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Given a point P on a smooth projective curve C of genus
g, one can determine the Weierstrass weight of that point by
looking at a certain Wronskian. In practice, this computa-
tion is difficult to do for large genus. We introduce a natural
generalization of the Wronskian matrix, which depends on a
sequence of integers s = m0, . . . , mg−1 and show that the de-
terminant of our matrix is nonzero at P if and only if s is the
non-gap sequence at P .

As an application, we compute the weights of certain points
on the F9 and F10, the 9th and 10th Fermat curves. These
weights correspond to the expected weights predicted in an
earlier paper.

Introduction.

One of the fundamental facts about Weierstrass points (and generalizations
of Weierstrass points) is that any given curve has only a finite number of
them; that the total Weierstrass weight of all the points on a curve is finite.
Thus, one of the basic problems in the study of Weierstrass points is, once
found, to count the Weierstrass weight of those points. One would at least
like to know if one has found all of the Weierstrass points on one’s curve of
interest.

Fermat curves Fn : Xn +Y n +Zn = 0 are of particular interest since they
have so many automorphisms, and thus (by Lewittes’ Theorem [L]) so many
known Weierstrass points. Hasse [Ha] showed that the weight of a point with
XY Z = 0 is (n− 1)(n− 2)(n− 3)(n+4)/24 by demonstrating the existence
of certain holomorphic differentials. In [T], we exploited the simplicity of
order two automorphisms to get a lower bound on the Weierstrass weight of
a second class of well-known Weierstrass points on Fermat curves. Further,
we showed, with the aid a computer, that the lower bound corresponded to
the actual weights for n ≤ 8. For n = 8, this was a new result. It seemed
unlikely to be able to repeat this for higher degree (more relevantly, higher
genus) Fermat curves. Below, however, we do demonstrate that the lower
bound given in [T] is exact, for n = 9 and 10.

501



502 CHRISTOPHER TOWSE

1. Preliminaries.

Throughout, we will consider monotonically increasing sequences of non-
negative integers s = (m0, . . . ,mg−1). We define the weight of such a se-
quence to be wt(s) = wt(m0, . . . ,mg−1) =

∑g−1
i=0 (mi − i).

The idea of the weight is to measure how much a given sequence differs
from a “standard” sequence. In this case, we are merely comparing s to
s0 = (0, 1, . . . , g − 1).

Let C be a smooth, projective curve of genus g defined over K = C or
any other algebraically closed, characteristic zero field. Let P be a point on
C.

Definition. Given any k-dimensional K-vector space, A, of holomorphic
differentials on C, we say a basis for A, ω0, . . . , ωk−1, is adapted to P if
0 ≤ ordP ω0 < ordP ω1 < · · · < ordP ωk−1.

It is well-known (see [F-K]) that any such A has a basis adapted to P ,
for any P ∈ C. It is easy to see that the numbers ordP ωi do not depend on
the choice of basis, as long as the basis is adapted for P .

Definition. If we let A be the space of all holomorphic differentials on C,
and we let ni = ordP ωi, then the sequence of (monotonically increasing,
nonnegative) integers n0, . . . , ng−1 is called the nongap sequence of P .

Definition. We define the (Weierstrass) weight of P to be the weight of
the nongap sequence at P .

Note that this differs from the “classical” nongap sequence defined using
orders of poles of functions at P . However, the ideas are related via the
Riemann-Roch Theorem, and the Weierstrass weight of a point is the same,
using either approach.

2. Main Results.

Let {ω0, . . . , ωg−1} be a basis of holomorphic differentials on C. Let x be a
local uniformizing parameter on some Zariski open set of C containing P .
Then we can write each differential as ωj = fj dx for some function fj . Let
F = {f0, . . . , fg−1}.

A fundamental fact (due to Hurwitz [Hu]) is that the weight of a point P
is equal to the order of vanishing at P of the determinant of the Wronskian
matrix whose first row is F . First, we relate the weight of P to the weights
of various sequences s.

