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We study the second derivative Qcλ of the Yang–Mills–
Higgs functional with structure group SU(2) at a spherically
symmetric critical point cλ when the self-interaction parame-
ter λ is not close to 0. We find that if Qcλ0

is non-negative and
with kernel consisting entirely of translation modes then posi-
tivity persists in a neighborhood of λ0. In particular, we show
that if translation modes always account for the whole kernel
then Qcλ

is always non-negative. This extends our previous
results for λ in an neighborhood of 0.

1. Introduction.

The Yang-Mills-Higgs functional Eλ on R3, with structure group SU(2), is
the classical static version of the functional introduced by P. Higgs in [H].
The critical points of Eλ correspond to magnetic monopoles.

It has been known since the late 70s that spherically symmetric critical
points cλ of Eλ exist for all values of the positive parameter λ. The authors
of this paper have recently shown that for positive λ in a neighborhood of 0
these critical points have non-negative Hessian Qcλ

, i.e., they are (weakly)
stable, see [AD]. The aim of this article is to investigate the stability of cλ

for (the more relevant for physics) large values of λ.
For λ = 0 the spherically symmetric solution c0 satisfies the first order

(Bogomol’nyi) equation for global minima, [JT]. This equation is unique
to the λ = 0 case and has no analogue for λ 6= 0. One of the crucial
observations in [AD] for extending the positivity from λ = 0 to λ 6= 0 is
that the kernel of the Hessian at 0 consists entirely of translation modes.
Here we show that this is not special to λ = 0: For any positive λ0 where
Qcλ0

is non-negative, if the kernel of Qcλ0
is the span of the translation

modes then Qcλ
is non-negative for λ in a neighborhood of λ0. In the same

neighborhood the dimension of the kernel may not increase. The first main
result then is:

Theorem. The set of λ ≥ 0 for which Qcλ
is non-negative and has 3-

dimensional kernel is open.
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In addition, since for λ close to λ0 it is shown that Qcλ
is close to Qcλ0

,
the set of λ’s for which Qcλ

≥ 0 is closed, yielding:

Corollary. If kerQcλ
is always 3-dimensional then Qcλ

is non-negative
for all λ.

The proof of the main results consists of three parts. First it is shown
that if Qcλ0

is non-negative then, away from its kernel, it is bounded below
by a strictly positive constant. Then cλ is shown to converge to cλ0 in the
configuration space as λ → λ0. This implies that the Hessians Qcλ

are all
defined on the same Hilbert space and that they differ by a small amount.
It is then shown that the subspaces Nλ spanned by the translation modes
of cλ contain the kernel of Qcλ0

at the limit. This implies that directions
orthogonal to Nλ are almost orthogonal to, and definitely not in, the kernel
of Qcλ0

. For the last two steps in the proof the estimates of [AD] need to
be extended from uniform estimates on some neighborhood of 0 to uniform
estimates on any compact λ-interval.

In Section 2 we review the basics of the theory and state the main results.
The proofs are contained in Section 3, where we focus on aspects that are
genuinely different from the λ0 = 0 case. It is in Section 4 that we show
how to improve the estimates in [AD] so that they hold on any bounded
λ-interval.

2. The functional Eλ and the symmetric solutions cλ.

The Yang-Mills-Higgs functional Eλ with self-interaction parameter λ ≥ 0
is defined by

Eλ(A,Φ) =
1
2

∫
R3

{
|FA|2 + |dAΦ|2 +

λ

4
(|Φ|2 − 1)2

}
d3x,(1)

on pairs c = (A, Φ). Here A is a connection on the SU(2) bundle SU(2)×R3

over R3 and Φ is a section of the associated bundle E with fiber the Lie
Algebra su(2), E = su(2) × R3. FA is the curvature of the connection A
and dAΦ the covariant derivative of Φ with respect to the connection A:

FA = dA +
1
2
[A,A], dAΦ = dΦ + [A, Φ].

All norms use the Killing inner product on su(2) and the standard metric
on R3.

Eλ is defined on the configuration space

Ĉ = {(A,Φ) : A ∈ L2
1,loc,Φ ∈ L2

1,loc, Eλ(A,Φ) < ∞.}

Note here that Ĉ stays the same for all λ > 0. For the special case λ = 0 see
[AD]. Ĉ is equipped with the L2

1,loc topology intersected with the topology
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that makes ‖dAΦ‖2 and ‖FA‖2 continuous. Eλ, λ ≥ 0 is invariant under the
action of the gauge group

G = {g : R3 → SU(2), g ∈ L2
2,loc},

where g ·A = gAg−1 + gdg−1, and g ·Φ = gΦg−1. Then Eλ descends to the
quotient C = Ĉ/G.

