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Let K be an algebraic function field of characteristic p > 2.
Let C be the algebraic closure of a finite field in K. Assume
that C has an extension of degree p. Assume also that K
contains a subfield K1, possibly equal to C, and elements u, x
such that u is transcendental over K1, x is algebraic over
C(u) and K = K1(u, x). Then the Diophantine problem of K
is undecidable.

Let G be an algebraic function field in one variable whose
constant field is algebraic over a finite field and is not al-
gebraically closed. Then for any prime p of G, the set of
elements of G integral at p is Diophantine over G.

1. Introduction.

The interest in the questions of Diophantine definability and decidability
goes back to a question which was posed by Hilbert: Given an arbitrary
polynomial equation in several variables over Z, is there a uniform algorithm
to determine whether such an equation has solutions in Z. This question,
otherwise known as Hilbert’s 10th problem, has been answered negatively in
the work of M. Davis, H. Putnam, J. Robinson and Yu. Matijasevich. (See
[5] and [6].) Since the time when this result was obtained, similar questions
have been raised for other fields and rings. Arguably the two most inter-
esting and difficult problems in the area are the questions of Diophantine
decidability of Q and the rings of algebraic integers of arbitrary number
fields. One way to resolve the question of Diophantine decidability over a
ring of characteristic 0 is to construct a Diophantine definition of Z over
such a ring. This notion is defined below.

Definition 1.1. Let R be a ring and let A ⊂ R. Then we say that A has a
Diophantine definition over R if there exists a polynomial f(t, x1, . . . , xn) ∈
R[t, x1, . . . , xn] such that for any t ∈ R,

∃x1, . . . , xn ∈ R, f(t, x1, . . . , xn) = 0 ⇐⇒ t ∈ A.
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If the quotient field of R is not algebraically closed, it can be shown that
we can allow Diophantine definitions to consist of several polynomials with-
out changing the nature of the relationship. (For more details see [6].) Such
Diophantine definitions have been obtained for Z over rings of algebraic in-
tegers of the following fields: Totally real extensions of Q, their extensions
of degree 2, fields with exactly one pair of complex conjugate embeddings,
some fields of degree 4, and some totally real infinite extensions of Q. For
more details concerning these results see [7], [11], [12], [25], [30], [29], [37].
However, not much progress has been made towards resolving the Diophan-
tine problem of Q. Further, one of the consequences of a series of conjectures
by Barry Mazur and Colliot-Thélène, Swinnerton-Dyer and Skorobogatov is
that Z does not have a Diophantine definition over Q, and thus one would
have to look for some other method for resolving the Diophantine problem
of Q. (Mazur’s conjectures can be found in [23] and [24]. However, Colliot-
Thélène, Swinnerton-Dyer and Skorobogatov have found a counterexample
to the strongest of the conjectures in the papers cited above. Their modifi-
cation of Mazur’s conjecture in view of the counterexample can be found in
[4].) In [40], the author of this paper has demonstrated that in certain to-
tally real algebraic number fields there exist recursive integrally closed rings
of algebraic numbers where infinite number of primes can appear in de-
nominators and where rational integers have Diophantine definition. (This
implies, of course, that Hilbert’s Tenth Problem is undecidable over these
rings.) The result above was not proved for Q. The general problem of
existence of Diophantine definitions of rational and algebraic integers over
integrally closed subrings of number fields (including the fields themselves)
remains open.

The problem turned out to be much more tractable over function fields.
At this point there are several results pertaining to Diophantine undecid-
ability of various function fields and rings. More specifically, we know that
the Diophantine problem of the following function fields is undecidable: the
rational function fields of characteristic 0 whose constant fields are subfields
of some p-adic fields or are formally real (see [9] and [19]), the rational
function fields in two variables over C (see [18]), the rational function fields
over the finite fields of constants (see [25], [41]), rational function fields
of positive characteristic whose constant fields do not contain the algebraic
closure of a finite field ([17]), and algebraic function fields over finite fields
of constants ([38]). Results concerning various function rings can be found
in [27], [31], [32], [34], [35], [36].

In this paper we extend the undecidability results of Pheidas, Kim and
Roush, and the author of this paper to a new class of fields of algebraic
functions: Algebraic function fields of positive characteristic p such that the
algebraic closure of a finite field contained in the fields under consideration
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has an extension of degree p. More specifically, we will prove the following
theorems.

Theorem. Let K be an algebraic function field of characteristic p > 2. Let
C be the algebraic closure of a finite field in K. Assume that C has an
extension of degree p. Assume also that K contains a subfield K1, possibly
equal to C, and elements u, x such that u is transcendental over K1, x is
algebraic over C(u) and K = K1(u, x). Then the Diophantine problem of
K is undecidable.

Theorem. Let G be an algebraic function field whose constant field C is
algebraic over a finite field of characteristic p > 0. Assume further, that C
is not algebraically closed. Then for any prime B of G the set of all elements
of G integral with respect to B is Diophantine over G.

The proof of the undecidability result is based on the idea first introduced
by Denef in [10] and further developed by Pheidas in [26], Kim and Roush
in [17], and the author of this paper in [38]. This idea can be summarized
by the following lemma.

Lemma 1.2. Let K be an algebraic function field of characteristic p > 0.
Let t ∈ K be a nonconstant element of K. Let Cp be the finite field of p
elements, and let G be the algebraic closure of Cp(t) in K. Let p be a prime
of K which lies above a nontrivial prime of G, and assume that the following
sets are Diophantine over K.

p(K) = {(x,w) ∈ K2|∃s ∈ N, w = xps}

INT (p),

where if w ∈ K ∩ INT (p) then ordpw ≥ 0, and if w ∈ G and ordpw ≥ 0,
then w ∈ INT (p). Then the Diophantine problem of K is undecidable.

(The proof of the lemma can be easily derived from the proof of [38,
Lemma 1.5].)

Section two of the paper is devoted to showing that p(K) is Diophantine
over K, while section three contains a proof of the fact that INT (p) is
Diophantine over K. Before we leave this section, we will state one more
easy but useful lemma concerning Diophantine definitions.

Lemma 1.3. Let L be a field, and let

P (w, u1, . . . , um) = 0(1.1)

be a polynomial equation over L. Let

{P s(w, x1, . . . , xn, y1, . . . , yr) = 0, s = 1, . . . , v}(1.2)
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be a set of equations over L. Then, assuming k > 0 is the degree of P in w,
there exists a set of equations

{Ql(u1, . . . , um, t1,0, . . . , tn,k−1, y1, . . . , yr) = 0, l = 1, . . . , e}(1.3)

over L such that for any u1, . . . , um, y1, . . . , yr ∈ L, the system (1.1) and
(1.2) has solutions w in the algebraic closure of L and x1, . . . , xn ∈ L(w)
if and only if for some t1,0 . . . , tn,k−1 ∈ L, t1,0, . . . , tn,k−1, u1, . . . , um,
y1, . . . , yr are solutions of the system (1.3).

Proof. Fix u1, . . . , um, y1, . . . , yr ∈ L and assume initially that the values
of u1, . . . , um under consideration will not make the leading coefficient of P
with respect to w zero. Under this assumption we can use Equation (1.1)
to compute {Ai,j(u1, . . . , um) ∈ L(u1, . . . , um)} such that for any i ∈ N,

wi =
k−1∑
j=0

Ai,jw
j .(1.4)

Next consider the following system of equations:{
P s

(
w,

k−1∑
i=0

ti,1w
i, . . . ,

k−1∑
i=0

ti,nw
i, y1, . . . , yr

)
= 0, s = 1, . . . , v

}
.(1.5)

If we treat {1, . . . , wk−1} as if they were linearly independent over L(u1, . . . ,
um, y1, . . . , yr) and use Equation (1.4), we can replace the system (1.5) by a
system of the form (1.3), where every Pi is replaced by k equations cor-
responding to the coefficients of the first k powers of w. Suppose now
(1.2) has solutions as described in the statement of the lemma. Since
0 < [L(w) : L] ≤ k, for i = 1, . . . , n, xi =

∑k−1
i=0 ai,jw

j , where ai ∈ L.
(If [L(w) : L] < k then for j = [L(w) : L], . . . , k, we can set ai,j = 0.)
Thus, the system (1.3) will clearly be satisfied with ti,j = ai,j . Conversely, if
for some ai,j ,= Ql(u1, . . . , um, a1,0, . . . , an,k−1, y1, . . . , yr) = 0, l = 1, . . . , e,
then given the construction of Ql’s and assuming w is a root of P ,

Ps

(
w,

k−1∑
i=0

ai,1w
i, . . . ,

k−1∑
i=0

ai,nw
i, y1, . . . , yr

)
= 0, s = 1, . . . , v.

Finally, we remove the assumption that the leading coefficient of P with
respect to w is not zero. To accomplish that we need to consider the following
cases: The k-th coefficient is not zero; the k-th coefficient is zero but k−1-st
coefficient is not zero; . . . ; only the free term is nonzero. Conditions for each
case can be written down in a Diophantine fashion and all the conditions
can be combined together in a Diophantine fashion also.

For the remainder of the paper we will use the following notations.
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Notations 1.4.

• K will denote an algebraic function field over a field of constants CK of
characteristic p > 2. In other words, K is a finite algebraic extension
of CK(w) for some w ∈ K transcendental over CK .

• C will denote the algebraic closure of a finite field in CK .
• u will denote a nonconstant element of K.
• G will denote the algebraic closure of C(u) in K.
• Given x1, . . . , xm ∈ G, Gx1,... ,xm will denote a subfield of G containing
x1, . . . , xm and such that Cx1,... ,xm - the constant field of Gx1,... ,xm is
finite.

• t will denote an element of G \ C such that the divisor of t is of the
form p/q, where p, q are K primes of degree qh for some rational prime
number q and a natural number h. Further, K/CK(t) is separable and
qh = n = [K : CK(t)].

• C̃K = CK̃ , where K̃ = C̃KK, will denote the algebraic closure of CK .
• r will denote the number of primes ramifying in the extension
C̃KK/C̃K(t).

• |C| ≥ N(n+2r+5), where N(n+2r+5) is a positive constant defined
in the proof of Theorem 6.11, or C is infinite.

• C has an extension of degree q, where q is a rational prime possibly
equal to p.

• x will denote a generator of G over C(t). (Such a generator exists by
Lemma 6.18 and our assumption that K/CK(t) is separable.)

• c0 = 0, c1 6= ±1, . . . cn+2r+5 6= ±1 will denote the elements of C such
that for i = 0, 1, . . . , n + 2r + 5, the divisor of t − ci is of the form
pi/q, where pi is a prime divisor. For i 6= j, for any natural number
s, cp

s

i 6= cj .
• For all i, Pi will denote the prime of CK(t) lying below pi, while P

and Q will denote CK(t)-primes below p and q respectively. For all i,
Pi, P and Q do not split in the extension K/CK(t).

• ri will denote the smallest positive integer such that cp
ri

i = ci. We will
let dij = cp

j

i , 0 ≤ j ≤ ri.

(The existence of an algebraic function field K over a sufficiently large or
infinite field of constants containing t and c1, . . . , c2r+n+5 satisfying the con-
ditions above follows from Theorem 6.11. In Section 5 of the paper we will
give a fuller description of the class of fields satisfying our assumptions.)

2. P-th Power Equations: The case of p = q.

In this section we will show that over an algebraic function field K of char-
acteristic p > 0, under some assumptions on the constant field, the set p(K)
is Diophantine. The method we are going to use has its origins in a paper
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of Pheidas (see [26]). It was extended by the author to prove an analogous
result for an algebraic function field over a finite field of constants. Unfortu-
nately, in its original form, this extension cannot be used to prove the results
pertaining to the algebraic function fields over infinite fields of constants,
since it relied on the fact that the class numbers of global fields are finite.
To prove the results mentioned above in our case, we will use the fact that
under our assumptions on the constant field, the algebraic function field K
will have a rational subextension of degree ph.