Definition. Suppose we have chosen any fixed set of functions Φ =
{φj(x)}k−1

j=0 . We define MΦ[m0, . . . , mk−1] = M [m0, . . . , mk−1] = M [s] to

be the matrix whose ith row (i = 0, . . . k − 1) is (φ(mi)
0 , . . . , φ

(mi)
k−1 ) where

φ(m) denotes the mth derivative with respect to x.
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So M [0, . . . , k − 1] is a Wronskian matrix with first row [φ0, . . . , φk−1].
We will abbreviate this as WΦ.

Proposition 1. The dth derivative of the Wronskian determinant is equal
to a sum of determinants of matrices M [s] where s has weight d.

Proof. We use induction on d. For the case d = 0, we note that the only
sequence of weight zero is s0 = (0, 1, . . . , k − 1). As noted above, M [s0] is
the Wronskian itself.

For general d, we look at the derivative of the determinant of one of
the matrices M [s]. Let D denote differentiation with respect to x. Using
linearity of the determinant in the rows of M, we see that

D(detM [m0, . . . ,mk−1]) = det M [m0 + 1,m1, . . . ,mk−1] + · · ·
+ det M [m0,m1, . . . ,mk−1 + 1].

If the old sequence (m0, . . . ,mk−1) has weight d, then any of the new se-
quences (m0, . . . ,mi + 1, . . . ,mk−1) has weight d + 1. �

It should be noted that not all of such sequences will be strictly monotonic,
but for any of those sequences, s, M [s] will have a repeated row, and will
therefore have determinant identically zero. Note also that the same M [s]
may appear more than once in the sum. For instance, with g = 4 and k = 3,
we get

D(3) det W = detM [0, 2, 3, 4] + 2 detM [0, 1, 3, 5] + det M [0, 1, 2, 6].

The point of the proposition is the observation that the sequences appearing
in our M [s] notation are related to the weight of a point. The following
theorem elaborates on this connection.

Theorem 2. Let s = (m0, . . . ,mg−1) be a monotonically increasing se-
quence of nonnegative integers. Let P be a point of C and let F be as
above. Suppose wt(s) ≤ wt(P ). Then det MF [s](P ) 6= 0 if and only if s is
the nongap sequence of P .

That is, the determinant of the matrix M = M [m0, . . . , mg−1], evaluated
at the point P , is zero for all sequences of weight less than or equal to the
weight at P , except for the actual nongap sequence of P .

Proof. It is clear that changing the basis F will only change the determinant
by a nonzero multiple. So we may assume that ω0, . . . , ωg−1 is a basis for
the space of holomorphic differentials of C adapted to P . Let (n0, . . . , ng−1)
be the nongap sequence at P .

Since x is a local uniformizing parameter at P , P is not in the support
of the divisor (dx). In other words, ordP dx = 0. Thus, ordP fi = ni. So
D(k)(fi)(P ) = 0 for k < ni and D(ni)(fi)(P ) 6= 0.
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In particular, if we consider the case when mi = ni for all i, we see that M
is lower triangular, with nonzero entries on the diagonal. Thus, det M 6= 0.

Now, suppose mi 6= ni for some i. Since wt(m0, . . . ,mg−1) ≤ wt(n0, . . . ,
ng−1), we know there is some mi < ni. Let I be the smallest index with
mI < nI . Then the first I rows of M can only have nonzero entries in (at
most) the first I−1 places. They are all contained in the (I−1)-dimensional
K-vector space KI−1 × {0}g−I+1. Thus, the first I rows of M are linearly
dependent. We conclude that det M = 0. �

Let Φ = {φ0, . . . , φk−1}. As above, WΦ is the corresponding Wronskian
matrix. A basic property of Wronskians is this: If G = {hφ0, . . . , hφk−1}
then

det WG = hk det WΦ.

This equality is not true if we replace the Wronskians by general matrices
of the form M [s]. However, we do have the following result.