To define the space TcC of admissible infinitesimal perturbations at c =
(A,Φ) in C, consider first the completion Hc of C∞

0 sections on R3 with
respect to the inner product norm

||(a, φ)||2c = ‖∇Aa‖2
2 + ‖∇Aφ‖2

2 + ‖[Φ, a]‖2
2 + ‖φ‖2

2.(2)

Hc contains only directions that keep Eλ finite, c.f. [T1], but it still contains
deformations along the orbit of G. This is remedied here by excluding the
elements of the kernel of the (formal) adjoint of the linearization of the
action

∂c(a, φ) = −d∗Aa + [Φ, φ].(3)

We define therefore

TcC = {(a, φ) ∈ Hc : ∂c(a, φ) = 0}.
The variational equations for λ ≥ 0 are the Yang-Mills-Higgs equations

d∗AFA = [dAΦ,Φ], d∗AdAΦ = −λ

2
Φ(|Φ|2 − 1).(4)

For any c = (A,Φ) in C, the second derivative of the energy Eλ defines a
bilinear form on TcC

Q̂λ,c((a1, φ1), (a2, φ2))(5)

=
d2

dsdt

∣∣∣∣
(0,0)

Eλ(A + sa1 + ta2,Φ + sφ1 + tφ2), λ ≥ 0,

the Hessian of the Yang-Mills-Higgs functional. Then

Q̂λ,c((a1, φ1), (a2, φ2))

= 〈FA, [a1, a2]〉+ 〈dAΦ, [a1, φ2] + [a2, φ1]〉+ 〈dAa1, dAa2〉
+ 〈dAφ1, dAφ2〉+ 〈[a1,Φ], [a2,Φ]〉+ 〈dAφ1, [a2,Φ]〉

+ 〈dAφ2, [a1,Φ]〉+
λ

2

∫
R3

(|Φ|2 − 1)〈φ1, φ2〉d3x

+ λ

∫
R3

〈Φ, φ1〉〈Φ, φ2〉d3x

and the corresponding quadratic form is

Qλ,c(a, φ) = ‖dAa‖2
2 + ‖dAφ‖2

2 + ‖[a,Φ]‖2
2

+ 〈FA, [a, a]〉+ 2〈dAΦ, [a, φ]〉+ 2〈dAφ, [a,Φ]〉
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+
λ

2

∫
R3

(|Φ|2 − 1)|φ|2d3x + λ

∫
R3

〈Φ, φ〉2d3x.

Now recall the following standard:

Definition 2.1. Let Q̂ be a bilinear form a Hilbert space H. Then v0 in H
is in kerQ̂ if and only if

Q̂(v0, v) = 0
for all v in H.

Throughout this paper whenever Q is the quadratic form associated to a
bilinear form Q̂ we use the phrase “v0 is in kerQ” to mean “v0 is in kerQ̂”.

The following is rewriting Qλ,c on TcC as in [T2], page 246.

Lemma 2.2. For (a, φ) in TcC,
Qλ,c(a, φ) = ‖∇Aa‖2

2 + ‖∇Aφ‖2
2 + ‖[a,Φ]‖2

2 + ‖[Φ, φ]‖2
2

+ 2〈FA, [a, a]〉+ 4〈dAΦ, [a, φ]〉

+
λ

2

∫
R3

(|Φ|2 − 1)|φ|2d3x + λ

∫
R3

〈Φ, φ〉2d3x.

Proof. First separate in Qλ,c the terms that contain λ from those that do
not, using the obvious notation:

Qλ,c(a, φ) = Q0,c(a, φ) +
λ

2

∫
R3

(|Φ|2 − 1)|φ|2d3x + λ

∫
R3

〈Φ, φ〉2d3x.

Next use the Bochner-Weitzenböck formula for 1-forms on flat spaces, see
page 95 of [L], and integrate by parts to get

‖dAa‖2
2 + ‖d∗Aa‖2

2 = ‖∇Aa‖2
2 + 〈FA, [a, a]〉.

Then

Q0,c(a, φ) = ‖∇Aa‖2
2 − ‖d∗Aa‖2

2 + ‖dAφ‖2
2 + ‖[a,Φ]‖2

2

+ 2〈FA, [a, a]〉+ 2〈dAΦ, [a, φ]〉+ 2〈dAφ, [a,Φ]〉.
Therefore for (a, φ) in TcC, where d∗Aa− [Φ, φ] = 0 holds,

Q0,c(a, φ) = ‖∇Aa‖2
2 + ‖dAφ‖2

2 + ‖[a,Φ]‖2
2 + ‖[Φ, φ]‖2

2

− 2‖[Φ, φ]‖2
2 + 2〈FA, [a, a]〉+ 2〈dAΦ, [a, φ]〉+ 2〈dAφ, [a,Φ]〉.