Lemma 2.1. Let F/G be a finite separable extension of fields of positive
characteristic p. Let α ∈ F be such that all the coefficients of its monic
irreducible polynomial over G are p-th powers in G. Then α is a p-th power
in F .

Proof. Let ap
0 + . . .+ ap

m−1T
m−1 + Tm be the monic irreducible polynomial

of α over G. Let β be the element of the algebraic closure of F such that
βp = α. Then β is of degree at most m over G. On the other hand,
G(α) ⊆ G(β). Therefore, G(α) = G(β).

Lemma 2.2. Let F/G be a finite separable extension of fields of positive
characteristic p. Let [F : G] = n. Let x ∈ F be such that F = G(x) and for
distinct ap

0, . . . , a
p
n ∈ G, NF/G(ap

i − x) = yp
i . Then x is a p-th power in F .

Proof. Let H(T ) = A0 + A1T + An−1T
n−1 + Tn be the monic irreducible

polynomial of x over G. Then for i = 0, . . . , n, H(ap
i ) = yp

i . Further, we
have the following linear system of equations: 1 ap

0 . . . a
p(n−1)
0 apn

0
. . . . . . . . . . . . . . .

1 ap
n . . . a

p(n−1)
n apn

n


 A0

. . .
1

 =

 yp
0
. . .
yp

n

 .

Using Cramer’s rule to solve the system, it is not hard to conclude that for
i = 0, . . . , n, Ai is a p-th power in G. Then, by Lemma 2.1, x is a p-th power
in F .

Lemma 2.3. Let w ∈ K, let a1, . . . , ar be primes of K and let a1, . . . , ar+1

∈ C be a set of distinct constants. Then the set {w + a1, . . . , w + ar+1}
contains at least one element of K having no zero at any of the primes
a1, . . . , ar.

Proof. The lemma follows from the fact that each prime ai can be a zero of
at most one element of the set {w + a1, . . . , w + ar+1}.

Lemma 2.4. Let w ∈ K, let a, b ∈ C. Then all the zeros of w+a
w+b are zeros

of w + a and all the poles of w+a
w+b are zeros of w + b. Further, the height of

w+a
w+b is equal to the height of w. (Here by height we mean the degree of zero
or pole divisor of an algebraic function.)
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Proof. Let p be a prime of K. Then p is a pole w if and only if p is a pole
of w + a and a pole of w + b. Moreover, the order of the pole at all the
three functions will be the same. On the other hand, any zero of w+a

w+b will
come from zeros of w + a or poles of w + b. So let p be a pole of w + b.
Then ordp(w + a) = ordp(w + b) and therefore ordp

w+a
w+b = 0. A similar

argument shows that w+a
w+b is a unit at any valuation which is a pole of w+a.

Consequently, all zeros of w+a
w+b are zeros of w + a and all the poles of w+a

w+b
are zeros of w + b.

Finally, note that w+a
w+b = 1 + a−b

w+b . Let HK(w+a
w+b ) denote the K-height of

w+a
w+b . Then we have the following equalities.

HK

(
w + a

w + b

)
= HK

(
1 +

a− b

w + b

)
= HK

(
a− b

w + b

)
= HK(w + b) = HK(w).

The last equality follows from the fact, mentioned above, that the pole
divisors of w + b and w are the same.

Lemma 2.5. Let u, v, z ∈ C̃KK = K̃, let y ∈ C̃K(z), and assume y, z do
not have zeros or poles at any valuation of K̃ ramifying in the extension
K̃/C̃K(z). Further, assume

y − z = up − u(2.1)

y−1 − z−1 = vp − v.(2.2)

Then y = zps
, for some natural number s ≥ 0. (Note that in C̃K(z), the

zeros and the poles of z are simple. Assuming that z has no zeros or poles
at any valuations ramifying in the extension K̃/C̃K(z) amounts, therefore,
to assuming that all zeros and poles of z are simple in K̃.)

Proof. The argument below is very similar to the one used in [26, Lemma
1, pages 3-4], with the following difference. In this lemma we do not assume
that u, v are rational functions in z over C̃K and therefore we will have to
use the concept of local derivation with respect to a prime in place of the
derivative defined in the usual manner on a rational function field. (For a
discussion of local and global derivations see [22, pages 9-10] and [13, pages
144-148].) Let A/B be the divisor of z ∈ K̃, where A and B are relatively
prime integral divisors. Further, by assumption all the prime factors of A

and B are distinct. Next note that all the poles of vp − v and up − u in K̃
are of orders divisible by p. Since from the above discussion we know that
all the zeros and poles of z are of orders equal to ±1, we must conclude from
(2.1) and (2.2) that the divisor of y is of the form UpV, where all the prime
factors of V come from A or B and are distinct. Further, the factors of A
will appear to the first power in V; and the factors of B will appear to the
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power −1 in V. Indeed, let t be a prime which is not a factor of A or B.
Without loss of generality assume t is a pole of y. Then, since ordtz = 0,

0 > ordty = ordt(z − y) = ordt(up − u) ∼= 0 modulo p.

Now let t be a factor of A or B. Again, without loss of generality, assume that
t is a pole of y. If t is a factor of A, then ordt(y− z) = ordty = ordt(up−u).
Since we assumed t to be a pole of y, we must conclude that t is a pole of u
and thus ordty = ordt(up − u) ∼= 0 modulo p. If, on the other hand, t is a
factor of B. Then we have two possibilities: ordty = ordtz = −1 or again
ordty = ordt(up − u) ∼= 0 modulo p.

On the other hand, since y ∈ C̃K(z), where A and B are prime divisors,
we must conclude that the divisor of y is actually of the form UpAaBb, with
either a, b = 0 or a = 1, b = −1. (This follows from the observation that the
degree of the zero and the pole divisor of y must be the same. In particular,
the degrees must be equal modulo p.) If a, b = 0, taking into account the
fact that no prime which is a pole or zero of y ramifies in the extension
K̃/C̃K(z), we can conclude that the divisor of y in the rational field is also
a p-th power of another divisor. Thus, since in the rational field every zero
degree divisor is principal, y is a p-th power. Suppose, on the other hand
that a = 1, b = −1. Then we can conclude using an argument similar to the
one above, that yz−1 is a p-th power in the rational field. Thus, (2.1) can
be rewritten as

z(f − 1)p = up − u,(2.3)

where f ∈ C̃K(z). Since f − 1 is a rational function in z, we can further
rewrite (2.3) as

z(fp
1 /f

p
2 ) = up − u,(2.4)

where f1, f2 are relatively prime polynomials in z over C̃ and f2 is monic.
From this equation it is clear that any valuation which is a pole of u, is
either a pole of z or a zero of f2. Further, the absolute value of the order
of any pole of u at any valuation which is a zero of f2, must be the same as
the order of f2 at this valuation. Therefore, s = f2u will have poles only at
the valuations which are poles of z. Thus we can rewrite (2.4) in the form

−zfp
1 + sp = sfp−1

2 .

Let c be a zero of f2. Then, since f2 is a polynomial in z, c is not a pole of
z. Since, p− 1 ≥ 2, s is integral over C̃K [z], ordc(sp − zfp

1 ) ≥ 2.
In general, for any x ∈ K̃ and any K̃-prime a, let ∂x/∂a denote the local

derivative of x with respect to a. Further, if x has a zero at a of order greater
than 1, then ∂x/∂a will have a zero at a. Now observe that

ordc∂(−zfp
1 + sp)/∂c = ordc

d(−zfp
1 + sp)
dz

= ordc(−fp
1 ),
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by Lemma 6.17, since, by assumption f2 does not have any zeros at valua-
tions ramifying in the extension K̃/C̃K(t). Thus, f1 has a zero at c. But f1

and f2 are supposed to be relatively prime polynomials. Hence, f2 does not
have any zeros, and thus is equal to 1. Therefore, y is a polynomial in z.
Similarly, we can show that 1/y is a polynomial in 1/z. Hence, y is a power
of z, and more specifically, unless y = z, y must be a power of z divisible by
p. If y = z we are done. Otherwise, we have shown that y is a p-th power of
another rational function in z over C̃K . From this point on, the proof of the
lemma proceeds in the fashion identical to the proof which can be found in
[26, Lemma 1, pages 3, 4].

Lemma 2.6. Let w, u, ui,ji,k,jk
, vi,ji,k,jk

, i, k = 0, . . . , (r + n + 2),
ji = 1, . . . , ri, jk = 1, . . . , rk be elements of K satisfying the following equa-
tions for all i, k = 0, . . . , (r + n+ 2), and some 1 ≤ ji ≤ ri, 1 ≤ jk ≤ rk.

w − t = up − u(2.5)

w−1 − t−1 = vp − v(2.6)

wi,ji,k,jk
=

w − di,ji

w − dk,jk

,(2.7)

ti,k =
t− ci
t− ck

(2.8)

wi,ji,k,jk
− ti,k = up

i,ji,k,jk
− ui,ji,k,jk

(2.9)
1

wi,ji,k,jk

− 1
ti,k

= vp
i,ji,k,jk

− vi,ji,k,jk
.(2.10)

Then w = tp
s

for some natural number s ≥ 0.

Proof. First of all note that Q, and Pi for all i will remain prime in the
extension C̃K(t)/CK(t) and their factors will be unramified in the extension
K̃/C̃K . Indeed, the first assertion is true because all the listed primes are
of degree one in CK(t) and thus will remain prime under any constant field
extension. The second assertion is true by Lemma 6.16. Thus, for all i, k, ti,k
has neither zeros nor poles at any prime ramifying in the extension K̃/C̃K(t).

Next we note that by Lemma 2.3, for some i = 0, . . . , (n + r + 2) there
exist distinct k1, . . . , kn+1 ∈ {0, . . . , (r + n + 2)} \ {i} such that for any
1 ≤ ji ≤ ri, 1 ≤ jkl

≤ rkl
, wi,ji,kl,jkl

, l = 1, . . . , n + 1 does not have zeros
or poles at any prime ramifying in the extension K̃/C̃K(t). Indeed, we can
select the required indices in the following manner. First consider the set
{w − di,ji , i = 0, . . . , n + r + 2, 1 ≤ ji ≤ ri}. Note, that by assumption,
for all (i, ji), di,ji is a constant and all these constants are distinct. Let
{mu, u = 1 . . . , s} be the set of all the elements of the set {0, . . . , n+ r+2}
such that for some jmu in the set {1, . . . , rmu}, w − dmu,jmu

has a zero at
a valuation of K̃ ramifying in the extension K̃/C̃K(t). Then by Lemma



472 ALEXANDRA SHLAPENTOKH

2.3, s ≤ r. Therefore, the set {0, . . . , n + r + 2} \ {m1, . . . ,ms} contains
at least n + 3 elements. Choose i in this set. Finally choose k1, . . . , kn+1

in the set {0, . . . , n + r + 2} \ {m1, . . . ,ms, i}, containing at least n + 2
elements. Next consider, wi,ji,kl,jkl

= w−di,ji
w−dkl,jkl

, where 1 ≤ ji ≤ ri, kl ∈
{0, . . . , n+ r+2} \ {m1, . . . ,ms, i}, 1 ≤ jkl

≤ rkl
. Note that neither numer-

ator, nor denominator of this fraction has a zero at a valuation ramifying
in the extension K̃/C̃K(t). Thus, by Lemma 2.4, wi,ji,kl,jkl

has no zeros or
poles at any valuation ramifying in the extension K̃/C̃K(t).

