus
there are two disjoint punctured lens spaces in (Kf ;m/(2n)). �

Remark. Since m is assumed to be odd, H1((Kf ;m/(2n))) has odd order.
This implies that each Scharlemann cycle in ΓD has an odd number of edges.

Lemma 5.6 ([15, Proposition 5.1]). If Γα contains a great x-edge cycle σ,
then the disk face of σ contains a Scharlemann cycle.

Claim 5.7. ΓS contains at most qD(qS + 2)/2 positive edges.

Proof. First we show that ΓS contains at most qS + 2 positive x-edges for
every label x. Let x be an arbitrary label of fat vertices of ΓD. Let Λ
be the subgraph of ΓS consisting of all positive x-edges and all vertices of
ΓS . (The graph Λ may have an isolated vertex.) Note that if Λ has a disk
face, its boundary is a great x-edge cycle of ΓS . Let fd be the number of
disk faces of Λ. Applying Euler’s formula to the graph Λ on S, we have
qS − k + Σχ(face) = χ(S) = −2, where k is the number of edges of Λ.
Thus if k ≥ qS + 3, then fd ≥ Σχ(face) ≥ 1, so that ΓS contains a great
x-edge cycle. Hence, ΓS contains a Scharlemann cycle by Lemma 5.6. This
contradicts Lemma 5.4.

Assume for a contradiction that ΓS contains more than qD(qS + 2)/2
positive edges. Then the number of their endpoints is more than qD(qS +2).
By the parity rule [4, §2.5] every positive edge has distinct labels at its two
endpoints. Since there are qD kinds edge-endpoint labels in ΓS , there are
more than qS + 2 positive x-edges for some label x. This contradicts what
we show above. �

Claim 5.8. If ΓD has at least (qD−1)qS positive edges, then ΓD has Scharle-
mann cycles for distinct intervals.

Proof. We first show that ΓD contains at least qD − 1 Scharlmann cycles by
the arguments in the proof of Claim 5.7 or [16, Lemmas 4.5, 4.6]. In fact,
using the arguments in the second paragraph of the proof of Claim 5.7, we
see that ΓD has at least 2(qD−1) positive x-edges for some label x. Then, as
in the first paragraph of the proof, apply Euler’s formula to the graph Λ on D
consisting of all vertices of ΓD and all positive x-edges of ΓD. It follows that
the Euler number of the faces of Λ is at least χ(D)−qD +2(qD−1) = qD−1.
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This implies that ΓD contains at least qD − 1 great x-edge cycles bounding
mutually disjoint disk faces. The claimed result then follows from Lemma
5.6.

Following the proof of [10, Theorem 2.3] ([16, Lemma 4.4]), we find
Scharlemann cycles for distinct intervals. Assume for a contradiction that
ΓD contains Scharlemann cycles only for the interval (say) [x, x + 1]. Let k
be the number of Scharlemann cycles in ΓD. As in Figure 8 in [16], we form
a dual graph Λ ⊂ D for Scharlemann cycles. First take one dual (fat) vertex
in the disk face of each Scharlemann cycle in ΓD, and then draw edges from
each dual vertex to the vertices of the corresponding Scharlemann cycle. The
vertices of Λ consist of qD vertices of ΓD and k dual vertices; the edges of Λ
consist of the edges defined above. We apply Euler’s formula to the graph Λ
in D. The number of the vertices is qD+k; the number of the edges is at least
3k by Remark after the proof of Lemma 5.5. It follows that the Euler number
of the faces of Λ is at least χ(D)− (qD +k)+3k = 2k+1− qD ≥ qD−1 > 0.
This implies that there is a disk face of Λ, which contains a great x-edge cycle
of ΓD as shown in [16, Figure 9] and thus a Scharlemann cycle (Lemma 5.6).
Hence, ΓD contains more than k Scharlemann cycles, a contradiction. �

Proof of Lemma 5.2. Since each component of ∂S is a longitude of Vf , the
graph ΓS has at most four boundary edges. Each vertex of ΓS has |2n|qD(≥
4qD) edge-endpoints; ΓS has at most qD(qS + 2)/2 positive edges (Claim
5.7). Thus, the number of endpoints of the negative edges of ΓS is at least

4qDqS − 4− qD(qS + 2)
= 3qDqS − 2qD − 4

= 2(qD − 1)qS + (qS − 2)qD + 2qS − 4.

Since qS ≥ 2, this number is greater than or equal to 2(qD − 1)qS . By
the parity rule ΓD then has at least (qD − 1)qS positive edges. Hence ΓD

contains Scharlemann cycles for distinct intervals (Claim 5.8). Lemma 5.2
now follows from Lemma 5.5. �
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