Now observe that on TcC we also have

〈dAΦ, [a, φ]〉

=
3∑
1

∫
R3

〈(dA)iΦ, [ai, φ]〉

= −
3∑
1

∫
R3

〈Φ, (dA)i[ai, φ]〉
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=
∫

R3

〈
Φ,

[
−

3∑
1

(dA)iai, φ

]〉
−

3∑
1

∫
R3

〈Φ, [ai, (dA)iφ]〉

=
∫

R3

〈Φ, [d∗Aa, φ]〉 −
∫

R3

〈Φ, [a, dAφ]〉

=
∫

R3

〈Φ, [[Φ, φ], φ]〉+
∫

R3

〈[a,Φ], dAφ〉

= −‖[Φ, φ]‖2
2 + 〈dAφ, [a,Φ]〉,

to finally get

Q0,c(a, φ)

= ‖∇Aa‖2
2 + ‖dAφ‖2

2 + ‖[a,Φ]‖2
2 + ‖[Φ, φ]‖2

2 + 2〈FA, [a, a]〉+ 4〈dAΦ, [a, φ]〉.
�

In [tH] and [P] ’t Hooft and Polyakov suggest spherically symmetric so-
lutions for the three-dimensional Yang-Mills-Higgs equations. With respect
to the standard basis ea, a = 1, 2, 3 of su(2) their Ansatz is

A = εija
xj

r2
(1−K(r))eadxi, Φ =

xα

r

H(r)
r

ea,(6)

with boundary conditions K(r) → 0 and H/r → 1, as r →∞.
On configurations of this form, Eλ is

Eλ(H,K) = 4π

∫ ∞

0

{
(K ′)2 +

1
2

(
H ′ − H

r

)2

+
K2H2

r2
+

1
2

(K2 − 1)2

r2

+
λ

4

(
H2

r
− r

)2}
dr.

A critical point (Kλ,Hλ) of the 1-dimensional integral satisfies the varia-
tional equation

d

dt

∣∣∣∣
t=0

Eλ(Hλ + th, Kλ + tk) = 0

for all h, k with compact support on [0,∞). This yields the system of
non-linear, second order, ordinary differential equations

K ′′
λ =

H2
λ − 1 + K2

λ

r2
Kλ (YMH 1)

H ′′
λ =

2K2
λ

r2
Hλ − 4λHλ

(
1−

H2
λ

r2

)
. (YMH 2)

It is relatively easy to produce critical points of the 1-dimensional integral
by direct minimization, see [D] for example. On the other hand it is a
standard fact, referred to as “the principle of symmetric criticality” in [Pa],
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that due to symmetry a critical point of the 1-dimensional integral is also a
critical point of Eλ overall.

Therefore for each λ there is a spherically symmetric monopole solution.
Throughout this paper

cλ = (Kλ,Hλ)

will denote this solution.

Remark on notation. The notation for the Hessian Qλ,cλ
of Eλ over all

directions in Tcλ
C will be shortened to Qcλ

. Otherwise, Qλ,c will denote the
Hessian at an arbitrary configuration c in C.

There is no a priori reason why cλ should be an overall minimum. For
example, the spherically symmetric minimizer of the Skyrmion functional
has (non-spherically symmetric) unstable directions, see [WB].

For λ = 0 the the point c0 is a global minimum in the connected compo-
nent of all configurations with finite E0 energy, [M].

For λ 6= 0 and small, the main result in [AD] is:

Theorem 2.3. There is λ0 > 0 such that Qcλ
(v) ≥ 0 for all λ ≤ λ0 and

for all v in Tcλ
C. Furthermore,

kerQcλ
=
〈

∂cλ

∂xi
, i = 1, 2, 3

〉
.

The behavior of Qcλ
for λ away from λ = 0 is investigated here. For this,

define

Λ = {λ > 0 : Qcλ
≥ 0},

Λ′ =

{
λ ≥ 0 : kerQcλ

=
〈

∂cλ

∂xi
,

〉
i=1,2,3

}
.

Then Theorem 2.3 states that Λ ∩ Λ′ is not empty and contains an interval
of the form (0, λ0).

The main result here is:

Theorem 2.4. 1) Λ ∩ Λ′ is an open subset of (0,∞).
2) Λ is closed.
3) Λ contains the first connected component of Λ′.

With this, to prove that Qcλ
is non-negative for all λ reduces to the

following:

Conjecture 2.5. For all positive λ, kerQcλ
=
〈

∂cλ

∂xi
, i = 1, 2, 3

〉
.
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3. Convergence in the configuration space and Hessians.