If w ∈ CK(t) then we can apply Lemma 2.5 to conclude that our lemma is
true. Thus, we may assume w 6∈ CK(t). This would imply that wi,ji,kl,jkl

6∈
CK(t) for all i, ji, kl, jkl

Further, by an argument similar to the one used in
the proof of Lemma 2.5, for all l = 1, . . . , n+ 1, Equations (2.9) and (2.10)
imply that for some ji, jkl

the divisor of wi,ji,kl,jkl
is of the form Appa

kl
pb

i ,
where a is either -1 or 0 and b is either 1 or 0. Let Kw = CK(w, t), and
note that for all i, k, ji, jk, wi,ji,k,jk

∈ Kw and [Kw : CK(t)] = pm, where
0 < m ≤ h. (The left inequality is strict due to our assumption that
w 6∈ CK(t).) Further, since for all l = 1, . . . , n + 1, wi,ji,kl,jkl

does not
have any zeros or poles ramifying in the extension K/CK(t), the divisor
of wi,ji,kl,jkl

will be of the form A
p
Kw

Pa
i,wPb

kl,w
in Kw, where AKw is the

Kw-divisor below the divisor A, and for all i, Pi,w denotes the prime below
pi in CK(t, w). Next we note that for all l = 1, . . . , n + 1 the divisor of
NKw/CK(t)(wi,ji,kl,jkl

) is equal to the corresponding norm of the divisor of
wi,ji,kl,jkl

. On the other hand,

NKw/CK(t)Pi,w = P
f(Pi,w/Pi)
i = P

pm

i .

Thus, for all l = 1, . . . , n+ 1, the divisor of the norm of wi,ji,kl,jkl
in CK(t)

is a p-th power of some other divisor of CK(t). Since in CK(t) every zero
degree divisor is principal, we must conclude that for all l = 1, . . . , n + 1,
the K/CK(t) norm of wi,ji,kl,jkl

is a p-th power of some element of CK(t).
On the other hand,

w−1
i,ji,kljkl

=
w − dkl,jkl

w − di,ji

= 1 +
di,ji − dkl,jkl

w − di,ji

= (di,ji − dkl,jkl
)

(
1

di,ji − dkl,jkl

− 1
di,ji − w

)
.

Thus, we can conclude that for l = 1, . . . , n+ 1,

NKw/CK(t)

(
1

di,ji − dkl,jkl

− 1
di,ji − w

)
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is a p-th power. Then, by Lemma 2.2, taking into account our assumption
that for all natural numbers s, for r 6= j, cp

s

r 6= cj , we can conclude that
w− di,ji is a p-th power in K. Consequently, w is a p-th power in K. Thus,
w = w̃p for some w̃ ∈ K. Next observe the following.

wi,ji,k,jk
=

w − di,ji

w − dk,jk

=
w − cp

ji

i

w − cp
jk

k

=

(
w̃ − cp

mi

i

w̃ − cp
mk

k

)p

= (w̃i,mi,k,mk
)p,

where mi = ji − 1,mk = jk − 1, if jk, ji > 1 and mi = ri,mk = rk, if
jk = 1, ji = 1. Note that since for all k, jk took all values 1, . . . , rk, the
same will be true of mk. Thus Equations (2.9) and (2.10) can be rewritten
in the following manner.

w̃i,mi,k,mk
− ti,k = (up

i,ji,k,jk
− w̃p

i,mi,k,mk
)− (ui,ji,k,jk

− w̃i,mi,k,mk
),(2.11)

1
w̃i,mi,k,mk

− 1
ti,k

=

(
vp
i,ji,k,jk

− 1
w̃p

i,mi,k,mk

)
−
(
vi,ji,k,jk

− 1
w̃i,mi,k,mk

)
,

(2.12)

where 1 ≤ mi ≤ ri, 1 ≤ mk ≤ rk. Equations (2.5) and (2.6) can be rewritten
in a similar fashion. Therefore, the previous argument applies to w̃. Note
also that the height of w̃ is strictly less than the height of w. Thus after
finitely many iterations of this process, we will find ourselves in a situation
where (2.5) and (2.6) hold for a w̄ ∈ K, whose height is less or equal to
the height of t. This would imply that the divisor of w̄ and t are the same.
In other words, w̄ = at, where a is a constant. Thus, (a − 1)t = up − u.
However, unless a = 1, we have a contradiction. Therefore, if we assume
that the height of w̄ is less or equal to the height of t, we must conclude
that w̄ = t. Consequently, for some natural number s, w = tp

s
.

Corollary 2.7. The set {w ∈ K|∃s ∈ N, w = tp
s} is Diophantine over K.

Proof. First we note that for any x ∈ K and any s ∈ N

xps − x = (xps−1
+ xps−2

+ · · ·+ x)p − (xps−1
+ xps−2

+ · · ·+ x).(2.13)

Next we want to show that assuming w = tp
s
, Equations (2.5)-(2.10) can

be satisfied over K. In view of equality (2.13), it is enough to show that
for some 1 ≤ ji ≤ ri, 1 ≤ jk ≤ rk, wi,ji,k,jk

= (ti,k)ps
. Choose ji ∼= s

modulo ri. (Such a ji exists since the set of all possible values of ji contains
a representative of every class modulo ri.) Then cp

s

i = (cp
ji

i )pmri = cp
ji

i .
Similarly, choose jk ∼= s modulo rk so that cp

s

k = cp
jk

k . Now the desired
conclusion follows from Equations (2.7) and Equations (2.8).
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Lemma 2.8. Let σ, µ ∈ K. Assume that all the primes that are poles of σ
or µ do not ramify in the extension K̃/C̃K(t). Further, assume the following
equality is true.

t(σp − σ) = µp − µ.(2.14)

Then σp − σ = µp − µ = 0.

Proof. Let A, B be integral divisors of K, relatively prime to each other
and to p and q, such that the divisor of σ is of the form A

Bpiqk, where i, k
are integers. Then it is not hard to see that for some integral divisor C,
relatively prime to B, p and q, some integers j,m, the divisor of µ is of the
form C

Bpjqm. Indeed, let t be a pole of µ such that t 6= p and t 6= q. Then

0 > pordtµ = ordt(µp − µ) = ordt(t(σp − σ)) = ordt(σp − σ) = pordtσ.

Conversely, let t be a pole of σ such that t 6= p and t 6= q. Then

0 > pordtσ = ordt(σp − σ) = ordt(t(σp − σ)) = ordt(µp − µ) = pordtµ.

By the Strong Approximation Theorem there exists b ∈ K such that the
divisor of b is of the form BD/ql, where D is an integral divisor relatively
prime to A,C, p, q and l is a natural number. Then bσ = s1t

i, bµ = s2t
j ,

where s1, s2 are integral over CK [t] and have zero divisors relatively prime
to p and B. Indeed, consider the divisors of bσ:

BD

ql

A

B
piqk = DApiqk−l = DAqk−l+i p

i

qi
.

Thus the divisor of s1 is of the form DAqk−l+i and therefore, q is the only
pole of s1, making it integral over Ck[t]. Further, by construction A and D
are integral divisors relatively prime to p and B. A similar argument applies
to s2.

Multiplying through by bp we will obtain the following equation.

t(sp
1t

ip − bp−1s1t
i) = sp

2t
jp − bp−1s2t

j .(2.15)

Suppose i < 0. Then the left side of (2.15) has a pole of order ip + 1 at p.
This would imply that j < 0 and the right side has a pole of order jp at p.
Thus, we can assume that i, j are both nonnegative. We can now rewrite
(2.15) in the form

(sp
1t

ip+1 − sp
2t

jp) = bp−1(s1ti+1 − s2t
j).(2.16)

Let t be any prime factor of B in K̃. Then t does not ramify in the extension
K̃/CK̃(t) and since p > 2, ordt(s

p
1t

ip+1 − sp
2t

jp) ≥ 2. Thus, ordt∂(sp
1t

ip+1 −
sp
2t

jp)/∂t > 0. Since t is not ramified in the extension K̃/CK̃(t), by Lemma
6.17, ordt∂(sp

1t
ip+1 − sp

2t
jp)/∂t = ordtd(s

p
1t

ip+1 − sp
2t

jp)/dt = ordt(s
p
1t

ip).
Therefore, since t, by assumption is not a zero of t, s1 has a zero at t. This,
however, is impossible. Consequently, B is a trivial divisor, and in (2.14)
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all the functions are integral over CK [t], i.e., they can have poles at q only.
Assuming µ is not a constant and thus has a pole at q, we note that the
left side has a pole at q of order equivalent to 1 modulo p, while the right
side has the pole q of order equivalent to 0 modulo p. Thus, µ is a constant.
But the only way the product of t and a function integral over CK [t] can
be a constant is for that function to be equal to zero. Consequently, the
statement of the lemma is true.

Lemma 2.9. Let v ∈ K and assume for some distinct a0 = 0, a1, . . . , an ∈
CK , the divisor of v + a0, . . . , v + an is a p-th power of some other divisor
of K. Then, assuming for all i, v + ai does not have any zeros or poles at
any prime ramifying in the extension K/CK(t), v is a p-th power in K.

Proof. First assume v ∈ CK(t). Since v + ai does not have any zeros or
poles at primes ramifying in the extension K/CK(t), the divisor of v + ai

in CK(t) is a p-th power of another CK(t) divisor. Since in CK(t) every
zero degree divisor is principal, v is a p-th power in CK(t) and therefore
in K. Next assume v 6∈ CK(t). Note that no zero or pole of v + ai is at
any valuation ramifying in the extension K/CK(t, v). Hence, in CK(t, v) the
divisor of v + ai is also a p-th power of another divisor. Finally note that
NCK(t,v)/CK(t)(v + ai) will be a p-th power in CK(t) and apply Lemma 2.2.

Lemma 2.10. Let x, v ∈ K \ {0}, let u = xp+t
xp−t . Further, assume that the

following equations hold for all i, k = 0, . . . , (2r + n + 5), some 1 ≤ ji ≤
ri, 1 ≤ jk ≤ rk, and some s ≥ 0.

ui,k,g =
ug + ci
ug + ck

, g = −1, 1.(2.17)

vi,ji,k,jk,g =
vg + di,ji

vg + dk,jk

, g = −1, 1.(2.18)

(2.19) v2e
i,ji,k,jk,gt

mps − u2e
i,k,gt

m = µp
i,ji,k,jk,e,m,g − µi,ji,k,jk,e,m,g,

e = −1, 1,m = 0, 1, g = −1, 1.

ve
i,ji,k,jk,g − ue

i,k,g = σp
i,ji,k,jk,e,g − σi,ji,k,jk,e,g, e = −1, 1, g = −1, 1.(2.20)

(ug + ci)e − (vg + di,ji)
e = µp

i,ji,e,g
− µi,ji,e,g, e = −1, 1, g = −1, 1.(2.21)

Then for some natural number k, v = upk
.