Proposition 3. Let F be a set of functions {f1, . . . , fg} so that the differ-
entials ωi = fi dx form a basis for the space of holomorphic differentials of
C. Let h = h(x) be another function and let G = {hf0, . . . , hfg−1}. Let
n0, . . . , ng−1 be the nongap sequence at P . Let s = (m0, . . . , mg−1) be a
sequence with mi ≤ ni for all i. Then

det MG [s](P ) = hg det MF [s](P ).

Proof. The ith row of MG is[
(hf0)(mi) · · · (hfg−1)(mi)

]
=

[
mi∑
r=0

(
r

mi

)
h(r)f

(mi−r)
0 · · ·

mi∑
r=0

(
r

mi

)
h(r)f

(mi−r)
g−1

]
.

Expanding the determinant of MG [s] by linearity in the rows, we get a sum
of determinants of matrices with ith row equal to[

h(r)f
(mi−r)
0 · · · h(r)f

(mi−r)
g−1

]
where 0 ≤ r ≤ mi. We can pull out h(r) from these rows.

Let us consider one of the matrices whose determinant is in our sum. Its
ith row is of the form [

f
(ti)
0 · · · f

(ti)
g−1

]
where ti ≤ mi ≤ ni. So this matrix is just MF [s̃], where s̃ = (t0, . . . , tg−1).
Plugging in the point P , we know that detMF [s̃](P ) = 0 unless ti = ni for
all i, by the theorem.

We have two cases. First, if mi < ni for some i, then we see that all
the determinants in our sum vanish at P , by the theorem. And we see that
det MF [s](P ) = 0 by the theorem, as well.
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If, on the other hand, s was the nongap sequence of P to begin with,
then there is exactly one nonvanishing term in our sum. It is the one with
s̃ = s. That is, r = 0 in all cases. So we have factored out h(0) = h
from each of the g rows. Also, the factors

(
r

mi

)
=

(
0

mi

)
are all 1. We get

det MG [s](P ) = hg det MF [s](P ). �

3. Examples - Fermat curves.

Consider the nth Fermat curve Fn : Xn + Y n + Zn = 0. Dehomogenized at
Z 6= 0, this is given by xn + yn + 1 = 0.

Definition. Any point P ∈ Fn with XY Z = 0 will be called a trivial
Weierstrass point.

Let ζn be a primitive nth root of unity. Consider the involutions, T , of
Fn given by

[X, Y, Z] 7→ [ζj
nY, ζ−j

n X, Z], j = 0, . . . , n− 1.

We could also have T switch X and Z or Y and Z, of course, for a total of
3n involutions.

Definition. Any Weierstrass point P ∈ Fn fixed by one of the involutions
T will be called a diagonal Weierstrass point.

We should note that for odd n there are diagonal Weierstrass points which
are also trivial Weierstrass points. Since the trivial points are well under-
stood (again, see [Ha]), we will ignore them in the following discussion.

We showed in [T] that any diagonal point, P , has exactly q odd nongaps
and g − q even ones. Here

q =

{
(n− 1)(n− 3)/4 n odd
(n− 2)2/4 n even

is the genus of the any of the quotient curves Fn/〈T 〉.
Let

s = (0, 1, . . . , 2q − 1, 2q, 2q + 2, . . . , 2(g − q − 1)).
The weight of s is the so-called expected weight of P , wte(P ). We know
from [T] that

wt(P ) ≥ wte(P ) =

{
(n− 1)(n− 3)/8 n odd
(n− 2)(n− 4)/8 n even.

Proposition 4. Let

H = {xiyj : 0 ≤ i ≤ n− 3− j, 1 ≤ j ≤ n− 3},
P = ((−1/2)(1/n), (−1/2)(1/n)), and s′ = (n − 2, n − 1, . . . , 2q − 1, 2q, 2q +
2, . . . , 2(g − q − 1)). Then det MH[s′](P ) 6= 0 if and only if the weight of P
is equal to the expected weight, wte(P ), given above.
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Proof. It is easy to check that

{xi/yj dx : 0 ≤ i ≤ j − 2 and j = 2, . . . , n− 1}
is a basis for the space of holomorphic differentials on Fn. So we may let
F be the corresponding set of functions of the form xi/yj . Let h = yn−1.
Then G = {xiyj : 0 ≤ i ≤ n− 3− j, 0 ≤ j ≤ n− 3}. Proposition 3 says that
det MG [s](P ) = hg det MF [s](P ) for any sequence s of weight less than or
equal to the weight of P .