3.1. General Observations. The proof of the Theorem 2.4 relies on some
general observations about quadratic forms from [AD]. First, in order to
describe the fact that the kernel of the Hessians changes as the solutions cλ

move in the configuration space C, adopt the following:

Definition. Let (H, 〈, 〉) be a Hilbert space. Let Vλ0 be a closed subspace of
H and Vλ be a one-parameter family of closed subspaces of H. Vλ contains
Vλ0 at the limit as λ → λ0 if for any ε > 0 there exists δ > 0 such that
|λ− λ0| < δ implies that for any u in V ⊥

λ of norm 1 there exists v in V ⊥
λ0

of
norm 1 such that ‖v − u‖ < ε.

Now, slightly abusing notation, let Qλ0 be a quadratic form and Qλ be a
one-parameter family of quadratic forms on H. The following describes the
steps for the proof of Theorem 2.4 in this general setting:

Proposition 3.1. Let Qλ0 be a quadratic form and Qλ be a one-parameter
family of quadratic forms defined on a Hilbert space H and assume that:

1) Qλ0 is uniformly continuous on the unit sphere of H.
2) α := inf{Qλ0(v) : v ⊥ kerQλ0 , ‖v‖ = 1} 	 0.
3) sup‖v‖=1 |Qλ0(v)−Qλ(v)| → 0 as λ → λ0.
4) There are subspaces Nλ of kerQλ such that Nλ contains kerQλ0 at the

limit as λ → λ0.
Then there exists ε > 0 such that whenever |λ− λ0| < ε then

1) inf{Qλ(v) : v ⊥ Nλ, ‖v‖ = 1} >
α

3
	 0,

2) Nλ = kerQλ.

Proof. If v is in N⊥
λ and of norm 1 then, for λ sufficiently close to λ0, there is

v′ of norm 1 in kerQ⊥
cλ0

close to v. Therefore Qcλ
(v) ≈ Qcλ0

(v) ≈ Qcλ0
(v′) >

α/3. �

3.2. Reduction to a single Hilbert space. Before Proposition 3.1 can
take over, one has to establish that as λ → λ0 the spaces Tcλ

C are isomorphic
and therefore all Hessians Qcλ

are defined on the same space.

Lemma 3.2. For any c and c′ in C with c− c′ in TcC the following holds:

|‖v‖c′ − ‖v‖c| ≤ Mc‖v‖c‖c− c′‖c.

In particular, for ‖c− c′‖c sufficiently small the identity on C∞
0 induces an

isomorphism between TcCand Tc′C.

Proof. The proof for the norm ‖.‖c as defined here, is the same as the proof
of Proposition B6.2 of [T1]. �

That the conditions of this Lemma are satisfied for spherically symmetric
solutions is proved in the following:
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Proposition 3.3. ‖cλ − cλ0‖cλ0
→ 0, as λ → λ0 > 0.

Proof. It is a matter of straightforward calculation to show that this follows
by the fact that the following norms over [0,∞) go to 0 as λ → λ0:∥∥∥∥1

r
(Hλ −Hλ0)

∥∥∥∥
2

, ‖H ′
λ −H ′

λ0
‖2, ‖(Hλ −Hλ0)‖2.(7)

‖Kλ −Kλ0‖2,

∥∥∥∥1
r
(Kλ −Kλ0)

∥∥∥∥
2

, ‖K ′
λ −K ′

λ0
‖2.(8)

For these estimates work as follows:

Step 1. Estimates for Hλ and Kλ. First obtain uniform in λ pointwise
bounds on the fields on [0, r0), for r0 sufficiently small, see (23) and (24) in
Section 4.

Then obtain uniform in λ pointwise exponential decay estimates on the
fields on [r1,∞) for r1 sufficiently large, see Proposition 4.2 in Section 4.

For the intervals of the form [r0, r1], Proposition 7.1 of [AD] shows that
‖FAλ

‖2 + ‖dAλΦλ
‖2 is an non-decreasing function of λ, therefore bounded

on bounded intervals. As an elementary case of Uhlenbeck’s compactness,
this suffices for uniform convergence of the fields on bounded domains, see
Proposition 7.4 of [AD].

Step 2. Estimates for H ′′
λ and K ′′

λ. These follow from the estimates on
Hλ and Kλ after using equations (YMH1) and (YMH2) that do not involve
first derivatives, see Proposition 4.1 below.

Step 3. Estimates for H ′
λ and K ′

λ. For these, obtain uniform in λ point-
wise decay estimates on the first derivatives on [r1,∞), c.f. Propositions 8.2,
9.4 and 9.5 of [AD]. On [0, r1) use Step 2, the Poincaré inequality and the
fact that H ′

λ(0) = K ′
λ(0) = 0.