Proof. First of all, we claim that for all i, k, g, ui,k,g has no multiple zeros or
poles except possibly at the primes ramifying in K̃/C̃K(t), p or q. Indeed,
by Lemma 2.4, all the poles of ui,k,g are zeros of ug + ck and all the zeros of
ui,k,g are zeros ug + ci. However, by Lemma 4.5 of [38] and by assumption
on ci and ck, all the zeros of ug + ck and ug + ci are simple, except possibly
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for zeros at p, q, or primes ramifying in the extension K̃/C̃K(t). For future
use, we also note that u is not a p-th power in K, assuming x 6= 0. (This
can be established by computing the derivative of u, which is not 0, if x
is not 0.) We will show that if s > 0 then v is a p-th power in K, and
if s = 0 then u = v. Suppose s > 0 and let g = 1. Next note that by
Lemma 2.3, by an argument similar to the one used in Lemma 2.6, there
exist 0 ≤ i ≤ (2r+5+n), 0 ≤ kl ≤ (2r+n+5), l = 1, . . . , n+1, kl 6= i, kl 6= km

for m 6= l, such that for all 1 ≤ ji ≤ ri, 1 ≤ jkl
≤ rkl

, ui,kl,1 and vi,ji,kl,jkl
,1

have no zeros or poles at the primes of K̃ ramifying in the extension K̃/C̃(t),
or p or q. Note that for thus selected indices, all the poles and zeros of ui,kl,1

are simple for l = 1, . . . , n+ 1.
Pick an i, k1, . . . , kn+1, ji, jk1 , . . . , jkn+1 such that Equations (2.17)-(2.21)

are satisfied for these indices and ui,k1,1, vi,ji,k1,jk1
,1, . . . , ui,kn+1,1,

vi,ji,kn+1,jkn+1
,1 have no poles or zeros at primes ramifying in the extension

K̃/C̃(t), or at p or q. Further, by an argument similar to the one used in
the proof of Lemma 2.5, either for l = 1, . . . , n+ 1, the divisor of vi,ji,kl,jkl

,1

in K̃ is a p-th power of another divisor or for some l and some prime t not
ramifying in K̃/C̃(t) and not equal to p or to q, ordtvi,ji,kl,jkl

,1 = ±1. In the
first case, given the assumption that vi,ji,kl,jkl

,1’s do not have poles or zeros
at ramifying primes and Lemma 2.9, v is a p-th power in K. So suppose the
second alternative holds. In this case, without loss of generality, assume t is
a pole of vi,ji,kl,jkl

,1. Next consider the following equations

v2
i,ji,kl,jkl

,1t
ps − u2

i,kl,1
t = µp

i,ji,kl,jkl
,1,1,1 − µi,ji,kl,jkl

,1,1,1,(2.22)

v2
i,ji,kl,jkl

,1 − u2
i,kl,1

= µp
i,ji,k,jk,0,1,1 − µi,ji,k,jk,0,1,1,(2.23)

obtained from (2.19) by first making e = 1,m = 1 and then e = 1,m = 0.
(If t were a zero of vi,ji,kl,jkl

,1, e would be equal to -1 in both equations.)
Since t does not have a pole or zero at t and p > 2, we must conclude that

ordt(v2
i,ji,kl,jkl

,1t
ps − u2

i,kl,1
t) = ordt(µ

p
i,ji,kl,jkl

,1,1,1 − µi,ji,kl,jkl
,1,1,1) ≥ 0

and

ordt(v2
i,ji,kl,jkl

,1 − u2
i,kl,1

) = ordt(µ
p
i,ji,kl,jkl

,0,1,1 − µi,ji,kl,jkl
,0,1,1) ≥ 0.

Thus,

ordtv
2
i,ji,kl,jkl

,1(t
ps − t)

= ordt(µ
p
i,ji,kl,jkl

,1,1,1 − µi,ji,kl,jkl
,1,1,1 − tµp

i,ji,kl,jkl
,0,1,1 + tµi,ji,kl,jkl

,0,1,1)

≥ 0.

Finally, we must deduce that ordt(tp
s − t) ≥ 2|ordtv|. But in CK(t) all the

zeros of (tp
s−t) are simple. Thus, this function can have multiple zeros only
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at primes ramifying in the extension K̃/C̃K(t). By assumption t is not one
of these primes and thus we have a contradiction, unless v is a p-th power.

Suppose now that s = 0. Set g = 1 again and let i, k1, . . . , kn+1 be
selected as above. Then from (2.22) and (2.23) we obtain

µp
i,ji,k,jk,1,1,1 − µi,ji,k,jk,1,1 = t(µp

i,ji,k,jk,0,1,1 − µi,ji,k,jk,0,1,1).

Note here that all the poles of µi,ji,k,jk,1,1,1 and µi,ji,k,jk,0,1,1 are poles of
ui,kl,1, vi,ji,kl,jkl

,1 or t, and thus are not any valuation ramifying in the ex-
tension K̃/C̃K(t). By Lemma 2.8 we can then conclude that

v2
i,ji,kl,jkl

,1 − u2
i,kl,1

= 0.

Thus, vi,ji,kl,jkl
,1 = ±ui,kl,1. Since all the poles of ui,kl,1 are simple, (2.20)

with k = kl rules out “−”. Therefore,

vi,ji,kl,jkl
,1 = ui,kl,1.(2.24)

Rewriting (2.24) we obtain

di,j − dkl,jkl

v + dkl,jkl

=
ci − ckl

u+ ckl

,

or

v = au+ b,(2.25)

where a, b are constants.
Now keep s = 0, set g = −1, pick new distinct i, k1, . . . , kn+1 such that

ui,kl,−1, vi,ji,kl,jkl
,−1, l = 1, . . . , n+ 1 do not have any zeros or poles at valu-

ations ramifying in the extension K̃/C̃K(t), at p or q. Repeat the argument
above (with s = 0) for g = −1 to conclude that

v−1 = āu−1 + b̄,(2.26)

where ā, b̄ are also constants. Equation (2.25) stipulates that u and v have
the same poles. If b̄ 6= 0, then (2.26) stipulates that u and v have no poles in
common. Since u is not constant, and therefore, v is not constant, we must
deduce that b̄ = 0 and u = av for some constant a. If a 6= 1, from (2.21),
we conclude, using g = 1 for all i, that all the zeros of u + ci are of order
divisible by p. Indeed, consider 1

u+ci
and 1

u+a−1di,j
. Either aci = cp

ji

i = di,ji

and
1

u+ ci
− 1
v + di,ji

=
1

u+ ci
− a−1 1

u+ ci
= (1− a−1)/(u+ ci),

or u+ ci and v+ di,ji = au+ di,ji have no common zeros, and 1
u+ci

− 1
v+di,ji

has poles at all the valuations at which 1
u+ci

has poles, and these poles are
of the same order as the poles of 1

u+ci
. Since this cannot happen, a = 1.
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If s > 0 and v is a p-th power, then Equations (2.18)-(2.21) can be rewrit-
ten in the same fashion as equations in Lemma 2.6 with s being replaced by
s−1 and v replaced by its p-th root. Therefore, after finitely many iterations
of this rewriting procedure we will be in the case of s = 0. Hence, for some
natural number k, v = upk

.

Corollary 2.11. Let x ∈ K, and let u = xp+t
xp−t . Then the set {w ∈ K‖∃s ∈

N, w = ups} is Diophantine over K.

Proof. Given Lemma 2.10, it is enough to show that if w = ups
for some

natural number s, Equations (2.17) - (2.21) can be satisfied in the remaining
variables over K. The proof of this assertion is identical to the proof of
Corollary 2.7.

Finally we state the main result of this section.

Theorem 2.12. The set {(x, y) ∈ K2‖∃s ∈ N, y = xps} is Diophantine
over K.

Given Corollaries 2.7 and 2.11, the proof of this theorem will be identical
to the proof of Theorem 5.12 of [38].

3. Integrality at One Prime: The case of q = p.

In this section we will show that integrality at one prime is a Diophan-
tine condition over an algebraic function field of characteristic p > 0 whose
constant field has an extension of degree p > 0.

Lemma 3.1. Let L be a local field or an algebraic function field of positive
characteristic p. Let v ∈ L and let α be a root of the equation

xp − x− v = 0.(3.1)

Then either α ∈ L or α is of degree p over L. Further, in the second case the
extension L(α)/L is cyclic of degree p and the only primes possibly ramified
in this extension are the poles of v. On the other hand, if for some L-prime
a, ordav 6∼= 0 modulo p and ordav < 0, then a factor of a in L(α) will be
ramified completely.

Proof. Let α = α1, . . . , αp be all the roots of (3.1) in the algebraic closure
of L. Then we can number the roots so that αi = α + i − 1. Thus, either
the left side of (3.1) factors completely or it is irreducible. In the second
case α is of degree p over L and L(α) contains all the conjugates of α over
L. Thus, the extension L(α)/L is Galois of degree p, and therefore is cyclic.
Next consider the different of α. This different is a constant. By [3, Lemma
2, page 71], this implies that no prime of L at which α is integral has any
ramified factors in the extension L(α)/L. Finally, suppose a is a prime of L
described in the statement of the lemma. Let ã be an L(α) prime above a.
Then ordãv ∼= 0 modulo p. Thus, ã must be totally ramified over a.
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Lemma 3.2. Let M/K be a Galois extension of algebraic function fields of
degree n. Let p be a prime of K which does not split in M . Let h ∈ K be
such that ordph 6∼= 0 modulo n. Then h is not a norm of an element of M .

Lemma 3.3. Let H/F be an unramified extension of local fields of degree
n. Let t be the prime of F . Let x ∈ F be such that ordtx ∼= 0 modulo n.
Then x is a norm of some element of H.

Proof. Let π be a local uniformizing parameter for t. Then x = πnε, where
ε is a unit. Since πn is an F -norm, x is an F -norm if and only if ε is an F
norm. The last statement is true by [42, Corollary, page 226].

Lemma 3.4. Let L be an algebraic function field. Let C and B be prime
divisors of L. Let v ∈ L be such that the divisor of v is of the form C−1V,
where V is a divisor of L which has no common factors with C or B. Further,
assume v is equivalent to bp − b modulo B, where b ∈ CL, the constant field
of L. (Such a v exists by the Weak Approximation theorem.) Let β be a root
of (3.1). Let RB be the residue field of B in L and assume it is separable
over CL. Let δ be an element of the algebraic closure of CL, such that CL(δ)
is isomorphic to the Galois closure of RB over CL. Let L̄ = L(β, δ). Then
in L̄,

C =
∏

c
p
i ,(3.2)

and

B =
∏

bi,(3.3)

where for i 6= j, bi 6= bj, ci 6= cj, and for all i, bi is of degree 1.

Proof. By Lemma 3.1, [L(β) : L] = p, and the prime above C in L(β) is
totally ramified. Thus, in L(β), C = cp. Note that by Lemma 3.1, B does
not have ramifying factors in the extension L(β)/L. On the other hand, the
left side of (3.1) will factor completely modulo B. Since all the coefficients of
the left side (3.1) are integral at B and B is not a zero of the discriminant of
this polynomial, β generates a local integral basis with respect to B. Thus
the fact that left side of (3.1) will factor completely modulo B implies that
b will split completely in L(β). Thus, the residue fields of the factors of B in
L(β) are the same as the residue field of B in L. Next note that the constant
fields of L and L(β) are the same because C has a completely ramified factor
in this separable extension. Hence the residue fields of the factors of b in
L(β) are separable over CL(β) = CL. Consequently, we can apply Lemma
6.14 to assert that in L(β, δ) all the factors of b will be of degree 1. Finally
we note that no factor of b is ramified in the extension L(β, δ)/L, so that
all the factors in the product (3.3) are distinct. Similarly, no prime ramifies
in the extension L(β, δ)/L(β), and all the factors in the product (3.2) are
distinct.
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Lemma 3.5. Let b be a prime of K and let B be a prime of G below b.
Assume B is not trivial. Let RB be the residue field of B in G, and let δB
be a generator of the extension of C isomorphic to RB. Let K̄ be a separable
extension of K where b splits into factors of degree 1. Let Ĝ be the algebraic
closure of G in K̄. Then Ĝ contains δB.