Further, since the first n − 2 functions of G are {1, x, . . . , xn−3}, we see
that

y−g(n−1) det MF [s](P ) = det MG [s](P ) = α det MH[s′](P )

where α =
∏n−2

i=0 i!. Since detMF [s](P ) is nonzero if and only if wt(P ) =
wt(s), by the theorem and since ordP h = 0, we are done. �

Proposition 5. The nontrivial diagonal Weierstrass points on F9 have
weight 6.

Proof. Using the set of functions H from the corollary, we had Mathematica
compute the matrix M = MH[7, . . . , 24, 26, 28, 30](P ).

Factoring out as much as we could from the rows and columns of the
matrix, we were able to have Mathematica compute the remaining determi-
nant:

det M = (−1)2/3(2)2/924383129567744112513181723199236292(53)(967)(2141)κ

where κ is a composite integer on the order of 1085 with no small factors:

(1) κ = 4972125503975388123549399196928230101413
365278909345657357099864972271058186013692161.

This is nonzero and hence we conclude that the Weierstrass weight of
the 243 conjugates of P (including itself, but excluding the points with
XY Z = 0) are all 6, as “expected.” Furthermore, we have shown that the
nongap sequence at all of these points is (0, 1, . . . , 24, 26, 28, 30). �

We can do a similar computation for F10. The genus is 36, and the
expected gap sequence is 0, 1, . . . , 31, 32, 34, 36, 38.

Proposition 6. The diagonal Weierstrass points on F10 have weight 6.

Proof. Using Mathematica, we compute (with the appropriate set of func-
tions H) the matrix M = MH[8, 9, . . . , 31, 32, 34, 36, 38](P ) . Rather than
attempting to compute the exact determinant, we factor out powers of 21/10

and powers of (−1)1/10. This leaves a matrix with integer entries. In order
to show that the determinant of this matrix is nonzero, we need only show
that it is nonzero modulo p for some integer p. First, we reduce the entries
of the matrix modulo p and obtain a matrix of residues. Next, we can we
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can easily find the exact determinant of this matrix. Lastly, we reduce this
determinant modulo p again.

In this case, the determinant is zero modulo p for all primes less than 43.
Of course this only means that these primes divide the determinant. The
prime 43 is the smallest which does not divide the determinant. Modulo
43, we get a nonzero determinant. (We got 17 modulo 43.) This shows
that the actual nongap sequence is the one we “expected.” And thus, the
weight of each of the 300 points on F10 conjugate to ((−1/2)1/10, (−1/2)1/10),
including itself, is 6. �

It is interesting to note that the primes which divide the determinant of
M , in this case, include (but are not limited to) all primes less than 43, as
well as 59, 79, and 997. No other primes less than 3571 (the 500th prime)
divide the determinant. (Compare with the determinant of M in Proposition
5.)

In general, one should be able to check whether diagonal points have the
minimal possible nongap sequence by calculating det MH[s](P ).

The difficulty is in computing the higher derivatives in order to create the
matrix M . Further, one cannot numerically calculate the determinant of M
without running into round-off error problems. For n = 9, we computed this
determinant exactly. This seems too difficult and slow a computation for
larger n, at this time. For n = 10, we reduced modulo some small primes.
This works as long as the determinant is, in fact, nonzero. It is interesting,
however, that the evidence does seem to suggest that the expected gap
sequences are the actual ones, in general.

Also, it is intriguing that the primes p for which the diagonal points
coalesce with other points on the reduction of Fn modulo p (that is, the
primes which divide det M) seem to include most small primes as well as
just a few scattered large primes.
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