The details follow from the arguments in [AD], after observing that the
pointwise estimates there on the fields Hλ, Kλ and their first derivatives are
valid for λ in any specified bounded interval; see Section 4 below. �

Remark. ‖Hλ −Hλ0‖2 → 0 does not hold for λ0 = 0 over [0,∞) but only
over compact intervals. This reflects the fact that H0 decays in power law
whereas Hλ decays exponentially for all λ > 0, see Proposition 4.2.

The remaining subsections of this section show that the conditions of
Proposition 3.1 hold for the Hessians Qcλ

.

3.3. Uniform continuity of Qλ,c on the unit sphere.

Lemma 3.4. For any λ, and for any c = (A,Φ) in C with Φ bounded the
Hessian Qλ,c : (TcC, ‖.‖c) → R is uniformly continuous on the unit sphere.
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Proof. It suffices to show that Q̂λ,c(v, w) ≤ K‖v‖c · ‖w‖c for some constant
K and all v and w. To see that this holds separately for each term of Q̂λ,c,
use the fact that Φ is bounded and the inequalities

|〈FA, [a, a]〉| ≤ ‖FA‖2‖[a, a]‖2 ≤ C‖FA‖2‖(a, φ)‖2
c ,(9)

|〈dAΦ, [a, φ]〉| ≤ ‖dAΦ‖2‖[a, φ]‖2 ≤ C‖dAΦ‖2‖(a, φ)‖2
c ,(10)

c.f. [T1]. �

Remark. It is standard to show using maximum principle that for any crit-
ical point c = (A, Φ) of Eλ, and in particular for the spherically symmetric
solutions cλ, the Higgs field Φ satisfies |Φ|(x) < 1.

3.4. When Qλ,c is non-negative.

Theorem 3.5. For any c in C the following fold:
1) If Φ is bounded then Qλ,c : (TcC, ‖.‖c) → R is continuously differen-

tiable.
2) There is ε > 0 such that Qλ,c − ε‖.‖2

c is weakly lower semi-continuous
in (TcC, ‖.‖c).

Proof. 1) Since Q̂λ,c is continuous, this follows from the fact that 2Q̂λ,c(v, .)
is the differential of Qλ,c at v.

2) First use Lemma 2.2 to rewrite the Hessian as

Qλ,c(a, φ) = ‖∇Aa‖2
2 + ‖dAφ‖2

2 + ‖[a,Φ]‖2
2 + ‖[Φ, φ]‖2

2

+2〈FA, [a, a]〉+ 4〈dAΦ, [a, φ]〉

+
λ

2

∫
R3

(|Φ|2 − 1)|φ|2d3x + λ

∫
R3

〈Φ, φ〉2d3x.

Then for ε ≤ min(λ, 1) we have:

Qλ,c(a, φ)− ε‖(a, φ)‖2
c

= (1− ε)‖∇Aa‖2
2 + (1− ε)‖dAφ‖2

2

+ (1− ε)‖[a,Φ]‖2
2 + (1− ε)‖[φ,Φ]‖2

2 + (λ− ε)
∫
R3

〈Φ, φ〉2d3x

+ 2〈FA, [a, a]〉+ 4〈dAΦ, [a, φ]〉+
λ

2

∫
R3

(|Φ|2 − 1)|φ|2d3x

+ ε‖[φ,Φ]‖2
2 + ε

∫
R3

〈Φ, φ〉2d3x− ε‖φ‖2
2.

Each term of the first two lines is weakly lower semi-continuous with re-
spect to the ‖.‖c-norm: For the first term, for example, note that if (an, φn)
converges weakly to (a, φ) in TcC then

‖∇Aa‖2 ≤ ‖(a, φ)‖c ≤ lim inf
n→∞

‖(an, φn)‖c
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since ‖ · ‖c is a norm and hence weakly lower semicontinuous.
The weak continuity of the terms in the third line follows as in Section

VI of [T2] from the fact that FA, dAΦ and ||Φ|2 − 1| belong to L2 (and
therefore Property (∗) of [T2] is satisfied).

The terms in the fourth line are also weakly continuous since they regroup
as

ε

∫
R3

(|Φ|2 − 1)|φ|2d3x.(11)

�

The following is the main application of the weak lower semi-continuity
offered by Theorem 3.5.

Proposition 3.6. For any λ, if Qλ,c(v) ≥ 0 for all v in TcC then

inf{Qλ,c(v) : v ⊥c kerQλ,c, ‖v‖c = 1} 	 0.(12)

Proof. Let vn be a sequence in kerQ⊥
λ,c with ‖vn‖c = 1 and Qλ,c(vn) → 0.