Proof. Let b =
∏m

i=1 bi be the factorization of b in K̄. Then each bi lies over
a nontrivial prime Bi of Ĝ. (This is true because each Bi is an extension
of B.) Let x ∈ G be such that its residue class generates RB over C, and
let F (T ) ∈ C[T ] be the irreducible polynomial of the residue class of x over
C. Then F (δB) = 0 and F (x) ∼= 0 modulo B. On the other hand, since b1

is of degree 1, there exists a ∈ CK̄ such that x − a ∼= 0 modulo b1. Hence,
0 ∼= F (x) ∼= F (a) modulo b1. But F (a) is a constant. Therefore, F (a) = 0.
Since every extension of C is Galois, and a is a conjugate of δB over C,
δB ∈ C(a) ⊂ Ĝ.

Lemma 3.6. Let a be a prime of K with a nontrivial restriction to G. Let
A be the prime below a in G. Let K̄ ⊃ Ḡ be finite separable extensions of
K and G respectively. Let ā be a prime above a in K̄. Let Ā be the prime
below ā in Ḡ. Then Ā lies above A in Ḡ (and thus is not a trivial prime of
Ḡ). Further, if we assume that e(ā/a) = e(Ā/A), then e(ā/Ā) = e(a/A).

Proof. Let ā and Ā be as in the statement of the lemma. Then, since ā
restricts to Ā in Ḡ and to A in G, we must conclude that the restriction of
Ā to G is also A. Further, we have the following equality. e(ā/Ā)e(Ā/A) =
e(ā/a)e(a/A). Thus, e(ā/Ā) = e(a/A).

Lemma 3.7. Let a, b be two primes of K, restricting to nontrivial primes
A and B of G respectively. Assume the residue field of b is separable over
CK . Further, assume that b and a are unramified over G and are the only
factors of B and A in K. Let f ∈ G be such that its divisor is of the form

Bs

AU
,(3.4)

where U is an integral divisor of G relatively prime to B and A, and s is a
natural number such that s 6∼= 0 modulo p. Let v ∈ G be such that it has a
pole of order 1 at all the primes which are factors of the pole divisor of f
and is equivalent to bp− b modulo B for some b ∈ C. (Such an f ∈ G exists
by the Strong Approximation Theorem.) Let δG, an element of the algebraic
closure of C, be a generator of the residue field of B over C and let δK , an
element of the algebraic closure of CK , be a generator of the Galois closure
of the residue field of b over CK . Let β be a root of (3.1) in the algebraic
closure of K. Let w ∈ G, and let Aw, Bw, Uw be the primes and the divisor
below A and B and U respectively in Gt,x,v,w,f . Let Ḡw = Gx,t,v,w,f,β. Let
K̄ = K(β, δK), Ḡ = G(β, δG). Then the following statements are true.
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1) Ḡw ⊂ Ḡ ⊂ K̄.
2) Ḡ/Ḡw is a separable (possibly infinite) constant field extension, and

thus no prime ramifies in this extension.
3) The primes Aw and Bw are distinct in Ḡw.
4) In K̄, b =

∏
bi, where bi are distinct prime divisors of degree 1.

5) In Ḡ, B =
∏

Bi, where Bi are distinct prime divisors of degree 1.
6) For each i there exists j such that bi lies above Bj and e(bi/Bj) = 1.
7) In K̄, a =

∏
a

p
i , where ai are distinct prime divisors.

8) In Ḡ, A =
∏

A
p
i , where Ai are distinct prime divisors.

9) For each i there exists j such that ai lies above Aj and e(ai/Aj) = 1.
10) In Ḡw, Aw = a

p
w for some prime aw of Ḡw.

11) There exist z1 ∈ Ḡ such that its divisor is of the form TA−1
1 , where

T is a divisor of Ḡ relatively prime to B and A, such that for some
b ∈ C, z1 ∼= bp − b modulo B.

12) Let k > 0, k 6∼= 0 modulo p be greater than the highest order of any
pole of z1 in K̄. Then there exists z2 ∈ Ḡ such that its divisor is of
the form WA

−pl

1 , where pl > p2k and W is an integral divisor of Ḡ
relatively prime to B and A. Further, z2 ∼= 1 modulo B.

13) Let z = z1z2. Then in Ḡ, z has a pole of order pl + 1 > p2k at A1 and
is equivalent to bp − b modulo B. All the other poles of z are of order
less than k.

14) In Ḡw(z), z has a pole of order pl +1 > p2k at the prime below A1 and
is equivalent to bp − b modulo the divisor below B.

15) In Ḡ, U is a p-th power of another divisor.
16) In Ḡw, Uw is a p-th power of another divisor.

Proof. 1. First of all, x, t ∈ G by construction, v, f, w ∈ G by assumption.
Therefore, Gx,t,v,f.w ⊂ G, and Ḡw = Gx,t,v,f,w,β ⊂ G(β, δG) = Ḡ. Secondly,
by Lemma 6.14, b will split into factors of degree 1 in K̄. Therefore, δG ∈
K(δK) by Lemma 3.5. Hence, Ḡ ⊂ K̄.

2. Ḡ = C(t, x, β, δG) = CḠw(β).
3. Since v ∈ Ḡw has a pole at Aw but not at Bw, these primes must be

distinct in Ḡw.
4,5,7,8,10,15,16. These statements follow from Lemma 3.4.
6,9. These statements follow from Lemma 3.6.
11, 12. These statements follow from Lemma 6.15.
13. This statement follows from a direct calculation of the orders of poles

of z.
14. This statement follows from the fact that Ḡ/Ḡw(z) is also a separable

constant field extension and thus no prime is ramified.

Lemma 3.8. Let b, a, A, B, Ḡ, K̄, ai, Ai, bi, Bi, f, z, s, k be as in Lemma
3.7. Let w ∈ K. If w ∈ G then let Ḡw be as in Lemma 3.7. Let a ∈ CK̄ be
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such that the equation

xp − x− a = 0(3.5)

has no solution in CK̄ , the constant field of K̄, while a is algebraic over a
finite field. If w ∈ G, without loss of generality, we can assume that a ∈ Gw.
(Gw can be any subfield of G containing the elements listed above and such
that its constant field is finite.) Let

h = f−1wp(s+1) + f−p.(3.6)

Let βw be a root of the equation

xp − x− (h−k + z) = 0.(3.7)

Let α be a root of the Equation (3.5). Then the following statements are true.
1) If w ∈ K has a pole at b, then the equation

p−1∏
i=0

(a0 + a1(α+ i) + · · ·+ ap−1(α+ i)p−1) = h(3.8)

has no solution (a0, . . . , ap−1) ∈ K̄(βw).
2) If w ∈ G has no pole at B, then Equation (3.8) will have a solution

(a0, . . . , ap−1) ∈ Ḡw(z, βw) ⊂ Ḡ(βw).

Proof. The following figure describes the extensions involved. The two left
columns correspond to the case of w ∈ G.

Gw,f,v,t,x

Ḡw(z)

Ḡw(z, βw)

Ḡw(z, βw, α)

G

Ḡ

Ḡ(βw)

Ḡ(βw, α)

K̄(βw)

K̄(βw, α)

K̄

K

Primes which are poles of f are rami-
fied with ramification degree equal to p.
Factors of Bw, B, b are not ramified.
Bw, B, b split into factors of degree 1.

There is no constant field extension.
Primes at which h has a zero of order
not divisible by p are ramified with ram-
ification degree equal to p. Factors of
Bw, B, b are not ramified and split
completely into factors of degree 1, if
w has a pole at b.

Factors of Bw, B, b do not split.

Aw,Bw A, B a, b
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Before we proceed with the proof we will discuss the following three points.
First of all, we will show below that for all w ∈ G,

[K̄(βw) : K̄] = [K̄(βw, α) : K̄(βw)] = p,(3.9)

[Ḡ(βw) : Ḡ] = [Ḡ(βw, α) : Ḡ(βw)] = p,(3.10)

[Ḡw(βw, z) : Ḡw(z)] = [Ḡw(z, βw, α) : Ḡw(z, βw)] = p,(3.11)

while (3.9) holds for all w ∈ K. Secondly, it is not hard to see that the
existence of solutions a0, . . . , ap−1 ∈ K̄(βw) to (3.8) is equivalent to existence
of u ∈ K̄(α, βw) such that

NK̄(α,βw)/K̄(βw)(u) = h.(3.12)

Finally, assume w ∈ G. Then it is also not hard to see that (3.8) has
solutions in Ḡw(z, βw) if and only if there exists u ∈ Ḡw(z, α, βw) such that

NḠw(z,α,βw)/Ḡw(z,βw)(u) = h.(3.13)

In order to show that (3.9)-(3.11) hold, we will show that in extensions
K̄(βw)/K̄, Ḡ(βw)/Ḡ, and Ḡw(βw, z)/Ḡw(z) at least one prime will have
ramification degree p while the degree of each extension listed above is at
most p. (As above, when we consider the last two extensions, we assume
that w ∈ G.) Since all the extensions listed above are separable, the pres-
ence of a totally ramified prime will imply that there is no constant field
extension in either of the three extensions. Thus, since α was of degree p
over CK̄ , C and Cw- the constant field of Gw, it will remain of degree p over
the constant fields of K̄(βw), Ḡ(βw) and Ḡw(βw, z). We can assume without
loss of generality that a K̄-prime a1 lies above a Ḡ-prime A1. In this case,
by Lemma 3.7, in K̄, f has a pole of order p at a1, so that f−1 and f−p have
zeros of order p and p2 respectively at a1. Therefore, if w has a pole at a1,

orda1h = orda1f
−1w(s+1)p + f−p = ps orda1w < 0.

If w is a unit at a1, then

orda1h = orda1f
−1wp(s+1) + f−p = −orda1f = p.

If w has a zero at a1, then

orda1h = orda1f
−1wp(s+1) + f−p = −p orda1f = p2.

Thus, at a1, h either has a pole or a zero of degree at most p2. Now consider
h−k +z. Since at a1, z has a pole of order greater than p2k, orda1(h

−k +z) =
orda1z = −(pl + 1). Therefore, by Lemma 3.1, a1 will ramify completely in
the extension K̄(βw)/K̄. Hence, this extension is of degree p. Since at least
one prime is ramified completely and the extension is separable, the constant
field of K̄(βw) is the same as the constant field of K̄. Thus α is of degree p
over K̄(βw). Further we remind the reader that if w ∈ G, h ∈ Ḡw(z) ⊂ Ḡ.
In these fields, h−k + z will have a pole of order not divisible by p at primes
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below a1. Therefore, by Lemma 3.1 these primes in Ḡw(z)(βw) and in Ḡ(βw)
respectively will have factors with ramification degree p. Consequently, the
degrees of the corresponding extensions will be equal to p. Finally, α will
remain of degree p over Ḡw(z)(βw) and Ḡ(βw) for the reasons described
above.

For future use, in the case w ∈ G, also note that in all of the three fields,
any valuation that is a zero of h is also a pole of (h−k + z). Further, the
order of (h−k + z) at any such valuation, except for a1 and primes below it,
is divisible by p if and only if the order of h at this valuation is divisible by
p. Thus, if h has a zero at t and ordth 6∼= 0 modulo p in Ḡw, then t ramifies
completely in the extensions K̄(βw)/K̄, Ḡ(βw)/Ḡ, Ḡw(z, βw)/Ḡw(z).

We will now proceed to the proof of the lemma.

1) Suppose w ∈ K has a pole at b. Then in K,

ordbh = ordb(f−1wp(s+1) + f−p) = p(s+ 1)ordbw − s 6∼= 0 modulo p.

Further,

ordbh < 0.

Further, by construction, no factor of b ramifies in the extension K̄/K.
Thus, in K̄, for any factor g of b, ordgh 6∼= 0 modulo p and h has a
pole at all factors of b.