By considering a subsequence, assume that vn is weakly convergent and let
v ∈ kerQ⊥

λ,c be its weak limit. Since Qλ,c is weakly lower semicontinuous (by
Theorem 3.5) and non-negative, obtain that Qλ,c(v) = 0. Moreover, since
there is an ε > 0 such that Qλ,c(·)− ε‖ · ‖2

c is weakly lower semicontinuous,
it follows that

−ε‖v‖2
c = Qλ,c(v)− ε‖v‖2

c ≤ lim inf
n

(Qλ,c(vn)− ε‖vn‖2
c) = −ε

which implies that ‖v‖c ≥ 1 and thus ‖v‖c = 1 (therefore (vn) converges to
v in the Hilbert space norm ‖ · ‖c). Hence

Qλ,c(v) = min{Qλ,c(u) : u ⊥c kerQλ,c, ‖u‖c = 1}.(13)

Then by the differentiability and the non-negativity of Qλ,c it is easy to see
using a Lagrange multiplier that for each w ∈ kerQ⊥

λ,c

Q̂λ,c(v, w) = Qλ,c(v)〈v, w〉c

which gives that v is in kerQλ,c, a contradiction to the fact that v ∈ kerQ⊥
λ,c

of norm 1. �

3.5. Uniform convergence on the sphere.

Lemma 3.7. For ci = (Ai,Φi) and c = (A,Φ) in C assume that ‖ci−c‖c →
0. If λi converge to λ, |Φi − Φ| tends to zero uniformly on R3 and |Φ| is
bounded on R3, then

sup
‖v‖c=1

|Qλi,ci
(v)−Qλ,c(v)| → 0.(14)
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Proof. For the part of the Hessian with no λ coefficient, see statement (5)
of Proposition A.4.3. of [T3]. For the remaining terms note that∣∣∣∣λi

(
1
2

∫
(|Φi|2 − 1)|φ|2d3x +

∫
〈Φi, φ〉2d3x

)
−λ

(
1
2

∫
(|Φ|2 − 1)|φ|2d3x +

∫
〈Φ, φ〉2d3x

)∣∣∣∣
≤ |λi − λ|1

2

∫
(|Φ|2 − 1)|φ|2d3x + |λi|

1
2

∫ ∣∣|Φi|2 − |Φ|2
∣∣ |φ|2d3x

+ |λi − λ|
∫
〈Φ, φ〉2d3x + |λi|

∫
|〈Φi, φ〉2 − 〈Φ, φ〉2|d3x.

The first and third term in the last expression obviously tend to zero. The
second term tends to zero since Φi tends to Φ uniformly on R3 and ‖φ‖2 ≤ 1.
The fourth term tends to zero since∫

|〈Φi, φ〉2 − 〈Φ, φ〉2|d3x ≤
∫
|Φi − Φ| |φ|2 |Φi + Φ| d3x(15)

and |Φi + Φ| is bounded on R3. �

Lemma 3.8. For λ0 ≥ 0, Φλ tends to Φλ0 uniformly on R3 as λ → λ0.

Proof. First note that in terms of Hλ it is enough to show that as λ → λ0∥∥∥∥Hλ

r
− Hλ0

r

∥∥∥∥
∞
→ 0.(16)

For this use Corollary 4.3 for large r, estimate (24) as it appears in the proof
of Proposition 4.1 for small r, and the uniform convergence on compact
intervals (as in Step 1, Proposition 3.3) in between. �

3.6. λ-subspaces containing the kernel of Qcλ0
at the limit. For

λ ≥ 0 consider the subspace of Tcλ
C spanned by the translation modes, i.e.,

the partial derivatives of cλ:

Nλ =
〈

∂cλ

∂xi
, i = 1, 2, 3

〉
.(17)

As a result of a straight-forward calculation

d2

dsdt

∣∣∣∣
t=0,s=0

Eλ(c(x + tei) + sv(x + tei))(18)

= Q̂λ,c

(
∂c

∂xi
, v

)
+∇(Eλ)c

(
∂v

∂xi

)
for any v in TcC. Since Eλ is translation invariant

d

dt
Eλ(c(x + tei) + sv(x + tei)) = 0.(19)
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In addition the first variation of Eλ vanishes at cλ, therefore

Qcλ

(
∂cλ

∂xi
, v

)
= 0,(20)

which shows that Nλ is a subspace kerQcλ
.

Proposition 3.9. Nλ contain Sλ0 at the limit in (Tcλ0
C, ‖.‖cλ0

) as λ →
λ0 6= 0.