Next observe the following. Since h has a pole at b, and z does
not have a pole at any factor of b, h−k + z does not have a pole at
any factor of b, and so, by Lemma 3.1, no factor of b ramifies in the
extension K̄(βw)/K̄. Thus, the order of h at any factor of b is not
divisible by p in K̄(βw).

Note also that every factor of b is relatively prime to the discriminant
of βw. Further, h−k + z ∼= bp − b modulo every factor of b in K̄ and
thus the left side of (3.7) factors completely modulo every factor of b.
Therefore, by [21, Proposition 25, page 27, Proposition 16, page 67],
every factor of b will split completely in the extension K̄(βw)/K̄. Since
this extension has no constant field subextension, and every factor of
b is of degree 1 in K̄, we must conclude that in K̄(βw) all factors of b
are also of degree 1.

Since K̄ and K̄(βw) have the same constant field, (3.5) still has
no solution in K̄(βw) and consequently, (3.5) has no solution modulo
any factor of b in K̄(βw). Thus, by [21, Proposition 25, page 27,
Proposition 16, page 67], every factor of b in K̄(βw) remains prime
in K̄(βw, α). Hence, by Lemma 3.2, (3.12) will have no solution in
K̄(α, βw).

2) Suppose now w does not have a pole at b and w ∈ G. We will show
that in this case (3.13) will have a solution in Ḡw(z, α, βw).
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By the Strong Hasse Norm Principal (see [2, Page 185] or [42,
Propositions 10,11, pages 182-183; Theorem 2, page 206]), it is enough
to show that for all primes t of Ḡw(z, βw), h is a local norm. Note that
no prime ramifies in the extension Ḡw(z, α, βw)/Ḡw(z, βw). Thus if h
is a unit at t, it is automatically a local norm at t by [42, Corollary,
page 226]. Suppose t is a pole of h. Then either it is a factor of Bw or
it is a pole of w. Since w has no pole at Bw, direct calculation assures
us that h will have a pole at every factor of B of order divisible by p.
On the other hand, if t is a pole of w, then again by direct calculation
one can see that h will also have a pole at t of order divisible by p.
Indeed, the only case which has to be considered with some care is the
case of t being a pole of f or a zero of f−1. In this case,

ordth = ordt

(
f−1wp(s+1) + f−p

)
= min

(
ordt

(
f−1wp(s+1)

)
, ordtf

−p
)

= ordt

(
f−1wp(s+1)

)
.

We should note here that by Lemma 3.7, t is ramified over Gw,f,v,t,x

with ramification degree divisible by p. On the other hand, f ∈
Gw,f,v,t,x. Thus, ordt(f−1) ∼= 0 modulo p. Hence, ordth ∼= 0 mod-
ulo p.

Assume now that t is a zero of h. If t is a factor of Aw then it
is ramified with ramification degree divisible by p over Gx,t,v,w,f and
since h ∈ Gx,t,v,w,f , we can conclude that h has a zero of order divisible
by p at t. If t is not a factor of Aw, then it is ramified with ramification
degree divisible by p over Ḡw(z) and again we conclude that h has a
zero of order divisible by p at t. Thus, in all the cases cited above, by
Lemma 3.3, h is a local norm at t.

Theorem 3.9. Let a and b be primes of K satisfying conditions described
in Lemma 3.7. Then the set INT (b) is Diophantine over K.

4. Integrality at one prime: The case of q 6= p.

In this section we will show that in the case C has an extension of degree
q 6= p, the set of elements of G integral at a prime is Diophantine over G.
Most of the work necessary to prove this proposition has been done in [39],
but we will need to take care of some details. In this section we will assume
q 6= p.

Lemma 4.1. Let L be an algebraic function field, let a ∈ L. Let q be a
rational prime distinct from the characteristic of the field. Then a prime t
of K ramifies in the extension K(a1/q)/K if and only if ordta 6∼= 0 modulo
q.
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Proof. If ordta 6∼= 0 modulo q then t will clearly ramify in the extension.
Suppose now ordta ∼= 0 modulo q. Since we can multiply or divide a by
the qth power of some local uniformizing parameter without changing the
extension, without loss of generality we can assume that ordta = 0. But in
this case the discriminant of the power basis of a1/q will be a unit at t, and
thus t will be unramified.

Lemma 4.2. Let L be an algebraic function field containing primitive q-th
roots of unity. Let C and B be prime divisors of L. Let v ∈ K be such that
the divisor of v is of the form C−1U, where U is a divisor of L which has
no common factors with C or B. Further, assume v is equivalent to bq 6= 0
modulo B, where b ∈ CL. (Such a v exists by the Weak Approximation
theorem.) Let β be a root of

T q − v = 0.(4.1)

Let RB be the residue field of B in L and assume it is separable over CL,
the constant field of L. Let δ be an element of the algebraic closure of CL

such that CL(δ) is isomorphic to the Galois closure of RB over CL. Let
L̄ = L(β, δ). Then in L̄

C =
∏

c
q
i ,

and

B =
∏

bi,

where for i 6= j, bi 6= bj , ci 6= cj, and for all i, bi is of degree 1.

(The proof of this lemma is analogous to the one for Lemma 3.4.)

Lemma 4.3. Let f ∈ G have the divisor of the form (3.4), but with s not
congruent to 0 modulo q. Let v ∈ G be such that it has a pole of order 1 at
all the primes which are factors of the pole divisor of f and is equivalent to
bq modulo B for some b 6= 0 in the field of p elements. (Such an f ∈ G exists
by the Strong Approximation Theorem.) Let δG, an element of the algebraic
closure of C, be a generator of the residue field of B over C. Let β be a root
of (4.1) in the algebraic closure of G. Let w ∈ G, and let Aw, Bw, Uw be
the primes and the divisor below A and B and U respectively in Gt,x,v,w,f .
Let Ḡw = Gx,t,v,w,f,β. Let Ḡ = G(β, δG). Then the following statements are
true.

1) Ḡw ⊂ Ḡ.
2) Ḡ/Ḡw is separable (possibly infinite) constant field extension, and thus

no prime ramifies in this extension.
3) The primes Aw and Bw are distinct in Ḡw.
4) In Ḡ, B =

∏
Bi, where Bi are distinct prime divisors of degree 1.

5) In Ḡ, A =
∏

A
q
i , where Ai are distinct prime divisors.

6) In Ḡw, Aw = a
q
w, where aw is a prime of Ḡw.
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7) There exist z1 ∈ Ḡ such that its divisor is of the form TA−1
1 , where

T is a divisor of Ḡ relatively prime to B and A, such that for some
b ∈ C, b 6= 0, z1 ∼= bq modulo B.

8) Let k > 0 be the highest order of any pole of z1 in Ḡ. Then there
exists z2 ∈ Ḡ such that its divisor is of the form WA

−ql

1 , where W is
an integral divisor of Ḡ relatively prime to B and A, and ql > kq2.
Further, z2 ∼= 1 modulo B.

9) Let z = z1z2. Then in Ḡ, z has a pole of order ql + 1 > k at A1 and
is equivalent to bq modulo B.

10) In Ḡw(z), z has a pole of order ql +1 > q2k at the prime below A1 and
is equivalent to bq modulo the divisor below B.

11) In Ḡ, U is a q-th power of another divisor.
12) In Ḡw, Uw is a q-th power of another divisor.

(The proof of this lemma is analogous to the proof of Lemma 3.7.)

Lemma 4.4. Let A, B, Ḡ, Ḡw, Ai, Bi, f, w, z be as in Lemma 4.3. Let
a ∈ Ḡ be such that the equation

xq − a = 0(4.2)

has no solution in Ḡ. As above assume without loss of generality that a ∈
Ḡw. Let h be defined by (3.6) but with q in place of p. Let βw be a root of
the equation

T q − (h−k + z) = 0.(4.3)

Let α be a root of the equation (4.2). Then the following statements are true.
1) If w ∈ G has a pole at B, then the equation

q−1∏
i=0

(a0 + a1ξ
i
qα+ · · ·+ aq−1ξ

i(q−1)
q αq−1) = h(4.4)

has no solution (a0, . . . , aq−1) ∈ Ḡ(βw), where ξq is a q-th primitive
root of unity.

2) If w ∈ G has no pole at B, then Equation (4.4) will have a solution
(a0, . . . , aq−1) ∈ Ḡw(z, βw) ⊂ Ḡ(βw).

(The proof of this lemma is analogous to the proof of Lemma 3.8.)
Lemma 4.4 is the last part required for the proof of the following theorem.

Theorem 4.5. Let G be an algebraic function field whose constant field C
is algebraic over a finite field of characteristic p > 0. Assume further, that
C is not algebraically closed. Then for any prime B of G the set of all
elements of G integral with respect to B is Diophantine over G.

Proof. If C is not algebraically closed, then it has an extension of degree q,
where q is a prime. (This can be easily derived from [20, Theorem 13, page
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185].) Further, it is not hard to show that this extension will be generated
either by an equation of the form (3.5) or (4.1). By Lemma 6.6, any finite
extension of C will have also have an extension of degree q. Thus, a as
described in the proofs of Lemmas 3.8 and 4.4 exist. Finally, we note that
by Lemma 1.3, Equations (3.8) and (4.4) can be rewritten as an equivalent
system of equations over G. (By the equivalent system, we mean a system of
equations over G such that for every w ∈ G, this system will have solutions
in G if and only if (3.8), ((4.4) respectively) has solutions in Ḡ(βw).)

5. Diophantine Undecidability.

In this section we will summarize the discussion above and describe in more
detail classes of fields to which our result is applicable.

Theorem 5.1. Let K be a recursive field satisfying the assumptions of No-
tations 1.4 with q = p. Then Diophantine problem of K is undecidable.

Proof. The proof of this theorem will follow from Lemma 1.2, Theorem
2.12, Theorem 3.9 assuming we demonstrate existence of primes a and b as
described in the statement of Theorem 3.9. We can let a = p and b = q,
where p and q are described in Notations 1.4.

Theorem 5.2. Let K be a recursive field of characteristic p > 2. Let C be
the algebraic closure of a finite field in K. Assume C has an extension of
degree p. Assume further that K has a subfield K1, possibly equal to C, and
an element u transcendental over K1 such that for some x algebraic over
C(u), K = K1(u, x). Then Diophantine problem of K is undecidable.

Proof. We can consider K as an algebraic function field over a constant field
K1 = CK . By Theorem 6.11, we know that a finite extension of G contains
element t and constants c1, . . . as described in Notations 1.4. Further, by
Lemma 6.13, in the corresponding finite extension of K, t and c1, . . . will
also posses the required properties. Thus, by Theorem 5.1, the Diophantine
problem of K is undecidable.

6. Appendix.

Notations 6.1. In this section the term “algebraic function field K over
a constant field C” we will always mean a finite algebraic extension of a
rational function field C(w), where w is transcendental over C and C is
algebraically closed in K.

Lemma 6.2. Let H/L be a finite separable extension of algebraic function
fields and let CH be the constant field of H. Let u be an integral divisor of
L. Then degreeH(u) = [H : CHL]degreeL(u).

(See [1, Theorem 9, page 279 and Theorem 14, page 282].)
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Lemma 6.3. Let M/H be a Galois extension of algebraic function fields
over the same field of constants C, algebraic over a finite field. Let F be an
algebraic extension of C. Then MF/HF is a Galois extension whose Galois
group is isomorphic to the original one.

Lemma 6.4. Let C be a field algebraic over a finite field, and let t be tran-
scendental over C. Let H be a finite separable extension of C(t) generated
by α ∈ H. Let C0 be any subfield of C. Then the extension H/C0(α, t) is a
constant field extension.

Lemma 6.5. Let H be an algebraic function field over a perfect field of
constants C and let t be a nonconstant element of H. Then the following
conditions are equivalent.

1) t is not a p-th power in H.
2) The extension H/C(t) is finite and separable.

(See [22, page 94].)

Lemma 6.6. Let C be a field algebraic a over finite field of characteristic
p > 0. Let q be a rational prime possibly equal to p such that C has an
extension of degree q. For any natural number n, let Fn be the finite field of
pn elements. Let F =

⋃∞
i Fqi. Then there exists a natural number r such

that F ∩ C = Fqr .

Proof. First of all, we note the following well known facts concerning the
finite fields:

FmFn = Flcm(m,n);(6.1)

Fm is of degree m over the field of p elements and it consists of all the
solutions to the equation xpm − x = 0. (See [20, pages 184 - 185].) Next let
α be an element of the algebraic closure of a finite field such that [C(α) :
C] = q. Let a0, . . . , aq−1 be the coefficients of the irreducible polynomial of
α over C. Let m be the smallest positive integer such that αpm

= α. Then
from (6.1) we conclude that m = q[F1(a0, . . . , aq−1) : F1]. Let m = qtk,
where (k, q) = 1. Then Fqt−1 ⊂ Fqt−1k ⊂ C but Fqt 6⊂ C. Otherwise, C
contains FqtFm/q = Fm and thus α.

Lemma 6.7. Let A1 be a field algebraic over a finite field. Let A2 be a
finite algebraic extension of A1. Let α be an element of the algebraic closure
of A1 such that for some rational prime q, (q, [A1(α) : A1]) = 1. Then
(q, [A2(α) : A2]) = 1.

Proof. Let F (T ) = a0 + . . . + T k be the monic irreducible polynomial of α
over A2. Then a0, . . . , ak−1 ∈ A1(α) since these are symmetric functions
of conjugates of α over A2 which are also conjugates of α over A1 ⊂ A2.
Thus, A3 = A1(a0, . . . , ak−1) ⊂ A1(α) ∩ A2. Since A3 ⊂ A2, [A2(α) : A2] ≤
[A3(α) : A3]. On the other hand, since a0, . . . , ak−1 ⊂ A3, [A3(α) : A3] ≤
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[A2(α) : A2]. Thus, [A2(α) : A2] = [A3(α) : A3]. On the other hand,
A3(α) ⊂ A1(α) and A1(α) ⊂ A3(α) so that A1(α) = A3(α). Thus,

[A2(α) : A2] = [A3(α) : A3] = [A1(α) : A3] = [A1(α) : A1]/[A3 : A1],

and the lemma is true.

Lemma 6.8. Let H be an algebraic function field whose constant field C1

is algebraic over a finite field. Let p be a prime of H. Let C be an algebraic
extension of C1 such that for any field C2 ⊂ C such that C2/C1 is a finite
extension, [C2 : C1] is prime to the degreeH of p. Then p remains prime in
CH.

Proof. Suppose p splits in CH, then for some C2 as described in the state-
ment of the lemma, p splits in C2H. (This is true because in CH, p will
have at least two factors, and therefore there will be an element α integral
at one but not at the other. Hence, p will have to split in C1(α)H.) Let
m = [C2 : C1] and let P be a prime above p in C2H. Since C2/C1 is a
separable extension, by Theorem 14 on page 282 of [1], C2 is the constant
field of C2H. Next consider the following diagram:

C1

C2

Rp

RP

.

Here Rp and RP are residue fields of p and P respectively. Further, from
the diagram we can conclude that

[RP : C1] = [RP : Rp][Rp : C1] = [RP : C2][C2 : C1],

or, in other words,

f(P/p)degreeC1H(p) = degreeC2H(P)m.

Thus, since (m,degreeC1H(p)) = 1, we must conclude that degreeC1H(p) di-
vides degreeC2H(P). Hence, degreeC2H(P) is at least as big as degreeC1H(p)
= degreeC2H(p) ≥ degreeC2H(P). (Here we use the fact that degree of a
divisor stays the same under separable constant extensions by Lemma 6.2.)
Thus, we must conclude that degreeC2H(p) = degree(P)C2H and P is the
only prime of C2H above p.

Our next task is to prove the main technical theorem of this section. The
proof of this theorem will be similar to the proof of Theorem 3.6 of [38].
The differences will stem from the fact that we have an infinite constant field
here (as opposed to the finite constant field in the theorem cited above), and
seek primes which are linear polynomials in a certain element t of K. The
proof of the theorem relies on two technical lemmas which we state below.



HILBERT’S TENTH PROBLEM... 491

Lemma 6.9. Let M be a Galois extension of an algebraic function field L
over a finite field of constants, let CL be the constant field of L, let CM be the
constant field of M , let t be a nonconstant element of L. Let σ ∈ Gal(M/L),
and let C = {τστ−1|τ ∈ Gal(M/L)}. Further, let pr be the size of CL, let
φ = φCL

be the generator of Gal(CM/CL) sending each element c ∈ CM to
cp

r
, and assume that for every ψ ∈ C, ψ|CM

= φa for some natural integer
a different from zero. Then if k ∼= a modulo [CM : CL], m = [M : CML],
d = [L : CL(t)], and Ck(M/L, C) = {p|p is a prime of L, degree(p) = k, p is
unramified over CL(t), and for some β above p the Frobenius automorphism
of β belongs to C},∣∣∣∣Ck(M/L, C)− |C|

km
prk

∣∣∣∣(6.2)

<
|C|
km

((m+ 2gM )prk/2 +m(3gL + 1)pkr/4 + 2(gM + dm))

<
|C|
k

(7gM + 4d)prk/2,

where gM , gL are genus’ of M and L respectively.

(For the first inequality see [15, Proposition 13.4] and [14, Lemma 5.7,
p. 59]. The second inequality follows from [3, Corollary 2, page 106], [1,
Theorem 22, page 291], and the fact that the extension M/L is separable.)

Lemma 6.10. Let M be a Galois extension of an algebraic function field L
over a finite field of constants, and assume U is an algebraic function field
such that L ⊂ U ⊂ M , and U is not necessarily Galois over L. Let CM

and CL denote the constant fields of M and L respectively. Further, let p
be a prime of L which does not split in U . Let pU be the prime above p
in U , let β be a prime of M above p, let G(β) be the decomposition group
of β, and let σ ∈ G(β) be such that its coset modulo the inertia group
of β induces the Frobenius automorphism φRp on the residue field of p.

Then σf(pU/p) ∈ Gal(M/U), and f(pU/p) = [U : L] is the smallest positive
exponent such that the corresponding power of σ is in Gal(M/U). Further,
σ|CM

= φ
degree(p)
CL

, where φCL
is the Frobenius automorphism of CL.

Conversely, suppose β is a prime of M not ramified over L. Let p be
a prime of L below β and let σ be the Frobenius automorphism of β. As-
sume further that for some coset Gal(M/U)τ of Gal(M/U) in Gal(M/L),
Gal(M/U)τσ[U :L] = Gal(M/U)τ , while this equality does not hold for any
smaller exponent. Then p does not split in U .

(See [38, Lemma 3.3] for part one of the lemma and [16, Proposition 2.8,
page 101] for part two of the lemma.)

Theorem 6.11. Let C be an infinite field algebraic over a finite field of
characteristic p > 0. Assume C has an extension of degree q, where q is
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a rational prime (possibly equal to p). Let H be an algebraic function field
whose field of constants is equal to C. Then for any sufficiently large positive
integer h, a finite constant extension of H contains a nonconstant element
t, infinitely many constants c0 = 0, c1, . . . , such that for all i = 0, . . . , the
divisor of t + ci in H is of the form pi/q, where pi, q are primes of H of
degree qh.

Proof. We will first establish existence of t, and then derive the existence
of the required constants. Let z be a nonconstant element of H which
is not a p-th power. (Such an element exists by the Weak Approximation
Theorem.) Then by Lemma 6.5 the extension H/C(z) is finite and separable
and therefore is simple. Thus, for some α ∈ H,H = C(z, α). Let C0 =⋃∞

i Fqi ∩ C. Let C1 be the constant field of M1, the normal closure of
C0(α, z) over C0(z). Let H1 = C1(α, z). Then M1/H1 and M1/C1(z) are
Galois extension and all three fields have the same field of constants.

Let C2 be a finite extension of C1 contained in C1C. Let H2 = C2(z, α)
and note that H2/H1 is a separable constant field extension such that, by
Lemma 6.7 and by construction of C0, its degree is not divisible by q. Indeed,
let α1, α2, . . . ∈ C be the generators of C over C0. Then the degree of αi over
C0 and consequently, by Lemma 6.7, over C1(α1, . . . , αi−1) is not divisible
by q. Let β ∈ C2, then β ∈ C1(α1, α2, . . . ) and consequently the degree of
β over C1 is not divisible by q.

The following diagram describes the extensions involved.

C0(z)

C0(z, α) = H0

�
�

�
�

�
�

�
��

C1(z)

H1 = C1(z, α)

M1

C2(z) CC1(z) .

H2 = C2(z, α) C1H

Fix a positive integer h. Let |C1| = pr1 . Then C1(z) has exactly
pr1qh−pr1qh−1

qh irreducible polynomials of degree qh. (pr1qh − pr1qh−1
is the

number of elements of the algebraic closure of C1 of degree qh over C1.
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Each of these elements has exactly qh conjugates.) Let hH1 be the class
number of H1. Then for any sufficiently large h, C1(z) will contain at least
hH1 + 2 primes of degree qh.

Next consider the Galois extension M1/C1(z). Let t be a prime of C1(z)
of degree qh. Assume t splits completely in M1. Then, we claim, it splits
completely in H1 and its factors in H1 are all of degree qh. Indeed, assume
t =

∏[H1:C1(z)]
i=1 Ti is the factorization of t in H1. For each i, the relative

degree of Ti over t is equal to one. This fact together with the fact that
there is no constant field extension from C1(z) to H1 implies that C1(z)
degree of t must be the same as the H1 degree of Ti. Thus, for sufficiently
large h, H1 has at least hH1 + 2 primes of degree qh. Let b1, . . . , bhH1

+2

be these primes. Next consider the following hH1 + 1 H1-divisors of degree
zero: b2/b1, . . . , bhH1

/b1. At least two of these divisors belong to the same
divisor class, and thus for some 1 ≤ i, j ≤ hH1 + 2, bi/bj is a principal
divisor. Thus, there exists t ∈ H1 such that its divisor is of the form p/q,
where p, q are primes of H1 of degree qh.

Finally, we note that by Lemma 6.8, divisors p and q will remain prime
in C1H. Further, since degree of divisors does not change under separable
constant field extensions, p and q will retain their degree. Therefore, C1H,
a finite constant extension of H, will possess the required element t.

We will next address the issue of the existence of the constants c1, . . .
described in the statement of the lemma. To this end let G = C1H and
denote its constant field by CG = C1C. Note that t is of order 1 at a prime
of G and therefore is not a p-th power in G. Thus, the extension G/CG(t)
is separable and finite by Lemma 6.5. Hence, there exists β ∈ G such that
G = CG(t, β). Next let L1 be a finite subfield of CG such that the following
conditions are satisfied: The extension G/L1(β, t) = G1 is an (infinite)
constant field extension, the constant field of L1(β, t) is L1, and C1 ⊂ L1.
The first condition can be satisfied by any finite field L1 by Lemma 6.4. Also,
by definition of C1, as in the argument above, the second condition implies
that the extension CG/L1 contains no finite subextension of degree divisible
by q. Note that the prime p1 below p in G1 has the same degree in G1 as p in
G, by Lemma 6.2. Thus, since there is no constant field extension from L1(t)
to G1, we can conclude that [G1 : L1(t)] is equal to the degree of p1: qh. Let
N1 be the Galois closure of G1 over L1(t). Next let L2 ⊂ CG be any finite
extension of L1. Let G2 = L2(t, β) = L2G1. Let N2 = L2N1. Note that the
extensions N2/L2(t, β) and N2/L2(t) are Galois. From the above discussion,
it follows that the G2-divisor of t is of the form p2/q2, where p2 and q2 are
G2-primes of degree qh. Further, since L2/L1 is a separable extension and
since G1 and L1(t) share the same constant field, G2 and L2(t) have the same
constant field L2 and [G1 : L1(t)] = [G2 : L2(t)] by [1, Theorem 11, page 280
and Theorem 14, page 282]. Additionally, [N2 : L2(t)] ≤ [N1 : L1(t)], while
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the genus’ of N2 and G2 are equal to genus’ of N1 and G1 respectively by
[1, Theorem 22, page 291]. The following diagram describes the extensions
involved.