Proof. As a matter of a straightforward calculation using that |Φλ0 |(x) < 1,
and that |Aλ0 | is uniformly bounded by [AD],∥∥∥∥∂cλ

∂xa
− ∂cλ0

∂xa

∥∥∥∥2

cλ0

→ 0(21)

if, in addition to the estimates in the proof of 3.3, the following norms over
[0,∞) tend to 0 as λ → λ0:

(22)
∥∥∥∥ 1
r2

(Hλ −Hλ0)
∥∥∥∥

2

, ‖H ′′
λ −H ′′

λ0
‖2,∥∥∥∥1

r
(H ′

λ −H ′
λ0

)
∥∥∥∥

2

, ‖K ′′
λ −K ′′

λ0
‖2.

Observe that this involves estimates on the fields, their first and their second
derivatives. These follow again as in [AD] using the fact that the pointwise
estimates on the fields and their derivatives hold for λ on any specified
bounded interval, see Section 4. �

Proof or Theorem 2.4. Fix λ0 in Λ ∩ Λ0. Then subsections 3.2 to 3.6 show
that Qcλ0

satisfies the conditions 1) to 4) respectively of Proposition 3.1,
and that for λ close to λ0 all the Hessians Qcλ

are defined on the same space
as Qcλ0

. Then Proposition 3.1 applies to give part 1) of Theorem 2.4.
The second part of Theorem 2.4 follows immediately from Lemma 3.7,

which shows that the complement of Λ is open.
Now for the third part of Theorem 2.4 argue as follows: by Thorem

2.3, both the first connected component Λ0 of Λ and the first connected
component Λ′0 of Λ′ are intervals starting from 0. If Λ′0 is not contained in Λ
then Λ0 is a proper subset of Λ′0. Let λ0 be the supremum of Λ0, which by
the second part of the theorem belongs to Λ0, i.e., λ0 is in the intersection
of Λ and Λ′. This contradicts the first part of the theorem. The proof of
theorem 2.4 is now complete.

4. Estimates.

This section will substantiate the claim that the estimates of [AD] for λ in a
neighborhood of 0 can be extended to estimates on any bounded λ-interval.
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Proposition 4.1 is typical of the L2-norm estimates required. Proposition
4.2 is typical of the uniform in λ and pointwise in r estimates required.

Proposition 4.1. ‖H ′′
λ −H ′′

λ0
‖L2[0,∞) → 0, as λ → λ0 6= 0.

Proof. For this, first note that it follows as in Section 10 of [AD] that there
is a constant C such that for all λ < λ0 + 1

|Kλ(r)| ≤ C(23)

for all r and ∣∣∣∣Hλ(r)
r2

∣∣∣∣ ≤ C(24)

for r in [0, 1]. Then

‖H ′′
λ −H ′′

λ0
‖L2[0,∞)

=

∥∥∥∥∥2K2
λHλ

r2
−

2K2
λ0

Hλ0

r2
− 4λHλ

(
1−

H2
λ

r2

)
− 4λ0Hλ0

(
1−

H2
λ0

r2

)∥∥∥∥∥
L2[0,∞)

≤

∥∥∥∥∥2K2
λHλ

r2
−

2K2
λ0

Hλ0

r2

∥∥∥∥∥
L2[0,∞)

+

∥∥∥∥∥4λHλ

(
1−

H2
λ

r2

)
− 4λ0Hλ0

(
1−

H2
λ0

r2

)∥∥∥∥∥
L2[0,∞)

.

For the first term in this sum find appropriately small r0 and large r1 such
that: ∥∥∥∥∥2K2

λHλ

r2
−

2K2
λ0

Hλ0

r2

∥∥∥∥∥
L2[0,∞)

≤
∥∥∥∥K2

λHλ

r2

∥∥∥∥
L2[0,r0]

+

∥∥∥∥∥K2
λ0

Hλ0

r2

∥∥∥∥∥
L2[0,r0]

+
∥∥∥∥K2

λ(Hλ −Hλ0)
r2

∥∥∥∥
L2[r0,r1]

+

∥∥∥∥∥(K2
λ −K2

λ0
)Hλ0

r2

∥∥∥∥∥
L2[r0,r1]

+ 2

∥∥∥∥∥αe−r/2

r

∥∥∥∥∥
L2[r1,∞)

≤ C3Mε + C3ε

+
C2

r2
0

‖Hλ −Hλ0‖L2[r0,r1] +
r1

r2
0

‖K2
λ −K2

λ0
‖L2[r0,r1]

+ 2ε.
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As already remarked in Step 1. of Proposition 3.3 above, E0 is an increasing
function of λ, and therefore bounded on a bounded interval, and that this
is enough to give uniform convergence of Hλ to H0 and of Kλ to K0 on
bounded domains. Therefore the last expression becomes smaller than 5ε if
|λ− λ0| is small enough, by the uniform convergence of Kλ to Kλ0 and Hλ0

to H0 on the interval [r0, r1].
For the second term and for a choice of 0 < r0 < r1,∥∥∥∥4λHλ

(
1−

H2
λ

r2

)
− 4λ0Hλ0

(
1−

H2
λ0

r2

)∥∥∥∥∥
L2[0,∞)

≤
∥∥∥∥4λHλ

(
1−

H2
λ

r2

)∥∥∥∥
L2[0,r0]

+

∥∥∥∥∥4λ0Hλ0

(
1−

H2
λ0

r2

)∥∥∥∥∥
L2[0,r0]

+ 4
∥∥∥∥(λ− λ0)Hλ

(
1−

H2
λ

r2

)∥∥∥∥
L2[r0,r1]

+ 4
∥∥∥∥λ0(Hλ −Hλ0)

(
1−

H2
λ

r2

)∥∥∥∥
L2[r0,r1]

+ 4
∥∥∥∥λ0

Hλ0

r2
(H2

λ0
−H2

λ)
∥∥∥∥

L2[r0,r1]

+ 4
∥∥∥∥λ0(Hλ −Hλ0)

(
1−

H2
λ

r2

)∥∥∥∥
L2[r1,∞)

+ 4
∥∥∥∥λ0

Hλ0

r

((
1− Hλ

r

)(
1− Hλ0

r

))
(Hλ0 + Hλ)

∥∥∥∥
L2[r1,∞)

.

Obviously, r0 can be chosen small enough to make the first two terms ar-
bitrarily small. Then r1 can be chosen large enough to make the last two
terms arbitrarily small (for the last term use triangle inequality of the norm
and Proposition 4.2; for the anti-penultimate term use Corollary 4.3 and
Proposition 4.2). The rest of the terms tend to zero as λ → λ0 by uniform
convergence on compact intervals. �

Proposition 4.2. For all λ0 ≥ 0 there exist α > 0, r0 > 0 such that for all
λ ∈ [λ0 − 1, λ0 + 1] ∩ [0,∞) and for all r ≥ r0∣∣∣∣1− Hλ(r)

r

∣∣∣∣ ≤ αe−min(2
√

λ,1)r.(25)
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Proof. Let uλ(r) = 1− Hλ(r)
r

. Differentiate twice to obtain

u′′λ +
2
r
u′λ = −

H ′′
λ

r
.(26)

Replacing H ′′
λ from (YMH-2) yields

u′′λ +
2
r
u′λ −

4λHλ

r

(
1 +

Hλ

r

)
uλ = −

2K2
λHλ

r3
.(27)

Now let
s(r) = αe−min(2

√
λ,1)r

to be the test function. The aim is to show that there exist α ≥ 1 and r0 > 0
such that

|uλ(r)| ≤ s(r),

for all r ≥ r0 and for all λ in an appropriate range. Since∣∣∣∣1− Hλ(r)
r

∣∣∣∣ ≤
√

C

r

and
|Kλ(r)| ≤ αe−r/2,

(see [AD]), for λ ∈ [λ0 − 1, λ0 + 1] ∩ [0,∞)

(s± uλ)′′ +
2
r
(s± u)′ − 4λHλ

r

(
1 +

Hλ

r

)
(s± uλ)

= ∓
2K2

λHλ

r3
+ α min(4λ, 1)e−min(2

√
λ,1)r − 2

r
α min

(
2
√

λ, 1
)

e−min(2
√

λ,1)r

− 4λHλ

r

(
1 +

Hλ

r

)
αe−min(2

√
λ,1)r

≤ 2e−r

r2
+ αe−min(2

√
λ,1)r

− 4λ

(
1−

√
C

r

)(
1 + 1−

√
C

r

)
αe−min(2

√
λ,1)r

≤ 2e−r

r2
+ αe−min(2

√
λ,1)r

− 8λαe−min(2
√

λ,1)r + 12(λ0 + 1)

√
C

r
αe−min(2

√
λ,1)r.

Note that the term −8λαe−min(2
√

λ,1)r is negative and it eventually makes
the above expression negative as well since |λ − λ0| ≤ 1, i.e., there exists
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r0 > 0 such that the last expression is negative for all r ≥ r0 and for all
λ ∈ [λ0 − 1, λ0 + 1] ∩ [0,∞). Since

uλ(r0) ≤ 1 +
√

C

r0

for all λ in the range [λ0 − 1, λ0 + 1] ∩ [0,∞), choose α ≥ 1 such that

sλ(r0)± uλ(r0) > 0

for all such λ’s. �

Corollary 4.3. For every λ0 > 0 there exists M > 0 such that for λ in
[0, λ0] the following holds for r ≥ 0

|Hλ(r)−Hλ0(r)| ≤ M.(28)
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