L1(t)

L1(t, β) = G1

N1

L2(t)

G2 = L2(t, β)

N2 = L2N1

C1H = G

C1C(t) .

Let b2 be a factor of p2 in N2. Further, let σ2 ∈ Gal(N2/L2(t)) be an
element of the decomposition group G(b2) of b2 such that the equivalence
class of σ2 modulo the inertia group of b2 is mapped onto the Frobenius
automorphism φL2 of L2 under the canonical homomorphism sending G(b2)
to Gal(R2b2/L2). Here R2b2 is the residue field of b2. Then by the first part
of Lemma 6.10 we have the following.

1) σ[G2:L2(t)]
2 ∈ Gal(N2/G2).

2) [G2 : L2(t)] is the smallest positive exponent such that the correspond-
ing power of σ2 is in Gal(N2/G2).

3) σ2 restricted to the constant field of N2 is equal to φL2 where φL2 is
the Frobenius automorphism of L2.

Next let a2 be a prime of L2(t) such that σ2 is the Frobenius automorphism
of some N2-factor g2 of a2 in N2. Then by the second part of Lemma 6.10
we can conclude that a2 does not split in G2.
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Next we note that in the notations of Lemma 6.9, a = 1, and thus,
assuming C is the conjugacy class of σ2 in Gal(N2/L2(t)),

|C1(N2/L2(t), C)|

>
|C|

[N2 : L2(t)]
|L2| − |C|(7gN2 + 4)|L2|1/2(6.3)

> |L2|1/2

(
1

[N1 : L1(t)]
|L2|1/2 − ([N1 : L1(t)](7gN1 + 4))

)
.(6.4)

Hence, we can conclude that for sufficiently large |L2|, arbitrarily large num-
ber of degree one primes of L2(t) will not split in G2. For each natural
number m, let N(m) be the lower bound on the size of L2 sufficient for the
number of the non-splitting degree one primes to be greater than m. Let a2,
as above, be such a prime. Then, since there is no constant field extension
from L2(t) to G2, [G2 : L2(t)] = f(p2/p2 ∩ L2(t)) = qh = f(g2 ∩ G2/a2).
Thus, again using the fact that there is no constant field extension from
L2(t) to G2, we conclude that g2∩G2 is of degree qh in G2 and will not split
in the extension G/G2.

Finally, we note that, that any degree one prime of C2(t) which is not a
pole of t, is the zero of the element of the form t + c, where c ∈ L2. Thus,
keeping in mind that the pole of t+c is the same as pole of t, we can conclude
that the divisor of t+ c in G will be of the required form.

Lemma 6.12. Let F/G be a finite separable extension of algebraic function
fields. Let a be a prime of G which does not split in F , i.e., a has only one
unramified prime factor A in F and f(A/a) = [F : G]. Then there exist
α ∈ F such that F = G(α), α is integral with respect to a and such that a
is not a zero of the discriminant of α.

Proof. Let α ∈ F be such that its residue class modulo A generates the
residue field of A over the residue field of a. (Such an element exists because
the residue field of A is separable, by assumption, over the residue field of
a.) Then α must be integral with respect to A and thus with respect to a.
Further, since the residue class of α is of degree [F : G] over the residue field
of a, F = G(α). Finally, since the residue class of α generate the residue
field of A over the residue field of a, a cannot be a zero of the discriminant of
α. (Otherwise the irreducible polynomial of α modulo a will have multiple
roots. This is impossible since by assumption the residue field extension is
separable.)

Lemma 6.13. Let H be an algebraic function field over a field of constants
CH . Let K be a constant field extension of H. Let CK be the constant field
of K and assume H is algebraically closed in K. Let t ∈ H \ CH be such
that H/CH(t) is separable. Let a be a prime of CH(t) remaining prime in
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H and such that its residue field is separable over CH . Then a will have just
one prime factor in K.

Proof. Without loss of generality assume a is not a pole of t and let P (t)
be the polynomial in t over CH corresponding to a. By Lemma 6.12, there
exists α ∈ H such that H = CH(α, t), α is integral with respect to a, and
a is not a zero of the discriminant of α. Let G(T ) be the monic irreducible
polynomial of α over CH(t). Then, given our assumptions on α and a, by
[21, Proposition 25, page 27], G(T ) does not split modulo a. Next consider
P (t) over CK(t). Since H is algebraically closed in K, CH is algebraically
closed in CK , and thus P (t) will not factor in CK(t) by [1, Theorem 11, page
280]. Hence, a will remain prime in CK(t). Next we want to show that G(T )
will not factor modulo a over CK(t). First of all, observe that since P (t) is
separable over CH , the residue field of a as a prime of CH(t) is algebraically
closed in the residue field of a as a prime CK(t) by [1, Theorem 13, page 281].
Let Ḡ(T ) is the image of G(T ) modulo a. By assumption, Ḡ(T ) is irreducible
over the residue field of a as a prime of CH(t). Finally, since the residue
field of a as a prime of CH(t) is algebraically closed in the residue field of
a as a prime CK(t), again by [1, Theorem 11, page 280], Ḡ(T ) will remain
prime over the residue field of a in CK(t). Since K = CKH = CK(t, α), we
can use [21, Proposition 25, page 27] to conclude that a will remain prime
in K.

Lemma 6.14. Let K be an algebraic function field over a field of constants
CK . Let t be a prime of K. Let Rt be the residue field of t isomorphic to
a finite extension of Ct of CK . Assume that Ct is separable over CK . Let
CGal be the Galois closure of Ct over CK . Then in the extension CGalK/K,
t will split into degree 1 factors. Further, the same statement will apply to
any separable constant field extension of CGalK.

Proof. Let α ∈ K be such that the residue class of α modulo t generates
Ct over CK . Let F (T ) ∈ CK [T ] be the monic irreducible polynomial of the
residue class of α over CK . By assumption F (T ) is a separable polynomial.
Let CGal be the splitting field of F . Let a1, . . . , am be all the distinct roots
of F (T ) in the algebraic closure of CK . Since F (T ) does not factor over
K (otherwise some symmetric function of a subset of a1, . . . , am would be
in K \ CK), a1, . . . , am are conjugates over CK and K. Next note that
NK(ai)/K(α− ai) = F (α) ∼= 0 modulo t. Thus, for each i, (α− ai) has a zero
at a factor of t inK(ai) andK(a1, . . . , am). Further, α−ai and α−aj have no
common zeros for i 6= j because these elements differ by a nonzero constant.
Hence, t has at least degree(F (T )) factors in K(a1, . . . , am). On the other
hand, degree of t over K is equal to the degree of F (T ) and this degree
remains the same in K(a1, . . . , am)- a separable constant field extension of
K. Thus all the factors of t in CGalK are of degree 1. Finally, under any
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separable constant field extension of CGalK all the divisors including factors
of t will retain their degree.

Lemma 6.15. Let {q, p1, . . . , pm} be a set of primes of K. Let {b1, . . . , bm}
be a set of elements of K such that for each i = 1, . . . ,m, bi is integral at
pi. Let {n1, . . . , nm} be a set of natural numbers. Then there exists y ∈ K
satisfying the following requirements:

1) ordqy = −pl, for some l ∈ N;
2) y is integral at all the other primes of K;
3) ordpi(y − bi) ≥ ni.

Proof. By the Strong Approximation Theorem ([14, page 21, Proposition
2.11]), there exists y1 ∈ K such that ordpi(y1 − bi) ≥ ni, y1 has a pole at q
and is integral at all the other primes. By a corollary of the Riemann-Roch
Theorem, for any sufficiently large l, which we can assume to be greater
than logp(ordqy1), there exists y2 ∈ K with a sole pole of order pl at q, and
for each i = 1, . . . ,m, with a zero of order greater than ordpi(y1 − bi) at pi.
Next consider y = y1 + y2. Note that y will have the pole of the required
order and ordpi(y − bi) = ordpi(y1 + y2 − bi) ≥ ni.

Lemma 6.16. Let K be an algebraic function field over a field of constants
CK . Let t be a nonconstant element of K such that the extension K/CK(t)
is finite and separable. Let C̃K be the algebraic closure of CK and let K̃ =
C̃KK. Then the extension K̃/C̃K(t) is separable. Further, let T̃ be a prime
of C̃K(t) with ramified factors in K̃. Let T be the prime below T̃ in CK(t).
Then T has ramified factors in K.

Proof. Since K/CK(t) is a finite and separable extension, this extension is
simple. Let α be a generator. Then the monic irreducible polynomial of α
over Ck(t) has no multiple roots. On the other hand, α will also generate
K̃ over C̃K(t), and hence K̃/C̃K(t) is separable.

Next let ĈK be the inseparable closure of CK and let K̂ = ĈKK. Then
the extension C̃K/ĈK is separable. Further, since K/CK(t) is separable,
n = [K̂ : ĈK(t)] = [K : CK(t)]. Assume T has no ramified factors in
K. Let {ω1, . . . , ωn} be an integral basis with respect to T. Then by [3,
Lemma 2, page 71], T is neither a zero nor a pole of the discriminant of
this basis. But {ωi}i=1,... ,n is also a basis of K̂/ĈK(t). Thus, by the above
cited lemma, no factor of T in ĈK(t) has ramified factors in K̂. Finally
consider the extension tower K̃ − K̂ − ĈK(t). Since the extension K̃/K̂ is a
separable constant field extension, no primes ramify. Thus, T̂, any factor of
T in ĈK(t), has no ramified factors in K̃. Finally, we note that the extension
K̃/C̃K(t) is a subextension of K̃/ĈK(t), and thus T̃ has no ramified factors
in K̃.
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Lemma 6.17. Let K̃ be an algebraic function field over an algebraically
closed field of constants C̃K . Let t be transcendental over C̃K . Let K̃ be
a separable extension of C̃(t). Let t be a prime of K̃ not ramifying in the
extension K̃/C̃(t) and not a pole of t. Let x ∈ K̃. Then ordt∂x/∂t =
ordtdx/dt.

Proof. By [22, page 96], ordt∂x/∂t = ordt∂t/∂t + ordtdx/dt. However, if
t is not ramified over C̃(t), for some a ∈ C̃, t + a is a local uniformizing
parameter for t. Therefore, ordt∂t/∂t = 0.

Lemma 6.18. Let K be an algebraic function field over the constant field
CK . Let C be the algebraic closure of a finite field in K. Let G be the
algebraic closure of C(u) in K, where u ∈ K \ CK and K is separable over
CK(u). Then the extension G/C(u) is finite.

Proof. First of all, observe that C(u) is algebraically closed in CK(u). Next,
let f ∈ G. Then by [1, Theorem 11, page 280], [C(f, u) : C(u)] = [CK(f, u) :
CK(u)] ≤ [K : CK(u)]. Thus, since G is separable over C(u), the extension
G/C(u) must be finite.

References

[1] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York,
1986.
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